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Abstract

Counts and measurements made during a remote sensing experiment
indicated that total weight and number of plants per plot are
observations highly correlated with yield. The data on Texas
carrots show that plant height and carrot length for carrots sub-
sampled within plots are closely related to yield. Crown
circumference and carrot length are directly related to individual
carrot weight. The optimum plot for estimating yield from both
number of plants and total weight per plot is a one bed plot

three to five feet long. Optimum plot size and shape were
determined by both a discrete and a continuous nrocedure.

(1)
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Texas Vegetable Remote Sensing Study
Determination of Optimum Plot Size and Shape for Estimation
of Carrot Yield

I. Introduction

This analysis is based upon data collected in January 1969 from two
selected carrot fields located in the Lower Rio Grande Valley of
Texas. The data was collected primarily to study relationships
with remote sensed data. Each field contained five random}y
located sample plots, each of which contained three beds P

nine feet in length. Each bed was in turn divided into three
subplots, 1 bed x 3 feet in size (See Figure 1). Number of plants
and total weight of harvested carrots were the observations
obtained for each 1x3' plot. In addition, the weight, height,

and crown circumference for two randomly selected carrots were
obtained for each subplotgl.

Bed 1 Bed 2 Bed 3
» 1 '
3!
e o 9'
3’ {
Hgure 1

1/ A bed is defined to be the row or rows of a crop between two
irrigation ditches.

2/ Length of the two carrots for each subplot was also obtained
in one field.



II. Objectives

A primary objective of this study was to obtain information needed
for planning remote sensing research on carrot yield. Remote
Sensing is directed toward determining the relationship between
remote sensed data and ''important' ground data. For crops, remote
sensed data is usually obtained by aerial photograghy and converted
to numeric data by making various optical density 1/ readings from
the photographs. To plan such research, what ground data are
"important'' needs to be known. An indication of the importance of
various types of ground data can be obtained by studying the
correlation of the various observations with crop yield. Also, it
is desirable to know the optimum plot size for the '"important' ground
data, If remote sensing requirements permit, the optimum plot can
be used so that the variance of estimates from the ground data are
near the minumum for a given cost.

An additional objective was to obtain information about carrot

plant characteristics. Very little sampling data on carrots are
available. Correlation analyses of the data on a per carrot basis
and for various plot sizes are presented. The nested analyses of
variance provides estimates of variances for the various observations
on different plot sizes.

Another purpose was the development of procedures for optimum plot
determination. Two procedures can be used to determine the optimum
plot size and shape. One procedure is to consider plot size as a
discrete variable and select the optimum of the plots studied. Nested
analyses of variance are used to estimate the nested components of
variance. The estimated independent mean squares and cost estimates
are used to determine the plot with minimum variance for a given
cost. Another procedure is to consider plot size as a continuous
variable. The variance of a plot is assumed to be a function of plot
size, There are several alternative methods of fitting a function of
variance in terms of plot size. A combination of the discrete and
continuous procedure involves determining either the optimum length
or width bv the discrete procedure and then using the continuous
procedure to determine the remaining dimension of the optimum plot.

1/ Optical density is the common logarithum of the ratio of the
intensities of the light incident upon, to light transmitted
through a material.
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III. Correlation Analyses of Plant Characteristics

In determining what ground observations are related to carrot yield,
correlation analyses can be made on an individual carrot basis and
for various plot sizes. The correlation coefficients on a per
carrot basis are shown in Table 1 for each field.

Table l.--Correlation matrix per carrot - by fields

Weigﬁt * Height ; Crown ; Lengthl/
: circumference
Field A
Weight ; 1.000
Height g .153 1.000
Crown : .
circumference f 2 932%% .097 1.000 -
Field B
Weight 'E 1.000
Height E .007 1.000
Crown :
circumference f .648%% N06 1.000
"Length . 789%%* -.015 J424%% 1.000

1/ Length of carrots was measured only in Field B

*  Significantly different from zero at the 57 level
*% Significantly different from zero at the 17 level
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The correlation analysis on a per carrot basis indicateé crown
circumference and carrot length are related to individual carrot
yield (weight).

A correlation analysis was made on a 1 bed x 3 foot plot basis
between measurements of the average height, average crown
circumference and average length of two carrots, number of plants,
and plot weight. The correlations on a 1x3' plot basis are shown
in Table 2.

Table 2.--Correlation matrix per 1x3' plot - by fields

se se oo

Average for two carrots
:Number : subsampled per plot 1/

! Plot of :
! weight :plants: : :
: : : : Crown : 2/
: : : Height :circumference : Length —
: Field A
Plot weight * 1.000
Number of plants * .883%* 1,000
Average height ° .746%% ,553%% 1,000
Average crown :
circumference * -.106 -.313* ,123 1.000 —————
: | Fleld B
Plot weight * 1.000
Number of plants ° .907** 1,000
Average height *° ,760*%% ,779%* 1,000
Average crown : ‘
circumference * -.094 -.178 .003 1.000
Average length *'=,285 =.459%% -,292 «501%% 1.000

1/ The effects of errors in measurements at the plot level due to
subsampling reduces the expected correlation coefficient. Consequently,
the coefficient is understated for variables which were subsampled
within plots.

2/ Length of carrots was measured only in Reld B,

* Significantly different from zero at the 5% level
** Significantly different from zero at the 1% level
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Number of plants and average height of two carrots subsampled per
1x3' plot were the only observations strongly related to plot weight.
Correlations such as these are, of course, in part dependent upon
the sampling rate of two carrots per 1x3' plot.

Correlations based upon the 3 bed x 9 foot plot are shown in Table 3,

Table 3.--Correlation matrix per 3x9' plot - by fields

: :Average for 18 carrots subsample? at
: : :the rate of two per 1x3' plot 1
: Plot :Number:
: weight : of :
: splants : : Crown

: : Height : circumference : Length‘Z/
: Fleld A
Plot weight : 1.000
Number of plants : .765 1.000 .
Average height : .B48 423  1.000
Average crown :
circumference : .675 .150 .875 1.000 ————
: Field B
Plot weight : 1.000
Number of plants : .996%* 1,000
Average height : .995%%  ,999%% 1,000
Average crown : .
circumference : -.309 -.366 -.398 1,000
Average length : -.886% ~,917% - ,907% 461 1.000

1/ The effects of errors in measurements at the plot level due to
subsampling reduces the expected correlation coefficient. Consequently,
the coefficient is understated for variables which were subsampled within
plots.

2/ Length of carrots was measured only in Field B.

* Significantly different from zero at the 5% level
** Significantly different from zero at the 1% level



The correlation coefficients in Table 3 indicate number of plants,
average height and average length are related to 3x9' plot carrot

weight. Average height is related positively while average length
is related negatively. ‘

Correlation coefficients for total weight, number of plants,

average weight of two carrots and estimated weight on a 1x3' . plot
basis are shown in Table 4.

Table 4.--Correlation matrix per 1x3' plot - for combined fields

: Plot : Number of: Average weight :Estimate?
t weight : plants : of two carrots :weight 1
: : : per 1x3' plot

Plot weight : 1.000

Number of plants I J851%% 1.000

e 2o

Average weight -.194 - 427%% 1.000

Estimated weight 1/ o JT64%% +690%* -.204 1.000

-

1/ Estimated weight is number of plants x average weight of two
carrots for each 1x3' plot

* Significantlv different from zero at the 57 level
** Significantly different from zero at the 17 level

Table 4 shows that number of plants and estimated weight are related

to vield per plot. Of course, the correlation coefficient of estimated
weight with plot weight is in part dependent on the number of carrots
subsampled per 1x3' plot. Note that average weight and number of
plants has a highly significant negative correlation coefficient.

For the 3x9' plot the correlation coefficient for plot weight and
number of plants is .921. This is significant at the 1% level.

The strength of the relationships of various observations to yield is
affected by the size of plot upon which the observations are made.

If the optimum plot is expected to be greater than the 1x3' unit but

less than the 3x9' unit, the important observations according to the

correlation analyses are number of plants and total weight per plot.
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Observations important on carrots subsampled within plots are plant
height, carrot length and possibly some other observations easily
obtained. The observations on the subsampled carrots can be
obtained with sufficient reliability by taking the proper size of
subsample within the plot. The optimum plot should, therefore, be
selected so that number of plants and total weight are estimated
with minimum variance for a given cost.

IV. Optimum Plot Selection from Eight Plot Sizes and Shapes

Optimum plot size and shape is considered as a discrete variable in

two dimensions in the following analysis. Plots 1 bed x 3 feet (a),

1 bed x 6 feet (b), 1 bed x 9 feet (c), 2 beds x 3 feet (d), 2 beds x

9 feet (e), 3 beds x 3 feet (g), 3 beds x 6 feet (h), and 3 beds x

9 feet (i) are studied. The letters in parentheses are used as
subscripts to refer to plot size and shape in the tables. As indicated
above, possible methods of estimating yileld involve data on number

of plants and total carrot weight for the entire plot. Therefore,

both number of plants and total weight are the criteria for optimum
plot selection used in this analysis.

1. Analysis of 3 bed x 9 foot Plots .

Nested analyses of variance for the ten 3 bed x 9 foot plots are

shown below for number of plants and total weight. Two analyses

are given for each of these. The first analysis is based upon the

1x3' plot within the 1x9' plot within the 3x9' plot and the second

is based upon the 1x3' plot within Ehe 3x3' plot within the 3x9' plot.
Note that K.2 is used instead of o0¢” since the fields were not selected
randomly,

Number of plants-analysis of variance number 1

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
- 2 2 2
Fields (f) 1 3,475.19 3,475.19  %a/c + 3%e/i + %0%a/g + 43¢ 7
2 2 2
3/9'/f 8 12,963.36 1,620.42 % ajc + % e/t + 997yy¢
2 2
1/9'/3x9" 20 2,927.11  146.36 ® a/e + % ¢/t
2
1x3'/1x9' 60 4,849.33 80.82 % a/c

Total 89 24,214.99
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Number of plants - analvsis of variance number 2

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
2
Fields (f) 1 3,475.19 3,475.19 9 a/g + 39%g/1 + 99%1/f 4 45k, 2
2 2 2
3x9'/f 8 12,963.36 1,620.42 % a/g + 3% g/1 + 2% 4/¢
2 2
3x3' /3x9" 20 1,727.11 86.36 ° a/g + 0 g/i
2
1x3'/3x3' 60 6,049.33  100.82 ° a/g
Total : 89 24,214.99
Total weight-analysis of variance number 1
Degrees of Sums of Mean
Source . freedom squares squares Expected mean square
. 2 2 2
Fields (f) 1 2.717 2,717 “afe +3%c/1 + %% /¢ + 45Kf2
2 2 2
3x9' /£ 8 76.927 9.616 %afc + 3%cs1 + 2%y ys
2 2
1x9'/3x9" 20 31.258  1.563 “afe + 3%/
. o,
1x3'/1x9’ 60 35,137 0.586 %“a/e
Total 89 146.039
Total weight-analysis of variance number 2 ’
Degrees of  Sums of Mean
Source freedom squares squares Expected mean square
2 2 2 45
Fields (f) 1 2.717 2.717 o asg + 3% /1 + 2% 4/f + xfz
2 2
3x9' /£ 8 76.927 9.616 o2arg + 397gs1 + 99 /8
2 2
3x3'/3x9" 20 17.851 0.893 o°a/g + 30%/1
2
1x3'/ 3x3 60 48,544 0.809 alg

Total 89 146.039
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To make valid comparisons between the various size plots, it is
necessary to obtain estimates of their variances when the population
consists only of plots of a specific size. That is, estimates of
the independent mean squares for a population of given size units
are needed. The estimated variances of the units smaller than 3x9'
are not the mean squares in the analysis of variance table since
these smaller units are not a simple random sample from the
population of units. These estimates are biased because the sampled
units are in contiguous groups of 3 and 9 units., All estimates of
variance are presented in terms of 1x3' plots so that comparisons
can be made. The independent mean squares are derived from the
nested components by the following equations:

52 2 ~2 a2
9%1x3"' = “Taje + 9c/1 + 9C1/f

~2 ~2 ~2 ~2
°%1x9' = Yafe + T e/t + 9 1/F
3
624,91 o 0° 2 62
3x9' = %9 a/c+ 9 ¢/1 + 9 1/f from analysis 1, and
9 3

~2 ~2 ~2 =2
0%1x3' = %a/g + O g/1i + 971/f

6%3x3' = 0%/g + 9Pg/1 + Pyt
3

22 52 22 22
0°3%9' = 9"a/g + 9°g/1 + 971/f from analysis 2.
9 3

Estimated variances within fields are shown in Tables 5 and 6. Note
that the common independent mean squares have the same estimate from
analysis 1 and 2.
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Table 5.--Estimated variance of number of plants within fields

Nested Independent 2/
Analysis component Estimate mean square Estimate =
2 2
Number 1 %" alc 80.82 %a 266.45
2
o?e/1 21.85 o?e 212.57
2
o?1/¢ 163.78 o?y 180.04
2 2
Number 2 “a/g 100.82 9"a 266,45
2 2
Tg/i ~4.82 Y g 199.24
2 2
9 i/f 170.45 074 180.04

1/ It is customary to set negative variances equal to zero. Here
the negative estimate is important in reflecting that there is very
little variation between three foot sections of 3x9' plots.

2/ Mean squares are adjusted to the 1 bed x 3 foot plot level.

Table 6.--Estimated variance of

total weight within fields

. Nested ; Independent 2/
Analysis . component Estimate . Wean square . Estimate —
Number 1 o2a/e 0.586 0%, 1.81
o%e/1 0.326 o%e 1.42
o?1/¢ 0.895 0?4 1.07
2 2
Number 2 9alg 0.809 %"a 1.81
2 2
0 g/i 0.028 0%g 1.27
0? 02
i/f 0.969 i 1.07

2/ Mean squares are adjusted to the 1 bed x 3 foot plot level.
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The independent mean squares can be considered relative to the
variance of the 1x3' plot. The ratio of the variance of a plot
to the variance of the 1x3' plot indicates the number of plots
of that size required per field to give as precise a field
estimate as a single 1x3' plot. The ratios are shown in Table 7.

Table 7.--Ratio of estimated variances to variance of
the 1x3' plot

Plot : Ratio : Number of plants : Total weight

1x3' ; aza/sza 1.00 1.00
1x9' 1 9%c[9% 0.80 0.78
33" : 0%gfo%a 0.75 0.70
o' 1 0% fe% 0.68 0.59

2. The Cost Function

Further determination of optimum plot size and shape depends upon
the cost per plot of obtaining data for each size of plot.
Relative cost variances can be used for this purpose. The ratio
of the variance of a plot (whatever size) to the variance of a
1x3' plot multiplied by the ratio of the cost of the plot to the

a2

a c
cost of a 1x3' plot, GZP X CP , 18 the relative cost variance.

a a

The plot with the lowest relative cost variance is the optimum
plot size and shape. That is, it will give an estimate of maximum
precision for a given cost or the minimum cost for a given level of

precision.

Symbols will be used extensively in the following discussion of
cost because estimates of cost are not as reliable as are estimates
of variance. A suggested model for ‘e cost per plot for each
visit is:

CL TL
CP - T + CB + Cw = W.v_ + TB + Tw H
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where C, = cost per plot, C; = one-time cost of randomly locating
and defining boundaries of a plot, V = number of visits, CB = cost
between plots, Cy = cost within plots, W = wage per minute for one
enumerator and the T's indicate the corresponding costs in terms of
time (minutes). If TL is divided into a component independent of
plot size, time to randomly locate the plot (TR) and a component

of time to define plot boundaries (TD), then we have

T T
= R+ *D
P W v____+TB+Tw

Here, TR,'V, and TB are constants with respect to plot size. Time
between plots (TB) is assumed to be constant with respect to plot
size because for relativelv small fields average distance between
plots is quite uniform within a limi;ed range for the number of
plots per field. Since the definition of boundaries of a plot
involves measuring tfeet along the bed from the starting corner

and then defining ends of the unit across w beds, T, = .3\fi- +

b
2 Jw is perhaps a reasonable model for time required to define

a plot. The time to collect data within a plot (Tw) is composed

of the time to gather datal/ within 2 distance on each of w beds. A

suggested model is Ty = 5 wJ/g . Thus, the model for cost per plot

for each visit is:

T — — —
(1) CP=w(R+.3\/v’z__+2i‘~' +TB+5wJ£ .

1/ Data to be gathered is assumed to include a reasonable number of
observations within the plot. Observations might be made for many

characteristics, each requiring little time, but together time should
be allowed for them,
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(7 where W, Tps> V and TB are independent of plot size. This cost
function is based upon limited information, but its form agrees
with available data. FPRor further analvsis of cost we must now
assume values for T

g V and Tp. If Tp = 10.00, V = 3 and T, = 2.00,

then C, = 14.82¥, C_ = 21.30W, C_ = 32.61W and C; = 51.79% /. Thus,

aa100, ce . 2L30W o344, g . 32.610 _ 559
C, C, 14.82w " Ca 14.82W

and Ei - 21.79% _ 3,49, The resulting relative cost
c, 14.82w

variances are shown in the following table,

Table 8.--Relative cost varianc;s for four plot sizes and
(;‘ shapes

Plot * Relative cost variances : Number of ¢ Total
: ‘'  plants ¢ welight

1x3' 02./%a x CafCa 1.00 1.00
o' : 02f6% x Ccfa 1.15 1.12 -
w3+ 0%5f6% x Cffa ; 1.65 1.54
wor : 21/6%, x S, 2,37 2,06

1/ No assumption is necessary for W, but for an indication of costs
in dollars, it can be assumed at 4 1/3 cents/minute or $2.60/hour.
Thus, C, = $0.64, C. = $0.92, Cg = $1.41, and Cy = $2.24.
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Table 8 indicates that the 1x3' plot is the optimum plot size of
these four plots for estimating number of plants and total weight,

3. Analysis of 3 Bed by 6 Foot Plots

Now, to consider other plot sizes, a 3 bed x 6 foot plot may be
analyzed by alternately excluding 3 feet at either end of the 3x9'
unit. This gives two sets of data upon which nested analyses of
variance for the 3x6' units are shown below. Figure 2 shows which

1 bed x 3 foot plots are included in each data set. The analyses

for :each of the sets of data, denoted set 1 and set 2, are presented
in two ways. 1In analyses 3 and 5 the 1x3' plot is taken within the
1x6' within the 3x6' plot and in analyses 4 and 6 the 1x3' plot is
taken within the 3x3' plot within the 3x6' plot.

Bed 1 Bed 2 Bed 3
3! | 1 1 1
3"{ 1,2 1,2 1,2 9
P -
3! 2 2 . 2
Figure 2

Number of plants ~ analysis of variance number 3 - data set 1

Degrees of Sums of Mean
Source freedom squares squares Expected mean squares
2 2 652 30, 2
Flelds (f) 1 2,856.60 2,856.60 9a/b + 29°b/h + f0%nse + 0k
2 2 2
20 60%-
3x6' /F 8 10,169.66 1,271.21 ° a/b + °  b/h + ° ‘h/f
0? 202 ~
1x6'/3x6' 20 1,956.70 97.84 a/b + b/h
1x3'/1x6" 30 2,138.97 71.30  9“a/b

Total 59 17,121.93
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Number of plants - analysis of variance number 4 - data set 1

Degrees of Sums of Mean
Source freedom squares sguares Expected mean square

2 2 2

Fields (f) 1 2,856.60 2,856.60 “ajg + 9 g/m + 601 /¢ + 3°xf2
2 2 2

Ix6' /£ 8 10,169.66 1,271.21 % a/g + 3% g/h + 6% n/s

' ] 02 302
3x3'/3x6 10 931.10 93.10 a/g + g/h
. 02
1x3'/3x3' 40 3,164.67 79.12 al/g
Total 59 17,121.93

Number of plants - analvsis of variance number 5 - data set 2

Degrees of Sums of Mean
Source freedom squares squares Expected mean square

2 2 2 2

Fields (f) 1 2,760.81 2,760.81 %“a/b + 20 b/h + 6o h/f + 30Kf
2 2 2

3x6' /£ 8 9,688.00 1,211.00 ° a/b + 2% b/n + %% /s
2 2

1x6" /36" 20 3,020.15  151.01 % a/b + %% b/m
2

1x3'/1x6' - 30 2,770.02 1 92.33 “a/b

Total 59 18,238.98

Number of plants - analysis of variance number 6 - data set 2

Degree of Sums of Mean
Source freedom squares squares Expected mean square

2 2 2 30, 2

Fields (f) 1 2,760.81 2,760.81 alg + 3o g/h + 6o h/f + K,
2 2 2

3x6'/f 8 9,688.00 1,211.00 Y a/g + 30 g/h + 60 n/t
2 a2

3x3' /36" 10 1,050.84 105.08 ° a/g + 3 g/h
2

1x3'/3x3' 40 4,739.33 118.48 % al/g

Total 59 18,238.98



Total weight - analysis of variance number 3 - data set 1
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Total weight - analysis

of variance number 4 - data set 1

Degree of Sums of Mean
Source freedom squares squares Expected mean Square
2 2 2
Fields (f) 1 6.882 6.882 9 asb + 2% b/ o+ %Thys 4
2 2 6,2
3x6" /£ 8 50.030 6.254 o“a/b + 29%b/h + 9°h/s
1x6" /36" 20 2,279 0.114  %%asb + 20%pn
2
1x3'/1x6' 30 38.910 1.297 ®a/b
Total 59 98.101

Total weight - analysis

of variance number 5 -~ data set 2

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
' 2 2 2
Fields (£) 1 6.882 6.882 alg + 3% g/m + % ny/f 4+
. 2 2 2
3x6' /£ 8 50.030 6.256 % a/g + 39 g/m + 99yt
2 2
3x3' /3x6' 10 8,545 0.854  °%a/g + 39%g/m
2
1x3'/3x3' 40 32,644 0.816 alg
Total 59 98.101

30, 2
Ke

f

Degrees of Sums of Mean .
Source freedom squares squares Expected mean square
2 2 2
Fields (f) 1 2.098 2.008  “a/b + 2% p/h + 9% nse + 30g 2
2 2 2
3x6' /£ 8 60.893 7.612 % a/b + 2% b/h + 89%hys
02 202
1x6'/3x6' 20 23.325 1.166 a/b + % b/h
2
1x3'/1x6' 30 17.681 0.589 Ta/b
Total 59 103.997
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Total weight - analysis of variance number 6 - data set 2

Degrees of Sums of Mean
Source freedom gsquares squares Expected mean square

2 2 2

Fields (£) 1 2.098  2.098 oajg + 39 /n + 69%h/e 4 30xf2
2 2 2

Ix6' /£ 8 60.893 7.612 % asg + 3% g/m + % hss

v ' 02 302

3x3'/3x6 10 9.453 0.945 a/g + g/h
2

1x3'/3x3’ 40 31.553 0.789 Calg

Total ‘ 59 103.997

The independent mean squares in terms of the 1x3' plots are derived
from the nested components by the following equations:

~2 2 22

“1x3' = Yab + “b/h +

~2 ~2 ~2

971x6' = “"a/b + T b/h +
2

-~

62, .1 _ 62 62 52
36' = ~ a/b+ ~_b/h + " h/f for analyses 3 and 5, and
2 3

02 62

~2 ~2
“1x3' = %a/g + o

g/h +

52 2 2 ~2

% 3x3' = Ta/g + % g/m+°
3

h/f
h/f
~2 ~2

=2 52
" 3x6! = © alg +° g/h + ° ' n/f for analyses 4 and 6.
6 2
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Tables 9 and 10 show the estimated variances within fields.

Table 9,.,--Estimated variance of number of nlants within fields

Analysis and: Nested : : Independent

data set :component : FEstimate : mean square Estimatel/

: 2 T 2

Number 3 : %a/p 71.30 %a 280.13
: 2 2

%“h/h 13.27 b 244,48
: 2 2

Data set 1 : ° h/f 195.56 °“h 211.87
2 2

Number & Calg 79.12 “a 280.13
2 2

% g/n 4.66 e 227.38
M 2 2

Data set 1 : ° h/f 196.35 “h 211.87
: 2 . 2

Number 5 : 9a/p 92.133 % a 298.33
M 2 2

%“b/h 29.34 b 252.16
: 2 2

Data set 2 : ©° h/f 176.66 “h 201.83
2 2

Number 6 alg 118.48 %a 298.33
2 . 2

g/h ~4.47 g 228.28
H 2 2

Data set 2 : ° h/f 184.32 “n 201.83

1/ Mean squares are adjusted to the 1 Led x 3 foot plot level,
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Tahle 10.~--Estimated variance of total weight within fields

Analvsis and : Hested : ¢ Independent 1/
data set : component : Estimate : mean square : Estimate=

— —

Wumber 3 : 02a/b 1.297 ’ °2a 1.73
. 9%/m -0,502 o?y 1.08
! 2 2
Data set 1 : O'n/f 1,023 S 1.04
: 2 2
Number 4 : 9Ta/g 0.816 0" a 1.73
: 2
o%g/h 0.013 o%g 1.18
. : 2 R 2
Data set 1 : O'h/f 0.900 %h 1.04
: . 2 :
Number 5 . %am 0.589 oy 1.95
. %y 0.288 %, 1.66
: 2 ' 2
Data set 2 : OTh/f 1.074 %"h 1.27
: 2 2
Kumber 6 : %al/g 0.789 : 0 a 1.95
: ' 2
. o%/n 0.052 o%g 1.43
: 2
Data set 2 : O%n/f 1.111 % 1.27

.
.

1/ Mean squdres are adjusted to the 1 bed x 3 foot plot level,

Since the difference between data set 1 and 2 is merely a distance
of three feet along a bed in locating the corner of a 3x6' plet,
it seems reasonable to average the two data sets' estimates of the
independent mean squares to derive a best estimate. The derived
estimates are shown in Tahle 1l.
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Table 1l.--Estimated independent mean squares for four plot sizes
and shapes

Plot : Independent : Number of

: Total
: mean square : plants : welight
: 2
1x3' : % a 289.23 1.84
: 2
1x6' : b 248,32 1.37
: 02
3x3' x 2 227.83 1.30
. 2
Ix6" : °“n 206. 85 1.16

These independent mean squares can be considered relative to the
variance of the 1x3' plot. The ratios are shown in Table 12,

Table 12.--Ratios of estimated variances to estimated variance of
‘ the 1x3' plot

Plot : Ratio : Number of : Total
: : " plants : weight
: 2 4.2

1x3' . 9%af% 1.00 1.00
: 2 1.2

1x6' : 9 b/b a 0.86 0.74
: 2 4.2

3x3' . g% 0.79 0.71

2 2
3x6' : © h/b a 0.72 0.63
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By substitution into equation (1) on page 12, we have

~w TR+ IVE +2 Juw o+ -
Cipg' = W <B v : Tp + 5, v z)

=W (\10-00 ; 2.74 4+ 2,00 + 12.25) = 18.50 W

and Co ., =W (10-00 +4.20 4 2,00 + 36.75) = 43.48 V.
3x6 3

Thus, Cq Cb  18.50w C 32.61W
E: = 1,00, -C;- - m = 1,25, —C-E- = m = 2.20, and
a
Ch  43.48W
T, " 14.82w = 2.93.

The relative cost variances for these plots are shown in Table 13.

Table 13.--Relative cost variances for four plot sizes and shapes

Plot : Relative cost * - Number of ‘G Total
- variances g plants : weight
1x3' % 528/523 X ca/ta 1.00 | 1.00
1x6' E azb/GZa X cb/ba 1.08 0.92
3x3' % azg/aza X cg/ta 1.74 1.56
3x6' E 62h/aza X Ch/ta 2.11 1.85

Table 13 indicates that the 1x3' plot is the optimum plot size
of these four plots for estimating number of plants and that the
1x6' plot is the optimum plot for estimating total weight.
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4. Analysis of 2 Bed by 9 Fot Plots

To consider the two additional plots, a 2 bed x 9 foot plot may be
analyzed by excluding alternately one bed at either side of the

3x9' unit. For each of the data sets created, nested analvses of
variance of the ten 2x9' units are shown. TFigure 3 shows which

1l bed x 3 foot plots are included in each data set. The analvses

for each set of data are presented in two ways., In analvyses numher

7 and 9, the 1x3' plot is taken within the 1x9' within the 2x9' plot,
and in analyses number 8 and 10 the 1x3' plot is taken within the
2x3' within the 2x9' plot. V

_Bed 1 Bed 2 Bed 3
3 ‘{ 1 | 1,2 2
3! { 1 1,2 2 9'
3! {‘ 1 1,2 2
Figure 3

’

Number of plants - analysis of variance number 7 - data set 1

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
' 2 2 2
Fields (f) 1 1,36.77  1,346.77 % a/c + % c/e + 69%¢/g + 3%,
2 2 2
g o o
2x9' /£ 8 8,234.89 1,029.36 ale + 37 cfe +6° o/f
' 02 302
1x9'/2x9' 10 1,021.85 102.18 a/c + c/e
2
1x3'/1x9' 40 4,014.82 100.37  “a/c

Total 59 14,618.33

2




-23-

Number of plants - analvsis of variance number 8 - data set 1

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
2 2 2
Flelds (£) 1 1,366.77  1,346.77 % afd + 2% dse + 0% /g + 30g 2
A , , £
2
[¢] [¢] 0]
2x9' /£ 8 8,234.89  1,029.36 ald + 2 d/e + 8 e/t
2 2
2x3'/2x9" 20 2,300.67 115.03 % azd + 2% q/e
' 2
1x3'/2x3" 30 2,736.00 91.20 % a/d
Total 59 14,618.33
Number of plants - analysis of variance number 9 - data set 2
Degrees of Sums of Mean
Source freedom squares .  squares Expected mean square
. 2 2 2
Fields (f) 1 3,435.27  3,435.27  a/e + 3 c/e + 8%e/f + 30g 2
2 2 2
2x9' /£ 8 10,120.13  1,265.02 ° afe + 3% c/e + 8% e/t
2 2
1x9'/2x9" 10 1,716.00 171.60 aje + 3% ¢/e
2
1x3'/1x9’ 40 2,348.00 - 58,70 “a/c
Total 59 17,619.40
Number of plants - analysis of variance number 17 - data set 2
Degrees of Sums of Mean
Source freedom squares squares Expected mean square
2 2 2
Fields (f) 1 3,435.27  3,435.27 % a/d + 29°4/e + %9%e/f + 3%,
2 2 2
g (o]
2x9" /£ 8 10,120.13  1,265.02 ° a/d + 2% d/e + 6% o/t
' 1 02 202
2x3'/2x9 20 875.00 43.75 a/d + d/e
2
1x3'/2x3' 30 3,189.00 106.30 . % a/d

Total 59 17,619.40
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Total weight - analysis of variance number 7 - data set 1

Total weight - analysis

Degrees of Sums of Mean
Source freedom squares squares Expected mean square
' 2 2 2
Fields (f) 1 0.274 0.274 “afc + 3% c/e + 69
2 2 2
2x9' /£ 8 48.171 6.021 %“aje + 39°cse + 69%¢¢
o2 302
1x9'/2x9' 10 11.521 1.152 ac + cle
2
1x3'/1x9" 40 24,246 0.606 % ale
Total : 59 84,212

of variance number 8 - data set 1

Total weight - analysis

Degrees of Sums of Yean
Source freedom squares squares Expected mean square
Fields (f) 1 0.274 0.274 02a/d + 20%g/e + b0%gye + 30k
. 2 2 2
o) g o
2x9' /£ 8 48.171 6.021 a/d + 27 dfe + 9 oyt
' ] 02 202
2x3'/2x9 20 16.527 0.826 a/d + “"d/e
2
1x3'/2x3" 30 19, 240 0.641 % a/d
Total 59 84,212

of variance number ¢ - data set 2

Degrees of Sums of Mean
Source freedom squares squares Fxpected mean square

2 2 2

Fields (f) 1 5.275  5.275 0%afc + 39%c/e + 09% e + 30k
2 2 2

2x0' /£ 8 71.397 8,925 “ate + 3% cre + 8% eyt

] (] O'2 30'2

1x9'/2x9 1n 18.081 1.3n€ a/c + cle
2

1x3'/1x9’ 4 21.960 0.549 “ale

Total 59 116.713

e/f + 30K

f

f

£

2

2

2
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Total weight - analysis of variance number 10 - data set 2

Source

Held (f)
2x9'/f
2x3'/2x9'

1x3'/2x3

Total

Degrees of Sums of Mean
freedom squares squares Expected mean square
2 2 2
1 5.275 5.275 °asd + 2% d/e + 9%ess + 3%
2 2 2
8 71.397  8.925 %%asd + 29%a/e + 9%/
20 12.820  0.641 o?a7d + 20%4/e
g2
30 27.212 0.907 a/d
59 116.713

The independent mean squares in terms of the 1x3' plots are derived
from the nested components by the following equations:

-2
971x3" =

22
°"1x9' =

~2
072x9' =

=2
713" =
~2
072x3" =

-

2
9%2x9"' =

~

~

~

o]

g2

ajec +
2

3
2

ale + °

alc + o

o]

-~

g

-~

~

g

6

2
a/d +

2
a/d +

g

2

2
a/d +

6

~2
+ e/t

52

+ %e/f

~

-

+ e/f

-

+ %/t

a

9%e/f, for analyses 7 and 9, and

9"e/f for analvses 8 and 10.

Estimated variances within fields are shown in Tahles 14 and 15.
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Table 14.--Estimated variances of number of plants within fields

Analysis and : Nested Independent
data set tcomponent Estimate mean square Estimate

: 2 . 2

Number 7 : %Ta/c 100.37 9"a 255.50
: 2 2

: 9¢/e 0.60 e 188.59
: 2 2

Data set 1 O e/f 154.53 e 171.56
2 2

Number 8 %“a/d 91.20 % a 255.50
2 2

“d/e 11.91 %4 209,91
2 2

Data set 1 e/f 152.39 e 171.56
2 ’ 2

Number 9 % alc 58.70 % a 278.57
2 . 2

ele 37.63 9 239,44
2 2

Data set 2 T 182 .24 e 210.84
2 2

Number 10 % a/d 106. 30 %" a 278.57
2 2

%d/e 31.28 %74 255,42
) 2 : 2

Data set 2 e/t 203.55 e 210.84

1/ Mean squares are adjusted to Epe 1 bed x 3 foot plot level.

1/
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Table 15.--FEstimated variance of total weight within fields

: B :
Analysis and : Nested : Independent :
data set : component : Estimate ¢ mean square : Estimate

1/

P2 02
Number 7 : alc 0.606 a 1.60
: 2 2 .
ele 0.182 e 1.20
' T 42 : 2
Data set 1 : e/f 0.811 e 1.00
Fog2 a2 )
Number 8 : a/d 0.641 a 1.60
: 2 2
“d/e 0.092 %4 1.28
o? 02
Data set 1 e/f N.866 e 1.00
: o2 gl
Number 9 : a/e 0.549 a 2.16
: 2 2
Tele 0.420 e 1.79
: 02 02 :
Data set 2 : e/f 1.186 e 1.49
P2 ' 2
Number 10  : ° a/d 0.907 T a 2.16
: 2 2
®ase -0.133 “a 1.61
: 02 02 .
Data set 2 : e/f 1.381 e 1.49

_1/ Mean squares are adjusted to the 1 bed x 3 foot plot level.

Since the difference between data set 1 and 2 is merely a distance
of the width of a bed in locating the corner of a 2x%' plot, it
seems reasonable to average the two data sets' estimates of the
independent mean squares. The averages of the data sets' estimates
are shown in Table 16.
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Table 16.--Estimated independent mean squares for four plot sizes
and shapes

Plot : Independent : liumber of : Total
: mean square : plants : weight
.o 52
1x3 H a 267.04 1.88
' ~2
1x9' : e 214,02 1.50
o, .
2x3' B %%d : 217.66 1.44
: ~2
2x9' : 0% 191.20 1.24

L ]

These independent mean squares can be considered relative to the
variance of the 1x3' plot. The ratios are shown in Tatle 17.

Table 17.--Ratios of estimated variances to estimated variance of
the 1x3' plot

_ Number of : Total

Plot : Ratio T prlants : weight
1x3' . 82, [02, 1.00 1.00
1x9" . 82, fe2, 0.80 0.80
2%3" . 8%gfe2, 0.82 0.77

2x9" : 62e/aza 0.72 n.66
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By substitution into equation (1) on page 12, we have

T — — —_
culTR+ .3 /T =2 i 41 4
2%3 1 7 TB 5w /3

- w(m.oo *3’ 3:.34 4 2,00 + 17.3() = 23,75 W

- 10,0N + 3.72
and C2x9' W ( 3 ,

+ 2.00 + 30.0:) = 36.57 W.

Thus, Cl C C '

a 2 y

2 - L00, 5. 22N, 1.44,-5‘1 - 23:DF 4 60
a . 14.820 . 14,82V
and e _ 36.579_

= 2.47,
Ca 154.82W .

The relative cost variances are shown in Table 18.

Table 18.--Relative cost variances for four plot sizes and shapes

Plot Ratio Number of
plants
1x3' 2% x Caffa 1.00
1x9' 82c/aza X Cc/ba 1.15
2x3" 82d/aza X Cd/ca 1.31
2x9' 82e/aza X Ce/ta 1.78

Total
weight

1.00

Table 18 shows that the 1x3' plot is the optimum

these four plots for estimating number of plants and total weight.

plot size of
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4. Selection of the Optimum Plot

The relative cost variances for all eight plot sizes and shapes: can
now be compared relative to the 1x3' plot. From Tables 8, 13, and
18, it is seen that for plant counts the 1x3' plot is the optimum
with the 1x6'plot second best. For estimating total weight the
1x6' plot is the best followed by the 1x3' plot. It is also noted
that the three one bed plots are nearer the optimum than the other
five plots. Of course, these results indicate only the optimum

of the eight plots studied. A 1x4' or 1x5' plot would be near the
optimum for estimating both number of plants and total weight.
Considering both the discrete procedure and the procedure illustrated
in the Appendix, the optimum plot is one bed wide and three to
five feet long.

If a more precise indication of the size of the optimum plot is
required, additional data should be collected to obtain variance
estimates for plots near the 1x3' and 1x6' size. Additional data

on costs would also be desirable. Because the cost function is based
primarily upon judgement and variances are estimated, it seems
inadvisable to attempt any greater precision with the data available.
However, a method of selecting the optimum length of a plot omne

bed wide igs illustrated in the Appendix. This method is a
combination of the discrete and the continuous procedures because

the optimum width is determined to be one bed by the discrete method.
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APPENDIX

‘Illustration of a Method of Selecting the Optimum Length
of a Plot One Bed Wide for Estimating Carrot Yield

The variability of crop yields from unit to unit in experimental
fields has been studied extensively for units of different sizes.
A study by H. F. Smithl/ indicates that variance of a plot of k
basic units, on a basic unit basis, in a field is given by:

2
°2k - fﬁ or log azk = log 02 - b log k.

Here, 02, is the variance within a field, on a basic unit basis,
of a plot containing k basic units, 02 is the variance of a plot
containing a single basic unit and b is an index of soil
heterogeneity.

If this functional relationship between plot size and variance is
accegted and if a good estimate of b is available, then an estimate
of 0¢ 1is sufficient to permit estimation of the variance of plots
within a reasonable size difference from the size of the basie

unit plot. If a good estimate of b is not available, then the
equation b = (log 02 - log ozk)llog k can be used to derive an
estimate of b. In fact, there will be a P~1 equations estimating b
for P=1, 2, 3, ... plot sizes for which an estimate of variance is
available. These estimates can be combined for an improved estimate
of b.

From the carrot data 0%1x3' = 274.24, 0%1x6"' = 248.32 and °21x9' = 213.29
are averages of various estimates for each s%ze of plot for_ number of
plantg. Por total weight the averages are 021%3' = 1.84, 3%1x6' = 1.37
and 0°1x9' = 1,46. Thus, estimates of b for number of plants are:

a2 oy J
5. = log % 1x3' = log 7 1x9' _ 1log 274.24 - log 213.29 . 2289
1 log (No. 1x3' in 1x9") log 3

1/ Smith, H. F. "An Empirical Law Describing Heterogeneity in Yields
of Agricultural Crops'. Journal of Agricultural Science, Volume 28,
p. 1-23, 1938,
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2 2
. . log ‘1x3' - log “Ix6' _ log 274,24 - log 248.32
2 log (No. 1x3' in 1x6') log 2 = _1435.

Por total weight the estimates are:

~

~2 ~2
b, = log O%1x3' - log 91x9' - log 1.84 - log 1.37 2104,

log (No. 1x3' in 1x9') log 3

3

~

~2 ~2
log (No. 1x3' in 1x6') log 2

One method of obtaining a single estimate of b is to use

-~ ~ ~ -~

- b b
b= .46 _lig_il. +

estimates of b for number of pl?nts'and total weight approximately
in proportion to the strength.l of their relationship to yields,

b b
+
54 -§—§—~i ® .2962. This weights the

: 2 g2 2 .
Using b = .2962, we have K = /() .2962 or log 'K = log 02 - .2962 log K.

For the carrot data the 1x3' plot is the basic unit and the unit of
interest is the 1x %' plot, where £is the length of the plot in feet.
The range of values for £should not be much beyong the plot sizes

for which data 1is agailable, thatzis, 3 to 9 feet, I?'terms of the

catrot data’ ],Og lez T - 108 01x3| - .2962 108 t . The . o
: 3"

estimated variances for one bed plots one foot to nine feet in length

are shown in Table 19.

1/ Strength is measured in terms of correlation coefficients for
the 1x3' size plot.
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Table 19.--Estimated variance of selected plot sizes 1/

Plot length Number of plants Total weight
(feet)
1 399,75 2.55
2 309.29 2.07
3 (274.24) 274.24 (1.84) 1.84
4 251.88 1.69
5 235.78 1.58
6 (248.32) 223,37 (1.37) 1.50
7 213.40 1.43
8 205.10 1.38
9 (213.29) 198.09 (1.46) 1.33

1/ Figures shown in parentheses are the estimated variances used in
estimating bl’ b,, by, and b,;. The functional relationship of
variance on plot~length does not seem to fit the carrot data well.

The estimated variance of these plots can be considered relative to

the variance of the basic unit, the 1x3' plot. The ratio of the variance
of a plot to the variance of a 1x3' plot indicates the numher of plots

of that size required per field to give as precise a field estimate

as would one 1x3' plot. The ratios are shovm in Table 20.

Table 20.--Ratio of estimated variances to the variance of the 1x3'
plot of selected plot sizes

Plot length Number of plants Total weight
(feet)
1 1.46 1.39
2 1.13 1.12
3 1.00 1.09
4 .92 .92
5 .86 .86
6 .81 .32
7 .78 .73
3 .75 .75
9 .72 .72
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| » (Te s 3 [T o o=
Thevcost'functibn,CP =y R .3 JV *2 Ju

+ TB.; SwJe
can be used to estimate the cost of each one hed plot from 1 to 9
feet in length.

The form of the cost function for these one bhed plots is:

Clx!,' = (10.00 + .3 \/T + 2.00 + 2.0N + 5 JT)
3

=W (4,00 + .1 /T + 2,00+ 5J/T) = W (6.00 + 5.1 JT).

The costs can be compared relative to the basic unit, by calculating
the ratio of the cost of each plot to the cost of the 1x3' plot,
The cost data are presented in Table 21,

Table 21.--Estimated cost and ratio to cost of the 1x3'
"plot for selected plot sizes

Plot length : Cost of plot Y : Ratio of cost of

1x3' plot
(feet)
1 11.10 W = $0.48 .75
2 13.19 ¥ = $0,57 .59
3 14.82 W = $0.64 1.00
4 16.20 W = $0.7) 1.09
5 17.42 W = §Nn,75 1.18
' 6 18.50 W = 80.80 1.25
7 19.52 W = $0.85 1.32
8 27.43 W = 80,89 1.38
9 21.30 W = $0,02 1.44

1/ No assumption is necessary for V. lowever, if ¥ is
assumed at 4 1/3 cents/minute or $2.567/hour, the costs
shown result,

The relative cost variances, which enaltle determination of the
optimum length of a one bed plot, are shovn in Table 22.




Table 22.--Relative cost variance for sclected rlot sizes

Plot length : Number of plants : Total weight
(Teet)
1 1.1¢C 1.04
2 1.01 1.7"
3 1.n0 1.7n
4 1.00 1.nn
5 1.01 1.n1
6 1.71 1.n2
7 1.03 1.73
R 1.7 1.4
9 1.04 1.04

!
!
!
|
|
]
]
'

The length of plot which will minimize the relative cost variance
can also he found bv taking tlie derivative of the relative cost
variance with respect to length, setting it equal to zero and
solving for length. The second derivative with resnect to length
can then be used to demonstrate that the length solved for does
minimize the relative cost variance. Relative cost variance 1is:

- - // 2"\, 2962
:2—1—}(.9‘.'_ X Clx?,' = 971x3' /{3 ' o x B0 H+5.1 _Q—.: )
o) 1 3! C "T 0-2- ] w (110.82)
X -1x%3 1x3
L2962 _ sox 20738
= L%%TEZ'" 6.0 (2) ~+2992 4 5.1 () 3

The €irst derivative is:

(3) 272 ~1.2062
e (6,1 (-.2962) () T 4 (5.1) (.2038) (9)

14,92

-, 7002

N

o 2 ~1.7772 () L2902 4y 00 oy 77702

)
'
[
'
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Setting the derivative equal to zero, then

_. 706 -1.2962
1.0394 ()~ 7702 21,9772 (9) T1-200°
-.79R2 5NN 777 PN
or ()TN L Ly 300 L LTTTZ oy gy g = (1.71)7 = 2,02 feet.
21,2962 1.0594

2)

The second derivative is:

L2062 | _2.29¢ - .
Q—)-iz--P—;— {(1.7772) (-1.2962) () 22902 4 (1.9394) (-.7962)(8)"1-7962
or (3) +2902 (qy “1.7962 15 an36  _ 8276 > n, for L = 2.92 feet.

14.82 (2)-5n00

Thus, the relative cost variance is a minimum for £ = 2.92 feet, This
result is consistent with Table 22,

The continuous approach to the determination of optimum nlot size,
illustrated here, indicates the 1x3' or 1x4' plot is optimum. Anv
plot one bed in width and from 2 to 5 feet in length seems to be
near the optimum. It should be noted that the one and two foot
plots are an extrapolation from the range of the data, In this
illustration the functional relationship does not fit the data very
well., This method would be an adequate procedure when more data
are available, the cost function is well known and the relationship
fits the data. The continuous method yields a more specifically
defined optimum plot and provides a more detailed indication of

the degree of flatness near the optimum than the discrete procedure.
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