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ABSTRACT

The purpose of this report is to develop and compare estimators which use
LANDSAT data to estimate crop areas at the county level. This report extends the
Battese-Fuller estimator to a stratified sample design and evaluates the
Huddleston-Ray estimator and variations of the Battese-Fuller estimator on a six-
county area in South Dakota., For SRS LANDSAT studies, the authors recom mend
replacing the Huddleston-Ray estimator with one of the favorably evaluated
estimators in the Battese-Fuller family.
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SUMMARY

This report addresses the problem of using LANDSAT data to obtain crop
estimates at the county level.

First, the theory behind the presently employed Huddleston-Ray estimator
and {:he family of estimators proposed in 1981 by Battese and Fuller is outlined. A
necessary extension of the Battese-Fuller estimation model to a stratified sample
design is then developed. Both types of estimators are studied over a six county
region in eastern South Dakota.

There was a modest lack of fit of the Battese-Fuller model for the study data
set, with larger model departure corresponding to low correlation between
LANDSAT classification results and ground survey observations. A key feature of
the Battese-Fuller model is a county effect parameter and this effect was found to
be highly significant for corn, the largest of the four crops considered in the study.
Furthermore, this effect manifested itself within several strata but was negligible
across strata. The empirical work done for this study nonetheless indicates
robustness of the Battese-Fuller estimators against departure from certain model
assumptions.

Two members of the Battese-Fuller family of estimators satisfied the
criterion for small relative root mean square error; that is, the percentage of the
estimate attributable to root mean square error was less than 20%. These are the
estimators which, under the assumed model, minimize mean square error and bias
respectively. On the other hand, the Battese-Fuller estimate closest to the
Huddleston-Ray estimate was far less satisfactory, failing to meet the desired
ceilings for bias and mean square error. Therefore, for SRS LA NDSAT studies, the
authors recommend replacing the Huddleston-Ray estimator with one of the

favorahly evaluated estimators in the Battese-Fuller family.
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I. INTRODUCTION

Annually in late May and early June the Statistical Reporting Service (SRS)
of the U.S. Department of Agriculture conducts the nationwide June Enumerative
Survey (JES). From the data collected in the JES, state and national estimates of
the amount of 1land planted to various crops are calculated, as well as estimates of
inte-nded crop utilization, farm grain storage, livestock inventories, agricultural
labor, and farm economic data.

Crop-area and production estimates for individual counties are also an
integral part of the SRS estimates program. Such estimates are used by the
Agricultural Stabilization and Conservation Service and by the Federal Crop
Insurance Corporation. Published county estimates are used by aqgri~business
concerns in making decisions on marketing of farm products and in transportation
scheduling of agricultural com modities.

3RS calculates county estimates by subdividing the official state estimate
into crop reporting districts (callections of contiguous counties) and then further
subdividing into counties. Several types of indicator data are used in subdividing
the state estimate. These include:

1. JES expansions at a district level,

2. Non-probability mail surveys, and

3. State farm census data.

The resulting estimates are at least partially subjective and as a result variance
estimates for individual counties are not calculahle using this method.

In recent years, a number of states have discontinued their state farm census,
This has prompted research by SRS into alternative methods of calculating county
estimates. Ford (1981), for example, evaluates direct, synthetic, and composite
estimators for crop and livestock items utilizing a probability mail survey in North

Carolina.
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For county crop-area estimates, a number of researchers have proposed the
auxiliary use of data from the LANDSAT earth-resources satellite. The model-
based estimators proposed by Huddleston and Ray (1976) and by Battese and Fuller
(1981) are discussed later in this paper. Cardenas, Blanchard, and Craig (1978)
have proposed a LANDSAT-adjusted synthetic estimator for calculating county
crop-area estimates. In this paper we extend the Battese-Fuller estimator to the
case of a stratified sample design and evaluate the Battese-Fuller estimator on a

six-county area in eastern South Dakota.

. DATA SOURCES
A. Ground-Survey Data
JES sample units, called segments, are selected from an area sampling frame.
Segment sizes are typically one square mile. In the JES there are two levels of
stratification. The first-level strata are individual states. Secondary strata are
areas of land within a state which have similar land use. Defined in terms of the
percent of land under cultivation, these secondary strata are deter mined by visual
interpretation of aerial photography and satellite imagery. Stratum definitions in
the state of South Dakota, for example, are the fallowing:
o Stratum 11: 75% + cultivated
O Stratum 12: 50% - 75% cultivated
O Stratum 20: 15% - 49% cultivated
o Strata 31, 32, 33: urban and residential
o Stratum 40N: rangeland
o Stratum 61: proposed water
o Stratum 62: watér
During the JES interview, all fields within the sampled segment are
delineated on a non—current aerial photograph, and the crop or land use of each

delineated field is recorded on a questionnaire.



B. LANDSAT Data

The basic element of LANDSAT data is the set of measurements taken by the
satellite's multispectral scanner (MSS) of a 0.4 hectare area of the earth's surface.
The MSS measures the amount of radiant energy reflected from the earth's surface
in four different regions of the electromagnetic spectrum. The individual 0.4
hectare MSS resolution areas, referred to as pixels, are arrayed along east-west
rows within the 185 kilometers wide north-to-south pass of the LANDSAT satellite.
For purposes of easy data storage, the data within a swath are subdivided into
overlapping square hlocks, called scenes, which are 185 kilometers on a side.
Currently, a given point on the earth's surface is imaged once every eighteen days.
Satellite passes which are adjacent on the earth's surface are at least one day apart

with respect to their dates of imagery.

III. ANALYSIS-DISTRICT LANDSAT ESTIMATOR
Since 1972, SRS has been using LANDSAT data to improve crop-area

estimates for unions of multi-county areas called analysis districts. These efforts

have been research studies but since 1978 have provided timely end-of-year
estimates to the SRS Crop Reporting Board. Hanuschak, Allen, and Wigton (1982)
chronicle the 1972 to 1982 results from these studies.

An analysis district is a collection of counties or portions of counties

completely contained in one to three LANDSAT scenes having the same image
date. In the midwestern United States, where most of the SRS LANDSAT research
has been conducted, a typical analysis district contains a minimum of ten counties.
For analysis districts, SRS uses the regression estimator described by
Cochran (Section 7.1.7, third edition) to obtain crop-area estimates which are more
precise than the JES estimates. This procedure is described in detail in Sigman, et

al (1978). Rriefly, the SRS analysis-district procedure is as follows:
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1. The JES data for segments in the analysis district are used to label

segment LANDSAT pixels as to crop type.

2. Labeled LANDSAT pixels are used to develop discriminant functions
for each crop type. (A discriminant function for "other" is also
developed.)

3. The discriminant functions are used to classify the LANDSAT data
in the sampled JES segments. The classification results for each
segment are the auxiliary variahle for the regression estimator. The
survey results for each segment are the primary variable.

4. The discriminant functions are used to classify all pixels within the
analysis district from which the population mean per segment of the
auxiliary variahle can be calculated.

The estimation procedure described above is carried out in each analysis
district, and then analysis-district estimates as well as variances are combined to
the state level by treating the analysis areas as post-strata. The above procedure
imposes a lower bound on the size of the JES sample within the analysis district.
The reasons for this are the following:

1. If the separate form of the regression estimator is used, there must
he enough segments in each stratum of the analysis district to
estimate the stratum regression coefficients, or

2. If the combined form of the regression estimator is used, there must
be enough segments in the analysis district to estimate the
combined regression coefficient.

In the mid-western United States, counties typically contain only two to four
sampled JES segments and may ‘contain no sampled segments, Thus, defining
analysis districts to be individual counties and then using the above procedure is

generally not feasihle.
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IV. LANDSAT SMALL AREA ESTIMATION
A. Huddleston-Ray Procedure,

As presented above, crop acreage estimation for analysis districts is a
straightforward use of a regression estimator. To provide a set of estimates for
each county contained in the analysis district, Huddleston and Ray (1976) proposed
that the mean calculated by classifying the entire analysis district, Xa.d., be
replaced by the mean calculated by classifying the full set of potential segments
from a particular county, X.

Thus, the analysis district regression estimator for the mean per segment is:

REG ad. = VYa.d. +bl (a4, - %a.q)

=bo+by Xaq,
and the Huddleston-Ray county estimator is:
HRc = 93,4, + b (¢ - %a.4.)
= by + by Xe.

The problems with this procedure are:

L. it isunclear how to calculate an accurate variance for the county

estimate s0 obtained, and

2. the use of the difference

Xo - %ad, = Ro- R + ®o - Rag)
lumps together a difference attributable to sampling error within the
county and a difference that measures the inherent distinction between a
given county and the analysis district.

B. BRattese-Fuller Model.

In addressing the above issues the Battese-Fuller model for county level
estimation assumes that segments grouped by county admit the same rate of
change relationship (slope) as does the analysis district but that a different

intercept is required. This idea is implemented by using a portion of the vertical
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distance from the analysis district regression line to the county sample mean.
Denoting this distance by 0. = 3o by — byX., the Battese-Fuller county estimator
is:

BFc = bo+ by Xo+ 8¢ Oc where 0 < 8o < 1,

This introduction is an oversimplification. Estimating county effects by O
precludes the use of ordinary least squares in fitting the analysis district regression
line and thus the choice of & = 0 does not coincide exactly with the Huddleston-
Ray estimate.

More precisely, as originally proposed, the Battese-Fuller model assumes that

for the jt'-h sampled segment from the ith county we have:

Yij =bo+ b1 Xjj tuj=bo+ by Xij+ vi+ej
vi, ejj independent, normal with mean 0 and variances 03 and og respectively
cov (Ui, ui) = | 0 ifi#i

o2 £i=1,j#3

02+02  ifi=i,j=7

Thus, segments from the same county possess positively correlated residuals.
The parameterog is both a within county covariance and a between county
component of the variance of any residual. og is the within county variance
component. This set of assumptions reduces to the standard assumptions of
ordinary least squares when 03 = 0.

Assuming first that by and by are known, the county mean residuals

Gi-=yi.—b0"blxj.=Vj_+eL

are observahble and give estimated county effects of

o~

v j=8i0j where0< §j< 1.



The county mean is estimated by
bo + by Xi+ 8i04.
with error equal to
(1 -85 vi- &ief.
It follows that

52
e

MSE = (1- 6)202 + §2-2-
nj

where nj is the size of the sample from county i. Wote that, conditioned on the

county effects, the average error is (1 - §;) vj. Squaring and averaging gives a

mean squared conditional bias of:
MSCB = (1 - §7)%2.
As a function of § , it is easy to see that the above expression for MSE is

minimized if

a$

§i=-—=----
" g +od

nj

Denoting this quotient by yi, we focus our attention on the three specific estimates

obtained from:

a.8§i=0
o estimate lies on analysis district regression line

o MSE = MSCB

b.§i=1
O MSCB =0



c.8i=vj

o minimum MSE is obtained

MSCB

°wse - 17V

Wote that estimates for unsampled counties may be obtained by choosing
§ =0,

As discussed in the Battese-Fuller paper, a best linear unbiased estimate b
for an unknown b is obtainable by an appropriate transformation of the data. A

fitting of constants procedure handles estimation of the variance components. One

then has:
MSE=  (1-6)%2+ 53‘3&%
ni
+2 6i-vi (Xi-6§i%) v Ry
+ (ii—siij) V?b) (ii—siii)'
and

MSCB = (1-5,-)203
—20-8 )vi (Xi-61%) VD &

t .
+(Xj -8 {%) V(b)Zj=l Rjijxg-v?b) (Xi-6 i%p)"
o

where % and Xj are vectors (1, %) and (1, Xj). The same choice of g i=vyi
minimizes the MSE.
C. Stratification

Like the regression procedure used at the analysis district level, the Battese-
Fuller modal is applicable within individual strata. The procedures set forth by

Battese and Fuller and presented above suffice for estimating by, b1 2

2 .
yo & in each

stratum. However, the presence of a county main effect across strata introduces a
cross strata covariance and requires revisions in both the MSE formula and the

choice of an optimal set of multipliers for the mean residuals.
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at Fuller's suggestion, the authors developed the fallowing extension of the
model presented in the last section. For the jth segment from county i and stratum

h, assume that

Yhgg = B + By Bhij * Vhi + ehij

with variance - covariance structure

0 if i#

o] if 1=1' =R 3P
COV(Uhij R uhvitju) = sh if i=i' h=h J;lj

B, + By i€ i1 beb' 5]

Oy AF il h#h!

Under these assumptions one must estimate a vector of county effects
dencted vi = (V1i, ..., Vg)' where s is the number of strata. Each component is

estimated using the vector of mean residuals ol = [@y;/ --r Usi)' where

g
Opi=-3-- p™ unjj
i F1

thereby requiring an s by s coefficient matrix. That is;

~

‘#hi=bg+b%xhi+2 b Oki

estimates the average amount of the crop per segment for the part of county i that
falls into stratum h. The mean for the county is then the appropriate weighted sum

over strata.
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To put this in a convenient notation, let

Bxi =

00 . . . 1 Xg

and similarly for TX1 using %p,;. Also, set
1
B = (bg, by eees bg, bé)'

and

. N . N .
i= (vl sl
wh=( AR W'-i)
where Np; = total number segments in county i and stratum hand ¥4 = g Vhi.
For known b values, the vector of estimated means for county i is

R . 0 3
H.i = Bxl‘B + Clul

and the final county mean is estimated by
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Introducing the s by s matrices

Vi Vis
H= E(vi vi') = .
Ogrs * .0‘2’3
and
(_’%l_. . . 0
Dy
sei= | .
o . . . ?ﬁg_
we have Al=E (ululy = +sEl,
Then MSE (u 1= wi g( (wi- ci'ul) i’ - ui'cl)) i

wid - 2aci + ci'aich) wi'

and

MSCB wig-2uci +ci'gcl) wi'

Applying a minimization criterion to each component of vi results in
ci= (al) -1y

which reduces to



if  vnk = 0 for all h#k.

The coefficient matrices for which we carried out the estimation procedure
are the following:

a. Cl=0

0 regression line used in each stratum

o MSE=MSCB
b. cl=1
O MSCB=0
i 0
c. Ci=Ti= | .
0 | Ao

o minimizes MSE if Ypi = 0

d. ci= (a} -1y

0 minimizes MSE in general



-— 14 -

The estimates obtained using these matrices will be denoted BFREG, BFONE,
BFGAM and BFOPT, respectively, in section V.C. The Huddleston-Ray estimate
discussed in section IV. A. will be dencted HR.

In order to display formulas for the mean square error and mean square
conditional bias when b is estimated, we introduce the 2s by 2c matrices

~1

Vb ) 0 \

VB = .

0 v /

VCB =E ((@® - B) ®-B))

03 N 0
t ' ‘ . . *
CS =§=1 LxJ sv+SE})-1d sv+SE)-11,%x7 where SV = .
0 06

It then fallows that the estimates

ui-pxip +ci' o

and

give
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MSE () = wi g( vi-cl' g - (Bxi- ci' Lxi® - B)

i . A .
vi-cl'g - (Bxi-ci' Lxiy@ - ) ) wi

=wl {H-20Ci4ci aicd
-2@xi-ci'Lxd ve Lxi ri-ci4 (M- svesehLuyci-g
+@xi-cl'Lxi) vep @xi- cioxiy}wl
~and
MSCB (ﬁ = wi -2uclci'aci
- 2 @xi-ci'Lxy vB LXI' (sv+sed-lua-Cj

+ @xici'vxi) va cs v @xi-ci'Lxi) i

V. EVALUATION OF BATTESE-FULLER ESTIMATOR
4. Description of Data Set

An empirical evaluation of the Battese-Fuller estimator was performed over
a six-county area in eastern South Dakota. A LANDSAT and ground-truth data set
was available for this area as a result of a joint study by SRS and the Remote
Sensing Institute (RST), located in Brookings, South Dakota. The original SRS-RST
use of this data set was in determining the affect of soil type on LANDSAT data
characteristics,

The major feature of this data set which made it advantageous for use in a
county-estimation study was that it contained a large number of segments within a
relatively small area. Specifically, there were enough segments to calculate a .
within-county regression estimate for each county against which to compare other
county estimators. This amounts to treating each county like an analysis district.
Also, there were enough segmehts in the data set to simulate repeated selection of
samples smaller in size then the full data set. A negative feature of the data set,
however, is that the quarter-section (160 acres) segment size is smaller than

normal JES segments,
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The location of the data set is a six—county area in eastern South Dakota
making up approximately 40 percent of a LANDSAT scene. Two of the counties
have small fractions of their areas (4% and 7%, respectivaly) lying outside the
LANDSAT scene.

The sample design of the original soil study consisted of ten strata defined in
ter ms of soil characteristics. Sample selection was by proportional allocation with
increased sampling in small strata. Ground data cdllection was performed by RSI
~ and was by observation only. No interviews with farm oéerators were conducted.

For the county-estimator study, however, generalization of conclusions to the
JES was desired. Consequently, for the county-estimation work some segments
were randomly discarded to restore proportional allocation, and the segments then
reassigned to the SRS land-use strata. The resulting sample size was 200 segments.
As can be seen in Tahle 1, there was a sufficient number of segments to calculate
within—county regression estimates for all counties in strata 11 and 12 and for most
counties in strata 20.

Table 1: Sample Allocation by County and SRS Stratum

Stratum

County 11 12 20 Total
Codington 8 14 5 27
Spinks - 21 24 2 47
Beadle 13 26 3 42
Clark 15 14 7 36
Kinasbury 7 21 2 30
Hamlin 10 _ 8 0 18

74 107 19 200

For purposes of simulating repeated samples, eight samples of size 75 were
developed from the 200 segments by dividing the 200 segments into 8 mutually

exclusive sets and then forming samples from groups of three sets., Calculation of
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discriminant functions, classification of LANDSAT data, and calculation of
Battese-Fuller county estimates were performed for each sample of 75 (also called
training groups) and for the full sample,

This data set was also used in another county estimation study com paring the
Huddleston-Ray and the Cardenas estimators. (Amis, et. al, 1982) The present
study uses the LANDSAT classification results from this earlier work.

The LANDSAT data used in the county-estimation study came from two
' image dates — July 20, 1979, and August 25, 1979. ’I‘ims, the MSS measurement
vector was eight dimensional — four measurements from July 20 and four
measurements from August 25. The early image date was before the 1979 start of
harvesting for oats and flax.

Although the six-county analysis district estimates were not of interest in

this study, they were calculated in order to compare results with other SRS
LANDSAT studies. The stratum variance of an analysis district regression
estimate is proportional to 1-R2, where R2 is the coefficient of determination

between the LANDSAT classification results and the ground truth,

For the full sample of 200 segments, the R2 values were as fallows:

Stratum
1 12 20
Corn .78 .76 .33

Sunflower .92 .86 —_

Flax .66 .26 .46

Oats .37 .23 .23

The relative efficiency.of an analysis-district reqression estimator is the
variance of the direct-expansion estimator divided by the variance of the

regression estimator. Using all 200 segments the analysis-district relative
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efficiencies were 3.9, 8.8, 1.7, and 1.1 for corn, sunflowers, ocats and flax,
respectively. For the eight samples of size 75 the analysisdistrict relative
efficiencies for corn ranged from 3.2 to 7.9 with a median of 4.4.
B. Validity of Model Assumptions

To deter mine whether or not the assumptions of the Battese-Fuller estimator
are valid, ordinary least-squares LANDSAT regressions were performed within
strata 11 and 12 for each of the six South Dakota munﬁes. The following statistics
of comparison were calculated:

Abhi = regression intercept for stratum h and county i

Stzwi = error mean sum of squares for stratum h and county i

’E}l,i = regression slope for stratum h and county i

If the unstratified Battese-Fuller model assumptions are true, then the
calculated comparison statistics satisfy the following properties:

1. Each bnj is an unbiased estimate of bg + vj.

2. Each Sl?xi is an estimate of 9.

3. Each Bgi is an unbiased estimate of by.

If, on the other hand, the stratified Battese-Fuller model assumptions are
correct, the comparison statistics will exhibit the following behavior:

4. i unbiasealy estimates b:] + Vhi.

5. S, estimates 04, for each county in stratum h.

6. Each Abtl)i unbiasedly estimates bt11 within statum h.

The above statements and alternatives to them can be concisely expressed by
using the regression-hypothesis notation of McLaughlin (1975). McLaughlin
considers the triplet of parameter vectors

(intercepts, residual variances, slopes)
for a set of regressions. 3 hypothesis concerning the triplet is denoted by a three-

letter word. The component letters correspond in position to the triplet parameter
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vectors, and each letter is either E for homogeneity (equality) or V for
heterogeneity (variability). For example, VEE denotes homogeneity of residual
variance and slopes, but heterogeneity of intercepts.
For the case of regressions performed within each stratum of each county,
we extend the notation as follows: |
E = Homogeneity across both strata and counties
Ec = Vs = Homogeneity across counties within each stratum. Heterogeneity
across stata. 4
Es = Ve = Homogeneity across strata within each county. Heterogeneity
across counties.
V = Heterogeneity across both counties and strata.
Thus, statements 1 through 3 above are the hypothesis VCEE and statements
4 through 6 the hypothesis VEcEc. Additional hypotheses of interest are the
unstratified models |
EEE: Homogeneity of intercepts, residual variances, and slopes across
both county and strata
VcVeE: Homogeneity of slopes across county and strata.
Heterogeneity of intercepts and residual variances,
and the corresoonding stratified models
EcEcEc: Homogeneity of intercepts, residual variances, and intercepts across
counties within each strata. Heterogeneity across strata.
VVEc: Homogeneity of slopes across counties within each stratu mv, but
heterogeneity of intercepts and residual variances.
Such models can be tested by the fallowing general procedure (McLaughin,
1975):
1. Calculate maximum likelihood estimates for the triplet under both

hypothesis VVV and the restricted hypothesis which is of interest.
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2. Use the calculated estimates to evaluate the likelihood ratio, L,
that has hypothesis VVV corresponding to the denominator and the
restricted hypothesis corresponding to the numerator.

3. Reject the restricted hypothesis if G2 = - 2 Log (L) is large.

The critical region of the test is calculated from the asymptotic distribution
of G2 under the restricted hypothesis. This distribution is a chi-square distribution
with degrees of freedom equal to the difference in number of parameters
estimated under hypothesis VVV and the restricted hypothesis.

Though the Battese-Fuller estimator does not require that the form of the
probahility distributions of the regression errors be known, testing of the
postulated model assumptions does. We assume that the regression errors have
Gaussian distributions.

The hypotheses of interest are listed in the third calumn of Table 2. For
models EEE, VoVoE, EqEqEe, and VoEE, the required maximum likelihood
estimates can be obtained from ordinary least squares procedures. For models
VeVeE and VVE(, convergence of iterated weighted least squares estimation
provides the needed maximum likelihood estimates.

Table 2 lists the model test results. Only model VVE. for corn cannot be
readily rejected (p = .21). This model for corn assumes that regression slopes are
homogeneous across counties within each strata but that intercepts and error
variances are heterogeneous.

For sunflowers, flax, and oats there is significant heterogeneity of regression
slopes across counties. Figure 1 compares the variability of estimated regression
slopes under models VVV and VVEq as a function of R2, the coefficient of
determination between classification results and ground truth. Though the
likelihood ratio tests reject VVE for all crops except corn, Figure 1 indicates that

departures from the model (homogeneous slopes across counties within each
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stratum; heterogeneous intercepts and residual variances) are not overly large for
oats and sunflowers, but model departures are pronounced for flax. Figure 1 also
shows that the heterogeneity of regression slopes is more likely for low R2 values.

Models which assume the homogeneity of error variance across counties were
readily rejected. Figure 2 compares the variability of estimated error variances
under model VVV and VE-V (homogeneous error variances across counties within
each stratum; heterogeneous slopes and intercepts). Flax, oats, and sunflowers
exhibit high heteroscedacity, whereas for corn the departure from homogeneous
error variances is moderate.

In sum mary, the model tests performed do not support either the unstratified
or the stratified assumptions for the Battese-Fuller estimator. For corn, and corn
only, the heterogeneity of stratum regression slopes over counties was not
sianificant, but this was accompanied by heterogeneity of residual variances.
Sunflowers and oats fafled model tests for homogeniety of stratum regression

slopes, but the observed departures from homogeniety were not overly large.
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Tahle 2: Model Tests

Crop ngg:lf Model* Test Degrees  P-value
Statistic of
Freedom

Corn Unstratified EEE 123.5 33 #
VcEE* * 84.2 28 #

VoVeE 41.4 23 .01
Stratified EcEcEc 115.4 30 #
VEGEq* * * 50.4 20 #

VVEo 13.2 10 .21
Sunflowers Unstratified EEE 125.0 18 #
VCEE** 124.9 15 #
VoVcE 84.3 12 #
Stratified EcEcEe 112.2 15 #
VEGEQ* * * 108.2 10 #
VVEa 48.0 5 #
Flax Unstratified EEE 160.5 24 #
VoEE* * 159.6 20 #
VC‘VCE 90.0 16 ’ #
Stratified EcEcEe 142.4 21 #
VEQEq* * % 133.4 16 #
VVEe 37.8 8 #
Oats Unstratified EEE 143.0 21 #
VoEE* * 130.1 16 #
VoVeE 83.1 11 #
Stratified ECECEC 140.0 18 #
VeEGEq** * 120.8 12 #
VVE 37.2 6 #

* Model notation explained on pages 19 through 21.
** Unstratified Battese-Fuller assumptions.
* * xStratified Battese-Fuller assumptions.

#p< 0.01
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Variable of estimated within-county regression coefficients
7 . 1o . o

versus RZY. Variability measure is standard deviation (over
counties) of estimated within-county stratum regression
coefficients. RZ = coefficient of determination between
classification results and ground truth. Strata 11 and 12.
C = corn, F = flax, O = oats, and S = sunflowers indicate
observed variability (model VVV). Vertical lines indicate

estimated of expected variability under model VVE. (homogenous

slopes acronss counties within each stratum; heterogeneous
intercepts and residual variances).
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Variability of estimated within-county error variances versus

R2. Variability measure is coefficient of variation (over
counties) of estimated within-county stratum error variances.

R2 coefficient of determination between classification results
and ground truth. Strata 11 and 12. C corn, F flax, 0 = oats,
and §$ sunflowers indicate observed variability (model VVV).
Vertical lines indicate estimate of expected variability if error-
variance parameters were homogeneous across counties within each

stratum.
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C. Results

1.) Comparison Values

Tahle 3 shows the crop estimates (in hectares) obtained for purposes of
comparison by running six individual county regressions. Coefficients of variation
are parenthesized to the right of the estimate and each county's percentage of
total output appears in parentheses below the estimate.

Corn and oats are notably more abundant than flax and sunflowers. The
distribution of corn shows three major producers (19-25%) and three minor ones (3-
15%). Oats are quite evenly distributed (17-21%) among five counties with the
sixth county a minor producer (8%). For flax there are only five producing counties
two of which are notably larger (24-26%) than the other three (14-18%).
Sunflowers present the most concentrated distribution with one county claiming
three quarters of the total production.

A successful county estimator should, of course, perform well for both

largeand small production whether evenly distributed or not.



- 26~

Tahle 3: Crop estimates obtained from individual
county regression and used as basis for comparisons

County T Corn (CV.*) | oOats(C.V.) | Flax (C.v.) | Sunflowers (C.V.)

Codington 116296 A6s) 177183673203 T 11698 @2a) 3838 6 T
(proportion of 9%) (19) (26) 9%)
total)

Spink 40527 (10.8) 17320 (22.4) 6080 (36.5) 30309 (8.9)
(proportion of (21) an (14) (75)
total)

Beadle 36499 (11.4) 19244 (32.8) 0’ 0
(proportion of 19 (18)
total)

Clark 20099 (21.6) 18268 (28.6) 7704 (28.9) 6095 (75.5)
(proportion of (10) amn an (15)
total)

Kingsburg 48568 (9.6) 8006 (34) 10756 (23.3) 378 (157.4)
(proportion of (25) (8) (24) (1)
total)

Hamlin 29517 (6.6) 21605 (25.2) 8109 (33.1) 0
(proportion of (15) (21) (18)
total)

TOTAL 191506 103910 44347 40210

Analysis District 189900 (6.2) 111323 (9.9) 45175 (23.2) | 43517 8.7)

estimate using

200 segments

*C.V. = coefficient of variation =

2.) Parameter estimation

standard deviation

The fitting of constants procedure discussed in Battese-Fuller (1981) was used

to obtain estimates of the variance components Oah and Ogh in each stratum and an

02
Vh

component °3h has a large variance; a situation that would be eased if the number

F test of the hypothesis Hy: = 0 was carried out, The between county variance
of counties in the region was greater. The sample sizes in stratum 20 were too
small to provide viable estimates of 0320, 0 ordinary least squares regression was

used in that stratum.
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Tahle 4 gives the results of the F test for a nonzero county effect in strata
11 and 12. The most convincing evidence of this effect is found for corn in both

strata and for oats in stratum 12.

Tahle 4: Results from testing for a nonzero
county effect (H: o4 = 0).

The p-value is the probability, assuming Hg,
of obtaining a 0§ estimate as large as
the one actually observed.

* indicates the result for the set of all
200 segments.

Numerical entries are the numbers of groups of 75
segments each that had the indicated result.

p value

Crop Strata | <.01 | .01-.05 | 05-.10 | .10-.44 | .44 and '0‘3;1'0
___________________________________________ § SO S SRS S —
Corn 11 *] 4 1 2 0

12 *2 3 2 1 0
Oats 11 0 0 0 *4 4

12 0 *2 1 4 1
Flax 11 0 1 0 *4 3

12 0 0 1 2 *3
Sunflower 11 0 0 1 5 *x2

12 1 0 1l 3 *3
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Correlations of residuals within strata were found from the variance components

according to the formula

Tahle 5 records these results for the full set of 200 segments together with the
minimum, median and maximum for the eight g