Go to the NASS Home Page U.S. Department of Agriculture
National Agricultural Statistics Service
Research and Development Division

CropScape | FAQ’s | Metadata | National Download | Other CDL Citations

Other CDL Citations:

Bandaru, Varaprasad, Tristram O. West, Daniel M. Ricciuto, R. César Izaurralde, 2013. Estimating crop net primary production using national inventory data and MODIS-derived parameters, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 80, June 2013, pp. 61-71, ISSN 0924-2716.

Becker-Reshef, I, E. Vermote, M. Lindeman, and C. Justice, 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), pp. 1312-1323.

Belden, Jason, Hanson, B., McMurry, S., Smith, L., and Haukos, D., 2012. Assessment of the effects of farming and conservation programs on pesticide deposition in High Plains wetlands Environmental Science & Technology 46(6), pp. 3424-3432.

Brown, J. Christopher, Eric Hanley, Jason Bergtold, Marcelus Caldas, Vijay Barve, Dana Peterson, Ryan Callihan, Jane Gibson, Benjamin Gray, Nathan Hendricks, Nathaniel Brunsell, Kevin Dobbs, Jude Kastens, Dietrich Earnhart, 2014. Ethanol plant location and intensification vs. extensification of corn cropping in Kansas. Applied Geography Volume 53, September 2014, Pages 141–148.

Brown, J.C., Kastens, J.H., Coutinho, A.C., Victoria, D.D.C., Bishop, C.R., 2012. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment Volume 130, 5 March 2013, Pages 39-50.

Boryan, C. and Z. Yang, "Deriving crop specific covariate data sets from multi-year NASS geospatial cropland data layers ", proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013, Melbourne, Australia, July 2013.

Boryan, C. and Z. Yang, "Operational implementation of a new automatic stratification method using geospatial cropland data layers in the NASS area frame section", , proceedings of IGARSS 2014, IGARSS 2014 & 35th Canadian Symposium on Remote Sensing, Quebec City, Canada, July 13-18, 2014.

Boryan, C.; Z. Yang; L. Di; and K. Hunt, "A New Automatic Stratification Method for U.S. Agricultural Area Sampling Frame Construction Based on the Cropland Data Layer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1939-1404, May 2014, DOI: 10.1109/JSTARS.2014.2322584.

Boryan, Claire, Yang, Z., and Di, L., 2012. Deriving 2011 Cultivated Land Cover Data Sets Using USDA National Agricultural Statistics Service Historic Cropland Data Layers. Proc. of IEEE International Geoscience and Remote Sensing Symposium, July 22-27, 2012, Munich, Germany.

Boryan, Claire, Yang, Z., Mueller, R., and Craig, M., 2011. "Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service Cropland Data Layer Program" Geocarto International 26(5): pp. 341 - 358.

Boryan, C.; Z. Yang; P. Willis, "US Geospatial Crop Frequency Data Layers," Proc. Of the Third International Conference on Agro-geoinformatics (Agro-geoinformatics 2014), August 11-14 2014, Beijing, China, DOI:10.1109/Agro-Geoinformatics.2014.6910657.

Chang, Jiyul, Matthew Hansen, Kyle Pittman, Mark Carroll, and Charlene DiMiceli, 2007. Corn and Soybean Mapping in the United States Using MODIS Time-Series Data Sets. Agronomy Journal, 99: pp. 1654-1664.

Cibin, R., Chaubey, I., and Engel, B., 2012. Simulated watershed scale impacts of corn stover removal for biofuel on hydrology and water quality. Hydrological Processes 26: pp. 1629 - 1641.

Ebinger, Lee, 2012. 133 map categories! How the US Department of Agriculture solved a complex cartographic design problem. (Online Version Accessed June 30, 2013) Wisconsin State Cartographers Office.

Faber, Scott and Soren Rundquist, 2012. Plowed Under Report from the Environmental Working Group: pp. 1-12.

Fitzgerald, Timothy and Grant Zimmerman, 2013. Agriculture in the Tongue River Basin: Output, Water Quality, and Implications. Agricultural Marketing Policy Paper No. 39, May 2013.

Gao, F., Shuai, Y., He, T., Schaaf, C.B., Masek, J.G., Wang, Z., 2013. Influence of angular effects and adjustment on medium resolution sensors for crop monitoring (Conference Paper). Nature 493, pp. 514 - 517.

Gelfand, Ilya, Sahajpal, R., Zhang, X., Izaurralde, R., Gross, K., and Robertson, G., 2013. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, pp. 514 - 517.

Han, W., Yang, Z., Di, L., and Mueller, R., 2012. "CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support" Computers and Electronics in Agriculture Vol. 84, June, pp. 111- 123 , 2012.

Hartz, Laura, Boettner, F., and Clingerman, J., 2011. Greenbrier Valley Local Food: The Possibilities and Potential. Greenbrier Valley Economic Development Corp: pp. 1 - 34.

Hendricks, Nathan P., Sumathy Sinnathamby, Kyle Douglas-Mankin, Aaron Smith, Daniel A. Sumner, and Dietrich H. Earnhart, 2013. The Environmental Effects of Crop Price Increases: Nitrogen Losses in the U.S. Corn Belt. Report available through the University of California Davis.

Herdy, Claire, Luvall, J., Cooksey, K., Brenton, J., Barrick, B., Padgett-Vasquesz, S., 2012. Alabama Disasters: Leveraging NASA EOS to explore the environmental and economic impact of the April 27 tornado outbreak. 5th Wernher von Braun Memorial Symposium; Huntsville, AL. pp. 1-9.

Howard, Daniel, Wylie, B. and Tieszen, L., 2013. Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA. International Journal of Remote Sensing, 33(19): pp. 6094-6108.

Ines, Amor, Narendra Das, James Hansen, Eni Njoku, 2013. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment 138(7) pp. 149-164.

Ji, Y., S. Rabotyagov, C. Kling, 2014. Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years. Agricultural & Applied Economics Association's 2014 AAEA Annual Meeting, Minneapolis, MN, July 27-29, 2014.

Johnson, David, 2013. A 2010 map estimate of annually tilled cropland within the conterminous United States. Agricultural Systems 114: pp. 95-105.

Johnson David and Mueller R. 2010. The 2009 cropland data layer. Photogrammetric Engineering & Remote Sensing 76(11): pp. 1201 - 1205.

Johnston, Carol A., 2014. Agricultural expansion: land use shell game in the U.S. Northern Plains. Landscape Ecology, January 2014, Volume 29, Issue 1, pp 81-95.

Johnston, Carol, 2013. Wetland Losses Due to Row Crop Expansion in the Dakota Prairie Pothole Region. Wetlands, 33: pp. 175-182.

King, L.; Hansen, M.; Stehman, S. V.; Adusei, B.; Potapov, P.; Krylov, A., 2014. Advancing Methods for Estimating Cropland Area. American Geophysical Union, Fall Meeting 2014, abstract #B33E-0228. Publication Date: 12/2014. (http://adsabs.harvard.edu/abs/2014AGUFM.B33E0228K).

Kipka, Holm, David, O., Lyon J., Garcia, L., Green T., Ascough II, J., and Rojas, K., 2013. A web-service based tool to generate crop rotation management input files for spatially distributed agroecosystem models. Hydrology Days: pp. 38-46.

Kutz, Frederick, Morgan, J., Monn, J., and Petrey, C., 2012. Geospatial approaches to characterizing agriculture in the Chincoteague Bay Subbasin. Environmental Monitoring and Assessment, 184(2): pp. 679-692.

Laingena, Chris, 2015. Measuring Cropland Change: A Cautionary Tale. Papers in Applied Geography, Volume 1, Issue 1, pages 65-72. Published online: 22 Apr 2015. (http://www.tandfonline.com/doi/full/10.1080/23754931.2015.1009305#.VZq2z_lVhBc).

Lark, Tyler J; J Meghan Salmon; Holly K Gibbs, 2015. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmental Research Letters Volume 10 Number 4. (http://iopscience.iop.org/1748-9326/10/4/044003).

Li, Z., Liu, S., Tan, Z., Bliss, N.B., Young, C.J., West, T.O., Ogle, S.M., 2014. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. Ecological Modelling, Volume 277, 10 April 2014, Pages 1-12.

Liang, L.; Gong, P., 2015. Evaluation of global land cover maps for cropland area estimation in the conterminous United States. International Journal of Digital Earth, Volume 8, Issue 2, 1 February 2015, Pages 100-115.

Long, J.A., Lawrence, R.L., Miller, P.R., Marshall, L.A., 2014. Changes in field-level cropping sequences: Indicators of shifting agricultural practices. Agriculture, Ecosystems and Environment Volume 189, 1 May 2014, Pages 11-20.

Lunetta, Ross, Shao, Y., Ediriwickrema, J., and Lyon J., 2010. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data. International Journal of Applied Earth Observation and Geoinformation, 12: pp. 81-88.

Melton, F.S., Johnson, L.F., Lund, C.P., Pierce, L.L., Michaelis, A.R., Hiatt, S.H., Guzman, A., Adhikari, D.D., Purdy, A.J., Rosevelt, C., Votava, P., Trout, T.J., Temesgen, B., Frame, K., Sheffner, E.J., Nemani, R.R., 2012. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Volume 5, Issue 6, 2012, Article number 6375772, Pages 1709-1721.

Muth Jr., D.J., Bryden, K., and Nelson, R., 2013. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment. Applied Energy 102, pp. 403-417.

Painter, Kathleen, Donlon, H., and Kane, S., 2013. Results of a 2012 survey of Idaho oilseed producers. Agricultural Economics Extension Series. No 13-01.

Pittman, Kyle, Matthew Hansen, Inbal Becker-Reshef, Peter Potapov and Christopher Justice, 2010. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensing 2(7): pp. 1844-1863.

Plourde, James, Pijanowski, B., and Pekin, B., 2013. Evidence for increased monoculture cropping in the Central United States. Agriculture, Ecosystems & Environment, 165(15): pp 50-59.

Potter, Christopher, 2013. Ten years of vegetation change in Northern California marshlands detected using Landsat satellite image analysis. Journal of Water Resource and Protection, 5: pp. 485-494.

Rashford, Benjamin, Albeke, S., and Lewis, D., 2013. Modeling Grassland Conversion: Challenges of Using Satellite Imagery Data. American Journal Agricultural Economics, 95(2): pp. 404-411.

Sahajpal, Ritvik, Xuesong Zhang, Roberto C. Izaurralde, Ilya Gelfand, and George C. Hurtt. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt. Computers and Electronics in Agriculture 108 (2014): 173-182.

Schaaf, Dionn, Linz, G., Doetkott, C., Lutman, M., and Bleier, W., 2008. Non-blackbird Avian Occurrence and Abundance in North Dakota Sunflower Fields, The Prairie Naturalist 40(3/4): September/December.

Shao, Y., R. Lunetta, J. Ediriwickrema, J. Iiames, 2010. Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data. Photogrammetric Engineering and Remote Sensing, 75(1), pp. 73-84.

Stern, Alan, Doraiswamy, P., and Hunt, R., 2014. Comparison of different MODIS data product collections over an agricultural area. Remote Sensing Letters, Volume 5, Issue 1, 2 January 2014, Pages 1-9.

Stern, Alan, Doraiswamy, P., and Hunt, R., 2012. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product. Journal of Applied Remote Sensing, 6(1): pp. 1- 16.

Stoebner, T.J.; Lant, C.L., 2014. Geographic determinants of rural land covers and the agricultural margin in the Central United States. Applied Geography, Volume 55, December 01, 2014, Pages 138-154.

Thompson, Aaron and Prokopy, L., 2009. Tracking urban sprawl: Using spatial data to inform farmland preservation policy. Land Use Policy, 26(2): pp. 194-202.

U.S. Department of Energy. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.

Waldner, Francois, Steffen Fritz, Antonio Di Gregorio and Pierre Defourny, 2015. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sens. 2015, 7(6), 7959-7986; doi:10.3390/rs70607959. Published: 17 June 2015. (http://www.mdpi.com/2072-4292/7/6/7959).

Wardlow, B., S. Egbert, J. Kastens, 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310.

Wart, Justin van, K. Christian Kersebaum, Shaobing Peng, Maribeth Milner, Kenneth G. Cassman, 2013. Estimating crop yield potential at regional to national scales. Field Crops Research 143 (2013) 34–43.

West, Tristram, Brandt, C., Baskaran, L., Hellwinckel, C., Mueller, R., Bernacchi, C., Bandaru, V., Yang, B., Wilson, B., Marland, G., Nelson, R., De La Torre Ugarte, D., and Post, W., 2010. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecological Applications 20(4): pp. 1074-1086.

Wright, Christopher, and Wimberly, W., 2013. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences (USA), 110(10): pp. 4134-4139.

Wu, Z., Thenkabail, P.S., Verdin, J.P., 2014. Automated cropland classification algorithm (ACCA) for California using multi-sensor remote sensing. Photogrammetric Engineering and Remote Sensing, Volume 80, Issue 1, January 2014, Pages 81-90.

Xian, G., Homer, C., Fry, J., 2009. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113(6), 1133-1147.

Yagcia, Ali Levent; Liping Dia; Meixia Denga, 2015. The effect of corn–soybean rotation on the NDVI-based drought indicators: a case study in Iowa, USA, using Vegetation Condition Index. GIScience & Remote Sensing, Volume 52, Issue 3, pages 290-314. Published online: 01 May 2015. (http://www.tandfonline.com/doi/full/10.1080/15481603.2015.1038427#abstract).

Yan, L., Roy, D.P., 2014. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment, Volume 144, 25 March 2014, Pages 42-64.

Yang, Yubin, Wilson, L., Wang, J., and Li, X., 2011. Development of an Integrated Cropland and Soil Data Management System for Cropping System Applications. Computers and Electronics in Agriculture, 76: pp. 105-118.

Yang, Yubin, Lloyd T. Wilson, Jing Wang, 2014. Reconciling field size distributions of the US NASS (National Agricultural Statistics Service) cropland data. Computers and Electronics in Agriculture, Volume 109, November 2014, Pages 232–246.

Yost, M.A., M.P. Russelle, J.A. Coulter, P.V. Bolstad, and A.C. Jenks, 2014. Geographic trends in alfalfa stand age and crops that follow alfalfa. North Central Extension-Industry Soil Fertility Conference. 2013. Vol. 29. Des Moines, IA.

Yu, G., Di, L., Zhang, B., Shao, Y., Shrestha, R., Kang, L., 2013. Remote-sensing-based flood damage estimation using crop condition profiles (Conference Paper). 2013 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics 2013, Article number 6621908, Pages 205-210.

Yun, Seong Do and Benjamin M. Gramig, 2013. Spatially Explicit Dynamically Optimal Provision of Ecosystem Services: An Application to Biological Control of Soybean Aphid. Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2013 AAEA & CAES Joint Annual Meeting, Washington, DC, August 4-6, 2013. Http://ageconsearch.umn.edu/bitstream/150744/2/AAEA2013_Yun_and_Gramig.pdf.

Zheng, Baojuan, James Campbell, Yang Shao, and Randolph Wynne, 2013. Broad-scale monitoring of tillage practices using sequential Landsat imagery. Soil Science Society of America Journal: Vol. 77 No. 5, p. 1755-1764. 09/20/2013.

Zhong, Liheng, Peng Gong, Gregory Biging, 2013. Efficient corn and soybean mapping with temporal extendibility: A multi-year experiment using Landsat imagery. Remote Sensing of Environment 140(8) pp. 1-13.

Zimmer, Stephanie, Kim, J., Nusser, S., 2012. A hierarchical clustering algorithm for multivariate stratification in stratified sampling. Joint Statistical Meetings, San Diego, CA pp. 1-11.

Other Websites that reference the CDL/CropScape:

Visit the Plan East Tennessee project: ET Index Web Map Application

Visit the Texas A&M AgriLife Research at Beaumont: iAMS Cropland Data

Visit a Bioenergy/CDL web mashup Bioenergy Knowledge Discovery Framework/U.S. Dept. of Energy

CropScape | FAQ’s | Metadata | National Download | Other CDL Citations