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SEQUENTIAL CLASSIFICATION AND CLUSTERING METHODS
APPLIED TO DIGITIZED PHOTOGRAPHS

By

Chapman P. Gleason
Statistical Reporting Service

U.S. Department of Agriculture 1/

ABSTRACT

This paper presents a system for object detection and counting from

transparencies digitized using a scanning microdensitometer. Classification

and clustering methods are applied sequentially to digitized transparencies

of an orange tree and a low altitude color infrared aerial photograph of a

citrus grove. The objective is to count oranges on the digitized ground

transparency and to count fruit trees on the digitized infrared aerial photo-

graph. This general flow can be applied to any type of SpF. eral data for object

detection and counting.

An 11 x 1 vector g is measured on each point. The vector g is composed

of eight spectral variables, two spatial variables, and a label variable.

8 x 1, spectral component vector

g - 2 x 1, spatial component vector

1 dimensional label variable

Discriminant analysis is first performed on the eight spectral variables

using the groups identified by the label variable. Once each point has been

classified, only those points classified as oranges (or trees) are clustered

using the spatial variables. A graph theoretic clustering method was applied

to the classified data. The graph theoretic clustering yields a measurement

vector which characterizes the cluster shape. The cluster measurement vector

is:

1/ Prepared for: Symposium on Machine Processing of Remotely Sensed Data
Laboratory for Applications of Remote Sensing
Purdue University
West Lafayette, Indiana June 29, 1976 - July 1, 1976
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W -

Cluster diameter

Cluster size

Cluster average edge length

Cluster standard deviation

This vector W is then used as the measurement vector to classify clusters

as either tree or non-tree (or orange and non-orange). The summary from the

discriminant analysis gives an estimate of the number of trees (or oranges).

Keywords: Clustering, classification, pattern recognition, multivariate analysis.
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INTRODUCTION AND BACKGROUND

The Statistical Reporting Service (SRS) of the U.S. Department of Agri-

culture has been investigating the use of remote sensing data for improve-

ments to crop and livestock estimating programs since the early 1960's. A

detailed synopsis of some of these efforts is given by Huddleston [2] and

Huddleston and Wigton [3]. Some of the most promising uses of remote sensing

are:

(1) double sampling techniques for tree or crop yields,

(2) tree census for use as a sampling frame,

(3) livestock inventories,

(4) quality control on operating programs.

Early efforts used photo interpreters to count objects of interest

(fruit or trees, livestock) from ground and aerial photography. However,

one of the sources of error in photo interpretation techniques is in count-

ing introduced by different photo interpreters. Previous investigations have

found these errors to be of sufficient magnitude that randomized plans were

performed to make adjustments to the photo interpreted counts [4, 5, 6]. This

paper proposes and demonstrates computerized multivariate methods of counting

objects of interest that are consistent and therefore, only adjustments for

bias need be estimated.

The earliest methods within SRS of computerized counting using digitized

transparencies was by Himmelberger [7], where counting oranges on selected trees

was the objective. His method used "shape" of an object (orange) as the pri-

mary method to count them. This was done by approximating the shape by a sphere.

These methods made no use of discrimination or pattern recognition techniques.

Steele [7] improv~d the methodology by using discriminant functions to classify
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the resolution elements. hereafter. called "pixel" (for picture element).

into apriori defined groups. However. no process was ever developed to count

objects of interest (oranges) in his paper. Steele did show (empirically).

that the digitizing instrument (a scanning microdensitometer) was capable of

quantitative point discrimination using discriminant analysis. It was these

earlier methods that led us to improve the methodology offering a complete

systematic approach to the problem of computerized counting of digitized trans-

parencies (either aerial or ground).

DATA ACQUISITION

A color transparency of an orange tree taken from the ground with mature

fruit and a color IR aerial transparency of a citrus grove were selected to

demonstrate these methods. Figure 1 and 2 are black and white reproductions

of the transparencies. In Figure 1. the object of interest is the oranges and

in Figure 2 the object of interest is the trees. Specifically. we would like

to count these objects of interest using a computer with a minimum number of

manual tasks.

An area on each transparency was selected to be digitized by a Photometric

Data Services' Microdensitometer [8]. This is identified as Data Set 1 and 2,

respectively. For the ground transparency. there are four groups which are

spectrally identifiable and which must be properly identified for possible train-

ing data for a classifier. The groups in Data Set 1 are:

1. Orange (0) -- Objects of interest

2. Foliage (F)

3. Ground (G)

4. Sky (S)
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For the aerial photograph seven groups are identifiable:

1. Trees in orchard (T) -- Objects of interest

2. Shadows of tree (S)

3. Hedges (H)

4. Bushes (B)

5. Canal water (C)

6. Lake (L)

7. Road and so11 (R)

The location of each of these groups on each transparency was recorded to later

locate the "training data" for analysis. "Training data" is information supplied

to derive estimates of the classification parameters to develop a rule that will

classify an unlabeled point into one of several groups.

Each of the selected areas on the transparencies was digitized using

four different color filters and two different scanning modes, which represent

respectively optical density and transmission. An effective aperture of 100

microns was used for the orange transparency and an effective aperture of 240

microns was used for the aerial transparency. Calibration after each scan was

performed on clear glass. Thus, for each pixel, an 8xl vector of observations

is available.

The microdensitometer outputs gray levels, representing the optical density

(or transmission), onto magnetic tape. A program (Hopkins [9]) was written to

reformat the tape into a form for input to the Statistical Analysis System [10].

All the data handling and statistical methodology was performed using this

system.
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Figure 1.--B1ack and white reproduction of 35mm transparency of an orange
tree which was digitized using a 100 micron effective aperture on a
PDS Microdensitometer. Data set 1 is outlined in white.
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Figure 2.--Black and white reproduction of 35mm transparency of an Orchard
which was digitized using a 240 micron effective aperture on a PDS
Microdensitometer. Data set 2 is outlined in white.
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The following gives a description of the measurement vector made on each

pixel in each data set.

x
y

DCLEAR

DRED

DGREEN
g = (1)

DBLUE

TCLEAR

TRED

TGREEN

TBLUE

GROUP

Where for each pixel:

X is distance (in pixels) from a fixed origin in the horizontal direction.

Y is distance (in pixels) from a fixed origin in the vertical direction.

DCLEAR is the optical density using a clear filter.

DRED is the optical density using a red filter.

DGREEN is the optical density using a green filter.

DBLUE is the optical density using a blue filter.

TCLEAR, TRED, TGREEN, TBLUE are the transmission values recorded for the corres-

ponding filter.

GROUP is the label variable with values assigned to the pixel if it is training

data for the classifier. No group label identifier is attached to any pixel

which is not training data.
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We see that there are three different types of variables measured on each

pixel. X and Yare s~atial variables and give the relative position of the

pixel element from a fixed origin which is determined when the transparency is

digitized. DCLEAR, TBLUE, etc., are spectral variables and each variable

represents the optical density or transmission relative to a calibration point.

The group variable (GROUP) gives the label of each pixel for training the

classification procedure.

In summary, the llxl vector a can be represented by:

Spatial variables, two dimensions
g •

I
I
I

LSpectral variables, 8 dimensions

Label variable, one dimensional

THE ANALYSIS APPROACH

There are two data sets containing gray levels of a quantized transparency.

Our eye can immediately detect the oranges in Figure 1 and trees in Figure 2

by their spectral properties in relation to background in each transparency.

A measurement vector (1) was made on each pixel representing the gray level of

the particular spot which was quantized. This vector will be used to discriminate

between different spectral groups in each of the data sets using the spectral

variables.

Once each of the data sets have been classified only the "group of interest"

in each data set will be saved for further analysis and processing. The "group

of interest" in Data Set 1 is the oranges and the group of interest in Data

Set 2 is the orange trees. The pixels classified into the groups of interest

will then be clustered for "possible oranges" and "possible trees" in Data Set 1

10



and Data Set 2 respectively using the spatial properties of the classified

pixels. If we discriminated perfectly between groups (a highly unlikely

turn of events), we could just count the clusters in each data set and this

would be the number of objects which we were trying to detect in each data

set. However, this will not likely be the case and some clusters will not

be oranges and some will not be trees. However, we will determine a "con-

servative" classification procedure which will detect at least all objects

of interest and then determine which objects to discard in a later analysis

stage. Thus, we seek a classification rule which minimizes the omission error

in the classification procedure.

Saving the results of the classified data in clustered form, we notice

that in Figure 2 the trees have some "regularity" in regard to shape. Char-

acteristics of the clusters will be determined to measure the shape proper-

ties of the trees. Clusters will then be identified as "objects of interest"

and "not of interest" and a discriminant analysis will be performed on the

cluster characteristics. The clusters classified into the group "object of

interest" will then be accumulated to estimate the number of objects present

in the data set.

The analysis procedure outline above will be discussed in detail on the

two data sets in the following phases of the analysis. Due to the discussion

presented above, the phases will be organized as follows:

• Spectral classification

• Spatial clustering

• Cluster classification

A detailed flow diagram is given in Appendix 1.
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Spectral Classification

Much has been written on discriminant analysis as a technique for statis-

tical analysis and pattern recognition [11-22]. Anderson [23], Kshirsagar [24],

and a recent book by Lachenbrach [25] gives an introduction to the topic from a

Bayesian statistical point of view. The earliest statistical writings on the

topic was by Fisher who developed the linear discriminant function. Some ad-

vanced problems in discriminant analysis can be found in Caloul1os [20]. Recent

articles by Fisher and Von Ness [22], Lachenbrach (26], and Weiner (16] indicate

this area of statistical analysis is being actively reviewed and researched

with respect to statistical distribution, estimation, and decision/hypothesis

testing theory. Almost all the theoretical work has assumed normal theory

and known population parameters. Large sample theory and "faith" are the

usual properties of sample estimates of the mean vector and covariance matrix

when the parameters are not known and must be estimated.

Some research on nonparametic discrimination has been investigated. Cover

and llart [27], and Bennett, et a1 (28] give some theoretical approaches to

estimating the group density functions (their form as well as their parameters)

by nearest neighbor methods and spline functions.

In the field of pattern recognition, survey articles can be found in Hall,

et al [11], Nagy [13], Ho and Agrawa1a [14]. Much of the pattern recognition

work which the author is familiar with has been in the field of remote sensing

using satellite data collection systems. Pattern recognition methodology has

been applied extensively in remotely sensed data. Swain [12] gives a discussion

for the theoretical and practical basis of using pattern recognition methods on

remotely sensed data.

12



Turning now to the specific problem at hand, we have multivariate measure-

ments made on several groups and we wish to know how to optimally (minimize

the probability of misclassification) assign pixels to groups. However, no

classification rule will be capable of good decisions if the groups are not

separable. Figure 3 and 4 give plots using two variables for the training data

in Data Sets land 2.

In the case of Data Set 1, we can see (Figure 3) that the orange pixels are

visually separable from the other groups using just two of the eight spectral vari-

ables. A similar situation occurs for the tree pixels in Data Set 2 (Figure 4).

These plots demonstrate that the data sets are spectrally separable for the group

of interest. In other fields of pattern recognition, for example, crop species

identification using low resolution satellite multispectral scanner data,

determination of spectrally separable groups is a time consuming and difficult

undertaking involving several analytic techniques. In this case, we have solved

this by visually clustering the two variable plots for each data set.

The number of groups to use in the discriminant analysis and the variables

which best separate the group(s) of interest must now be determined for each

data set. Thus, we must attack the group separability and variable selection

(sometimes called feature or channel selection in pattern recognition) as a

joint process to determine the discriminant function and hence, the classifica-

tion rule. Several articles have appeared in the recent literature concerning

variable selection in discriminant analysis. Weiner and Dunn [16J, Davies [17J,

Cochran [18J, and Rao [19J give discussion on variable selection for two group

linear discriminant function with 0,1 loss and equal apriori probabilities.

There is no general solution to the variable selection problem with K>2 groups

and finite sample sizes. For infinite populations it can be proven that all dimen-

sions (variables) should be used as discriminators [23J. However, this is not the

13
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case for finite sample and is sometimes referred to as the dimensionality

problem [29, 30].

There are several classification strategies observable in the data in

Figures 3 and 4. Figures 5-7 gives several different strategies for the two

data sets. The strategies are referred to as "Decision Tree Classifiers" or

"Layer Classifiers" in remote sensing pattern recognition [29, 30]. This

methodology was developed independently and we will call these strategies

"hierarchial classifiers." Classification Strategy B in Figure 5 is the usual

single stage classifier or one step discriminant analysis with all groups used.

Strategy A is a clustered classification strategy with group foliage, ground

and sky merged into one group for the classification. Which classification stra-

tegy is "best" is a function of several variables some of which are: (a) the

separability of the groups, (b) the variables used at each step of the hierarchy,

and (c) how well the "training data" represents all the data types in the data

set. Note that at each step of the hierarchy variables can be selected which

best discriminate between the groups at that particular stage of the classifi-

cation. Several different classifications using different combinations of groups

and variables were tried on each data set. Figures 8-10 summarize the percent

correct classification on each of the groups of interest in each data set. The

percent correct classification reported was estimated using the "training" data

as "test" data or as Lachenbrach calls it, the" apparent" error rate [26]. It

is well known, that this measure of the true performance of a classifier under-

estimates the true error rate [26].

Comparing the performance of the classification strategies in Figures 8 and

9 we see that for point discrimination on DAIA SET 1;
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1) unequal priors degraded the classification performance with the

optical density variables (DCLEAR, DRED, etc.); however, it had

little or no effect for transmission variables.

2) in all cases two variables had all the discriminating power of

four variables.
For DATA SET 2 each classification strategy analyzed has nearly identical

performances. The use of prior probabilities in DATA SET 1 had very little

effect on overall performance for transmission variables, since the orange

pixels were very separable spectrally.
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Appendix 2 gives the tables of the classification results using training

data as test data for some of the different classification strategies develop-

ed and summarized in Figures 8-10.

One of the considerations on which classification strategy to use among

the ones presented was computer software development. Most of the software

used in this research was done using the Statistical Analysis System [10].

However, the original SAS discriminant analysis routine did not have the capa-

bility to save on a file the classification group of individual pixels. Never-

theless, the classification results were printed. The relationship of two

group discriminant analysis on a dummy variable and regression analysis is

well known (see for example Kshirsagar [24]). Appendix 3 gives the corres-

pondence between these two techniques. Using the SAS regression program

(PROC REGR) , the predicted value of dummy Y variate given the values on the

discriminant variables can be saved in a file for further processing. Since

there were nearly 8000 points in Data Set 1, and 30,000 points in Data Set 2

which must be classified and then punched up again, if one used the original

SAS discriminant analysis procedure, regression on a dummy variate was a quicker

and cheaper alternative. Later, the SAS discriminant analysis program was mod-

ified to output the classification results onto a file for further processing.

This allowed for the capability of using quadratic discriminant functions with

unequal priors. Table I below summarizes the pixels classified into the group

of interest in each of the data sets using a particular classification stra-

tegy.

rnTA SET 1
ClAss I FI CAT! ON A us I NG n-IO VARI ABLES Tr£IL TBU£" EQU,4L PRIORS

NIPBER OF POINTS ClAsSIFIED INTO

ORPNGE
2SU

24

OrnER = (~~~AGE" GROlJIDl

m6



,
I

MTA SET 2

NLmER OF POINTS ClftSSIFIED INTO VARIOOS

GROLPS USING CLASSIFICATION SOiEt'f C

lAKE"ROAD OniER

I I I
TREES HEOOES BusHEs" CANAL" SHAJ)()lS

2,,368 819 19,582

TABLE 1.--ClAssIFICATlON OF DATA SET 1 AND 2 USING /lBEST/I CLASSIFICATION

STRATEGY•

The data in each data set has been classified into groups using discriminant

analysis on a subset of the eight spectral variables. We now need to cluster the

pixels together to form "possible" fruit and "possible" trees. This will be

discussed in the next section on Spatial Clustering.

Spatial Clusterin~

Cluster analysis is an analysis technique which is undergoing continuous

refinement and research interest in recent years in both the statistical and

pattern recognition community [31-41]. Clustering has been widely used as a

data analysis technique in numerical taxonomy and the behavioral sciences by

Jardine and Sibson [42], Sokal and Sneath [44] and Johnson [43] and others.
Two recent books, one by Anderberg [45] and another, which is more software

orientated, by Hartigan [46] give good introductory discussions on clustering.

Other works by Ball [47] and Hall and Duda [11] also give excellent overviews.
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Figure 11: Spatial plot of Pixels Classified as Oranges in Data Set 1 using Strategy A.
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The basic objective of clustering is to find structure or "natural group-

ings" in multivariate data when no apriori information is known concerning the

structure of the data set(s) being investigated. For example, in an earlier

section, we visually clustered the "sky" and "ground" and "foliage" pixels in

Data Set 1 together into one merged group for classification. The process of

determining spectral groups for classification is a cluster analysis problem.

Several different approaches have been suggested for clustering data in

the pattern recognition community. One of the first such algorithms was ISODATA

by Ball and Hall [48, 49]. This clustering procedure has been implemented on

several computer systems for grouping multivariate remote sensor data. Our

problem is somewhat different, but the ideas of grouping are similar, we wish

to cluster data together based on spatial relationships. Figure 11 is the

result of classifying Data Set 1 using classification Stragegy A in Figure 5.

The data in Figure 11 was plotted using the two spatial variables (X and Y),

the problem is how many clusters are there in this data? Of course we can see

five distinct clusters in the data. We would like to program a computer to

detect these clusters. One way to represent the points in Figure 11 is to

view this data as a graph. A graph G as defined by Harary [50], is a set S of

points (in any dimension) and set of unordered pairs o(S) defined on the

set S such that each pair x - [u, v] of o(S) is a line of G. Figure 12 is an

example of a graph.

Figure 12.--Example of a graph
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If the two dimensional points in Figure 11 are connected together

then the problem of clustering the points becomes one of finding the connected

components of a graph. Figure 13 represents the minimal spanning tree of the

completely connected graph of Figure 11.

A spanning tree of a connected graph of n nodes (points or vertices) is

a set of n-1 edges which provide one and only one path between any pair of nodes.

If the edges have lengths associated with them (a weighted graph), then the min-

imal spanning tree (MST)is the shortest of all spanning trees that can be

constructed from the given set of edges [46]. For our application, Euclidean

distance is the length associated with an edge connecting two adjacent nodes.

However, other metric distance functions can be used, as indicated by Zahn [51J.

To determine the number of clusters, the MST is partitioned into connected

components based upon a local edge "inconsistency" rule. An edge Y:f. is "incon-

sistent" if within a neighborhood of 6 nodes on both sides, of the edge, the

following are both true:

(1) The edge length deviates by more than a constant number (say ST) of

sample standard deviations from the average edge length in the neighbor-

hood.

(2) If the edge's relative size to the average edge length in the neighbor-

hood is greater than a constant (say FT).

An algorithm written in PL/I by Zahn [51J, was used to construct the MST and

partition the MST into cluster as defined by the inconsistency rule above. The

algorithm was modified and implemented into a procedure in the Statistical

Analysis System. [52]. The constants 6, ST, and FT are parameters which are

specified for the clustering procedure to detect the clusters. Several other

algorithms are available to compute a minimal spanning tree [53 and 54} of an

arbitrary graph.
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Notice, that this clustering algorithm does not require the number of

cluster to be guessed at apriori and used as a clustering parameter. Most

clustering procedures require an initial guess as to the number of clusters,

and then use some criteria to either split or combine clusters to arrive at

a final partitioning after an initial paritioning of the data is done into the

"guessed number of clusters." The final number of clusters for these algorithms,

that require the number of clusters to be guessed apriori, are very vulnerable

to bad guesses as to the number of clusters to expect and the initial partition-

ing of the data into the "guessed number of clusters." The algorithm by Zahn

[51] outlined above requires only the subtree depth to compute the local aver-

age length and standard deviation to delete "inconsistent" edges. No guess need

be made as to the number of clusters to expect in the data. It has been shown

by Gower and Ross [55] that there is a one-to-one correspondence between the

MST and single linkage cluster analysis. Thus, the MST clustering procedure has

all of the properties of single linkage schemes which are described by Fisher

and Von Ness [56].

For the two data sets, Table 2 gives the number of clusters detected using

MST clustering procedure. Figure 14 is a plot of the clusters detected in Data

Set 1. The inconsistent edges are annotated in Figure 13, this is where the cut

was made in the graph to detect the connected components.

From Figure 14, we can see that the clustering procedure detected one whole

orange (cluster 1), a group of three oranges (cluster 5), a partial orange (c1us-

ter 4), and a split of a whole orange into clusters 2 and 3, this orange has a

leaf partially covering it (See Figure 1). A procedure which will detect "whole"

fruit clusters, partial fruit clusters, and groups of whole and partial fruit

and count each fruit within this grouping was not done for this data set, since

there was a very limited amount of data available for each type of grouping. How-

ever, graph-theoretic methods of characterizing the cluster shape could be applied

to these data to count the number of either whole or partial fruit. These graph-
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theoretic methods for shape characterization will be demonstrated with the

trees in Data Set 2.

Data Set 1

5 possible orange clusters

Data Set 2

44 possible tree clusters

Table 2.--Clusters detected

We know that not all of the clusters in Data Set 2 represent trees, since

there are spectral classification errors for bushes and other "tree" types which

were confused with the trees in the orchard. We now wish to classify the clusters

as either tree or non-tree in Data Set 2. This will be presented in the next

section on Cluster Classification.

Cluster Classification

Non-tree clusters (or connected components) in Data Set 2 will tend to he long

and serpentine and not circular, whereas tree clusters will tend to be circular. A

measure of the shape characteristics of a graph is made on each cluster and is out-

putted as part of minimal spanning tree clustering procedure [51,52]. These measures

are as follows:

w -

Cluster average edge length

Cluster standard deviation

Number of points in the cluster

Cluster diameter

(1)

The cluster edge length is a measure of the "compactness" of the cluster.

The cluster standard deviation is a measure of the "spread" or "tightness" of the

cluster. The number of points is a measure of the "size" of the cluster and the

cluster diameter is a measure of the "breadth" of the cluster. These measurements

characterize the cluster with respect to shape. These four measures were used as the

measurement vector to perform a discrimianat analysis on the clusters.
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First, two groups of clusters which are "trees" and "non-trees" are identified

in the data. These clusters are then used as "training" clusters to perform another

discriminant analysis using the characteristics measured in (1) above. After inves-

tigating two dimensional plots of the variables in (1) on the training clusters, only

three variables in (1) proved to have all the discriminating ability.

They were:

Cluster average length

Cluster size

Cluster diameter

(2)

These three measurements completely characterize the shape of the clusters

in Data Set 2. The classification results of the training clusters are given

in Table 3 for Data Set 2.

-------:--.----------:~-----------------....
N\DIlberof clusters classified

Class • Percent Correct Tree Non-Tree

Tree 96.4 27 1

Non-Tree %.5 1 28.
'Total Tree: Total Non-Tree

Overall 96.4 28 29

Table 3.--Classification results of tree/non-tree clusters in Data Set 2.

In this particular instance, compensating errors occurred and the n\DIlberof trees

counted was 28. As one can see in Figure 2, 28 was the number of trees present in

Data Set 2. The tree cluster which was misclassified in Table 3 was the replanted

seedling in the last row of trees in Data Set 2 (see Figure 2).
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SUMMARY

A system was given which detects and counts objects of interest from

digitized transparencies using a scanning microdensitometer. The components

of the system are: (1) Spectral Classification, (2) Spatial Clustering, and

(3) Cluster Classification. It was found that prior probabilities and the choice

of measurement variables used in the classification procedure affected the point

by point classification accuracy. Hierarchial classification techniques were

outlined and applied to the two data sets. A graph theoretic clustering was

demonstrated which requires no initial guess as to the number of clusters in

the data. Finally, cluster shape characteristics were defined in graph

theoretic terminology and applied to the cluster to detect the number of objects

of interest.



/lpPENDIX 1: SEQUENTIAL ClAsSIFICATION A~D QUSTERING SYSTEM FLO~

DIRECT
ACCESS
DEVICE

PRINTED
OUTPUT

PLOTSOF
TRAINING

DATA

DIGITIZE
GROlJ'.lD OR

AERIAL
TRANSPARENCY

CLASSI FY LtJ-
ELED POINT

AVE CLASS I FI
TIQ'.l RESULTS

~&f ~§
D GROUPFi
I~~~I-

TRAINING SET

IDEI\ITI FY ,
LABE L .AND

EXTRACT
TRAINING DATA
FOR SPECTRAL

CLASS I FIER

SPECTRAL

ClAss I F ICATIa

35



SPATIAL
USTERING

u..USTER
ClAss I FI CATI 00
EOR . SH,6PE

ECTloo

SAVE POINTS
CLASSIFIED
INTO GROIR
OF INTEREST

COMPUTE MST
ON SPATIAL
POINT SET /IN
PARTITIONED
NTO CLUSTERS

DETERMINE CLUS-
TER SHAPE a-tAR-.~rr~S~~CA~R~·
EDGE LENGTH, ECT.

I DENT I FY TRAI N
ING CLUSTERS 1)

OBJECT OF INTER
EST 2) OBJECTS
NOT OF INTEREST

CLASS I FY
U\lLABELED

CLUSTERS

ACCUMJLATE
OBJECTS OF

INTEREST

36

DIRECT
ACCESS
DEVI CE

DIRECT
ACCESS
DEVICE



(!..PSSIFICATIOO !BULTS (f TRAINING DATA
DATA SET 1

U-ASSIFICATlai A USING 00 VARIABLES DJtl), DBUE

PERCENT
SCoRRECT

()w.,GE 100
~GE

42

CLASS I F I ED NTO
OTHER

o

JlH PRIOR =
RELATIVE
FREQUENCY

OTHER

OTHER

~.1

99.8

15

21
4

1645

21
1656

(RANGE On£R

EQUAL ~GE ~.8 39 3
On£R 98.5 25 1635
OvERALL 98.4

JTH PRIOR = ~GE 52.4 22 20RELATI VE
FREQUENCY

On£R GJ.6 7 1653

98.4

37



ClA)SIFICATHJII£SULlS (f THAINI~ MTA

Jll\TA SET 1
ClAsSIFICATIOO A USING 00 VARIABLES TRfJ)" lBLLE

~IOR PERCENT N
OBABILITIES ClAss CoRRECT

~cr: 1m 42 0fulW..
On£R 99.9 1 1659

CNERAll. 99.9
JrH PRIOR = CRA.NGE 100 LQ 0
RELATI VE
FREQUENCY

OrHER 1m 0 1660

OVERAll. 1m

ClASSIFICATIOO A USING FOUR VARIABLES" TCllAR" Tf{I)" ffiLLE" TGI£EN

QAss
PERCENT

~GE 100 42 0
EQUAL

OTHER 99.8 3 1657
LVER,6U 99.8

JrH PRIOR = ~GE 100 LQ 0
RELATIVE
FREQUENCY

OnER ~.8 3 1657

93.8

38



Cl.A)SIFICATIa~ f{SllTS a= TRl\INIf\XJ DATA
mTA SET 1

ClAss I FICATlON BUSING lWO VARIABLES ll£D .• TBLUE

~IOR PERCENT NtJ.mER OF SAMPLES CLASSIFIED INTO
OBABI LITI ES ClAss CoRRECT

FOLIAGE ~:~, ~ i IEQUAL GROUND
ORANGE 0
SKY 00.0 a 0 220

OvERALL 98
FOLIAGE 98.4 12~

~

0
~

JTH PRIOR = GROUND i~:~
~

RELATIVE ORANGE 0
FREQUENCY SKY 00.0 0 0 220

OvERALL

UAsSIFICATlOO B USIr«i FGrn VARIABLES TCLEAR •• TRED.• TGfHN •• TRWE

PRIOR
FoLIAGE tRolJID ORANGE SKYPRoBABI LITI ES CLAS

FOLIAGE ga'S 12l~ 2J 8 0
EQUAL = .6 J!~:~ ~ 8 lf6SKY

OvERALL 99.5
JTh PRIOR =

FoLIAGE 99.5 1214
~

~

8GROlJID ~:~ ~RELATIVE ORANGE 0
FREQUENCY SKY 00.0 0 0 220

OvERALL .99 4
39



ClASSIFICATION fBULTS (f TPAINING DATA
DATA SET 1

Q.AsSIFlCATION B USING TWO VARIABLES DRfDJ mWE

~IOR PERCENT NlJo1BER OF SftMPLES CLASS I F I ED INTO
OBABI LI TI ES CLASS CoRRECT FOLTl'1~~ r~ (\ SKY

FOLIAGE 1'8 1144 70 5
~

EQUAL GROUND .5
~ 2~ ~ORANGE 1 :0SKY 0 0 0 Z20

OvERALL 94.6

JTH PRIOR =
FOLIAGE gj.§ 1161 52 4 jGROUND 8 2J~ 4~LATIVE ORANGE J:~REQUENCY SKY 0 0

OvERALL 94.6

PRIOR' PERCENT
FOLIAGE GRoLI'ID (Jw.x;E SKYPROBABI LITI ES CLASS CrnREC

FOLIAGE I:S , 1 6 3
EQUAL = ~

j.4
SKY 1 .0 0
OVERALL

JrH PRIOR =
FOLIAGE 1,4 1200 14 3 3
GROUND :8 28 2' 4 ~

~LATIVE ORANGE
REQUENCY SKY 100.0 0•

OvERALL

40



UftSSIFlCATlOO ~..sULTS OF TRAINING Dl\TA
DATA SET 2

PERCENT
CUss CoRRECT

~~~ 100 432 0
STta:·1

OntER 99+- 1 1761lli~~~IRI~ TREES ~~S SHAJ)()ISCNERAI.L = 99. 9 ~ OrHER= Herx;Es

98.9 1

OrHER
Herx;ES CANAl

OvERALL = 98.8~ OrHER= BusHES SHA!)()iS

STPr£ 2
UsI NG Dffll ~
~~t~O~ -

98.8 20 1651

41



Cl.A)SIFICATl(l~ f[SLlTS (f TRAINING DATA
DATASIT 2

ClAsSIFICATION C OF FIGURE 7

STAGE 1
UsIfiG IFf]~ DISCRI-
MINATOR

PERCENT
CoRRECT

100
99+-

432
1

o
1761

OvERALL = 99.91 OrnER = Tl£ESI BLSHES1 CA'JAL HE!ffS~ SHAro~

ClAss t=NT
tlIf: ~ ECT ER
NIDIE TREES %.7 87 3 0AS DISCRI-MlNATORSI HEOOES ~.O 2 19 0UNEQUAL
PR IORS OTHER 100 0 0 16:£J

42



UPSSIFICATIrn f£SULTS (f TPAINING DATA
mTA SET 2

ClAssIFICATHJi D OF FIGmE 8

ClAss
PERCENT Nl.t13ER OF SNoPLES a.ASSIFIED INTO
CoRRECT

STAGE 1
lAKEs" 100 432 0
OTHER 99+ 1 1761

PERCENT
STAGE 2 ClAss CoRRECT

~Jt ~'I ~I- TREES" HEOOE 100
MINATORS

Busl-Es" ~
SHADO~S gj+

OvER.4LL = 99.9

ill

1 1649

PERCENT NlM3ER OF SAt-PLES O.ASSIFIED INTO
ClAss CoRRECT TREES ~EoGES

TREES %.7 87 3-
HEDG:s 95.2 1 20

OvERALL = ~. 4

43



APPENDIX 3

Discriminant Analysis for Two Groups Using
Multiple Regression on a Dummy Variate

Le t !1' X2 '••.,X be a sample of pxl component vectors observed on population 11'1'and- -n1
let .!l' Y2'···'Y be a sample of pxl component vector observed on 11'2.- ~2
Assume Xi'UN(~l ,r), .!i'UN(~2,r), ~l ;. ~2

Then it can be proven (See Anderson [23] or Kshirsagar [24]) that when the population

parameters ~l' ~2' r are known that the linear function f(X) = (~l - ~2)r-~ is the

best linear function to discriminate between 11'1and 11'2.

To classify an unlabeled point! into 11'1or 11'2based on sample estimates of

~l' ~2' r the procedure is:

(1) Compute the linear function ~ - !~!, where {- (nl + n2 - 2) S-l d

(2) Calculate the decision boundary CD where CD - 1/2 !' (X + !)

This rule 1s Anderson's classification procedure.

Now consider the dummy variable

W _ {I if a point is in ill
o if a point is in il2
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It can be proven (See Kshirsagar [24] pg.206-209) that the regression of W on the

p variables with both groups combined in a single sample yields estimates of the
-1regression parameters B which are proportion to S ~. Thus, the discriminant func-

tion and the regression function are the ~, apart from a constant of proportion-

ality, and this regression will also lead to the ~ classification procedure out-

lined in Rule A above. We will now determine this constant of proportionality.

Letb" - [;o} be a (p + 1) vector of the estimates of the e parameters in
the regression of W on the p variables. Then the weights on the p variables ~ are

given as follows:
nl • n2
nl + n2

b =
1 + nl • n2 d'S-ld

nl + n2

(2)

where

D -1We recall that ~ in the linear discriminant function was ~ • f S d, f - nl + n2 - 2.

So as claimed above, the only difference between the regression weights l in (2) and

the discriminant function weights l in (1) is the constants f and k.

This relationship allows one to save classification results in a file on a

point by point basis using regression. This relationship is important since using

SAS discriminant analysis procedure, the classification results cannot be saved on

file. The procedure does print out the classification results point by point, but

this would involve punching of the observations that were classified as "object of

interest" for further analysis. However, the regression procedure in SAS allows the

predicted value of an unlabeled point to bp. -- . in a file for later use, thus eli-

minating the manual search and punching of those points classified as an orange or a
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tree pixel in Data Set 1 and 2. This is a very important point from a data handling

standpoint when several thousand pixels are classified into the group of interest.

Corresponding to the decision boundary CD in (1) the only thing we need to show is

how to specify the decision bound CR in discrimination space using the regression func-

tion.

The figure below depicts the situation.

Linear discriminant

2R - Measurement space

function g~W Linear regression function

RLDR W • b*"X

We need to define the mapping from R onto R indicated by the question mark.

We know the decision boundary for the linear discriminant function is

CD • 1/2·!:...• (X + 1), from (1).

Now,

But,

g - ,e"'X •

b"'X - W -

So,

[ - -jnX+nY
g • 1. (W _ (W _ b' 1- 2-=- »

k - nl + n2
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Thus, classify

iff f (W - (W - b"k

if f W - (U - b

) - 1/2 f(S-l!!) .•(! + 1» 0

b"(X + y)
- --2-- > 0

iff W - U + b"

iff W - W + b (

>0

iff W - (W - b"

Thus,

+
x+y

2 ) > 0

C -W-1:;'R -
nl! + n2Y
(---

nl + n2

X+Y
2 ) (3)

is the decision boundary for the regression classifier, and Rule A is equivalent

to the following rule:

47



Rule B

(1) Regress W on the p discriminatory variables and predict W - b#X

(2) Calculate the decision boundary CR given in (3).

(3) Classify! En#l' if W - CR > 0

En 2' if W - CR ~ 0

is the vector of means for all variables from the sample

without any grouping and
X+Y

2 is the mean of the two group means.

We have shown that the two rules are equivalent and thus one can classify

unlabeled pixels into groups using regression procedure of SAS which will save

classification results on a file.
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