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ABSTRACT

The design-based characteristics of a general post-stratified estimator are investi-
gated. Each of the four post-stratified estimators of current interest to NASS is a special
case of the general post-stratified estimator. An approximation to the design-variance of
the general estimator is derived using Taylor series methodology.

A simulation study is performed to evaluate the relative efficiency of certain list-only
type post-stratified estimators. The approximate variance formula for the generalized
post-stratified estimator is evaluated. The numerical evaluations show that the per-
formance of a post-stratified estimator is largely a function of the sample size used to
estimate the post-stratum weights, the sample size used to estimate the post-stratum
means of the variable of interest, and the ratio of these two sample sizes. The relative
efficiency increases as this ratio of two sample sizes increases. The approximate variance
formula is found to be reasonably accurate for moderate size samples and highly accurate
for large size samples.
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SUMMARY

A post-stratification approach to estimation in follow-on surveys is formulated in
the context of the Agricultural Labor Survey. A generalized post-stratified estimator is
defined that makes use of the area and list frame samples from both the June Agricultural
Survey and the follow-on Agricultural Labor Surveys. The approach includes as special
cases two sets of post-stratified estimators of interest to NASS: (1) multiple-frame post-
stratified estimators that use both area and list respondents from the follow-on survey
and (2) list-only post-stratified estimators that use the list respondents from the follow-
on survey exclusively. For each special case two possibilities for estimating the post-
stratum means are included under the generalized approach: (1) the unweighted average
response and (2) the weighted average response where the weights are the expansion
factors associated with the sample units. Consideration of the special cases 1s motivated

by the desire to use only list samples in follow-on survey.

The complexity of the multiple-frame sample design makes the variance of the gen-
eralized post-stratified estimator somewhat intractable. A computational formula for
estimating the variance in the most general multiple-frame setting is derived using the
Taylor series methodology. The approximate variance formula is extended by analogy to
obtain estimators for the variance of the design-bias and the variance of the ratio of two

general post-stratified estimators from two occasions.

An extensive simulation study is performed to evaluate numerically the performance
of certain list-only post-stratified estimators. Both the bias and the relative efficiency of
each estimator are evaluated. From the numerical results given in the paper, it follows
that the post-stratification improves upon the precision of an estimator, provided that
the sample size in a follow-on labor survey is moderate to large and that the variable used
in post-stratifying the agricultural operations is reasonably correlated with the variable of
interest. Also the performance of a post-stratified estimator is heavily dependent upon the
sample size used in estimating post-stratum sizes. The relative efficiency of an estimator
relative to the direct expansion estimator (computed using their mean square errors)

increases as the size of the larger sample from a base period survey increases relative to
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the size of the smaller sample from a follow-on survey. The numerical evaluations of the
approximate variance formula show it to be fairly accurate for moderate sample sizes and

highly accurate for large samples as one would expect.
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INTRODUCTION

A multiple-frame sampling methodology is the basis of agricultural surveys conducted
by the National Agricultural Statistics Service (NASS) of the U.S. Department of Agri-
cultural (USDA). This methodology consists of sampling both a list frame and an area
frame with the two samples drawn independently. List sampling is much more convenient
and efficient compared to the area frame sampling. The former however does not provide
a full coverage of all the agricultural operations. Thus, the area frame samples are used
to compensate for the list undercoverage. The estimation method requires determination
of the overlap or nonoverlap (OL/NOL) areas between the list and area samples. Since
this OL/NOL delineation process is labor intensive and the NOL involves many fewer
samples, its component of an estimate is often quite unreliable and is produced at an
undesirable high cost.

In his “strawman” proposal, Vogel (1990) advocated a new approach to sampling and
estimation for NASS surveys. One of the key ideas underlying this proposal is the use
of post-stratified estimators in follow-on surveys. The use of post-stratified estimators
is motivated by a desire to produce list-only estimates and a desire to eliminate the
OL/NOL delineation. The desire to produce list-only estimates results primarily from
the need to reduce respondent burden on NOL operations. The desire to eliminate the
OL/NOL delineation results from the assumption that the overall quality of the survey
would be improved by eliminating the numerous non-sampling errors associated with
the complexity of the OL/NOL delineation. The word “strawman” in the proposal title
implies that the post-stratification should be viewed as a baseline approach for developing
improved estimation.

This idea has stimulated us to evaluate certain post-stratified estimators that might
be useful in achieving the above objectives. The next section of this paper formulates a
general post-stratified estimator in the context of the NASS Agricultural Labor Survey

and explains how each of the post-stratified estimators of current interest to NASS is



obtained as a special case. A design-based computational formula for estimating the
variance of the general post-stratified estimator is derived using Taylor series methodol-
ogy. More importantly, this paper develops a set of rather general design-based variance
and bias formulas for evaluating post-stratified estimators with respect to the sampling
designs used by NASS.

A simulation study is performed to evaluate the relative efficiency of certain post-
stratified estimators. The approximate variance formula «erived from a Taylor series
expansion is evaluated for its accuracy and hence, its appropriateness for estimating the
variance of the general post-stratified estimator.

In Appendix A, we show how to write the obvious estimator of the design-bias of the
general post-stratified estimator in a form analogous to the estimator itself. We then show
how to use the general variance formula to estimate the variance of such an estimated
design-bias.

A companion report (Rumburg, Perry, Chhikara and Iwig, 1993) provides detailed
design-based empirical evaluations of the multiple frame and list-only post-stratified
estimators of the number of hired workers for the NASS Agricultural Labor Survey using
the 1991-92 Labor Survey and June Agricultural Survey data for the states of Florida
and California. In this application, the post-stratum sizes were estimated using only all

the area samples from the June Agricultural Survey.

A GENERALIZED POST-STRATIFIED ESTIMATOR

In the context of a follow-on agricultural survey, a generalized post-stratified estimator

of a characteristic of interest, say population total in a state or region, is of the form:
%
G=> G, (1)
k=1

where, for the post-stratum &,

k — = b
Xk
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7 represents an estimate of the “size” of post-stratum k obtained from the base survey,
e.g. June Agricultural Survey (JAS), X; represents an estimate of the “size” of post-
stratum k obtained from the follow-on survey, e.g. an Agricultural Labor Survey (ALS),
and Y} represents an estimate of the total, Y; , for the item of interest for post-stratum
k, derived from the follow-on survey.

For application to the ALS (i.e., follow-on labor surveys) there are four post-stratified
estimators of primary interest as studied by Rumburg, et al. (1993). If we let My
represent an estimate of the population size for post-stratum k derived from the JAS
(the base survey), then by a simple transformation of the data the four estimators can

be written as:

~

Yo(List4 NOLYwt = Z My (List+ NOLywt) (1.1)

where Yi(rist4 NoL)wi denotes the weighted mean of all List and NOL sample

responses that are in post-stratum k,

Yo(List+NOL) = Z My (List+NOL)» (1.2)

where yr(rist4 noL) denotes the simple mean of all List and NOL sample

responses that are in post-stratum k,

Yo(Lisywt = 9 MiGx(List)uts (1.3)

where yi(1is1)wi denotes the weighted mean of all List sample responses that

are in post-stratum k, and

Yo(List) = O Mib(rist), (1.4)

where gy(1iq) denotes the simple mean of all List samples that are in post-

stratum k.



Each of these estimators (1.1)-(1.4) is easily written in the notation of the general
post-stratified estimator. For example, the estimator (1.1) is put in the notation of the
general form, by equating M; with Z; and then equating Yk List+ NOL)wt With Y} divided
by X;, since in the latter case, it equals the sum of the expanded y’s in post-stratum
k divided by the sum of associated weights. Similarly follows the description of other

estimators in the notation of the general estimator.

Cochran (1977, pages 142 -144) considered the problem of estimating totals and means
for domains. If this estimation is extended to the whole population, one has the estimator
as in (1.3). Siarndal, Swensson and Wretman (1991, page 268) considered a estimator
similar to (1.3) with the post-stratum size My assumed known. Hence, their estimator is

a special case of the generalized post-stratified estimator defined in Equation (1).

TAYLOR SERIES VARIANCE APPROXIMATION

Following the standard Taylor linearization method (Wolter 1985, page 226), the first-
order approximation of the design-variance of the generalized post-stratified estimator G

given in Equation (1) can be written as:

K
V(G) =V (Z 3Gz, Zx + 0Gy, Yy + ex:_\-k.f(k) , (2)
k=1
where
oG Y
Gz, = 97k lzv.5)= X
oG Z
IGy, = EIAAS I
oG Zi Y5




and

Z = (Z1,"~ ,Z}() = (E(21)7 aE(ZK)),

Y:(}/la ’YK):(E()}]), ’E(YK))’

X=Xy, Xk) = (E(X1), -, E(Xg)).

In the general form of the post-stratified estimator, each Zi,Y; and X; will have a

list and an area frame component. Hence these estimators can be written as:

Zy = Zp+ Zar,

Yi = Yok + Yax,
Xe =X+ X, (3)
where the list and area frame components are denoted by subscripts L and A, respectively.
Since samples are drawn independently from the list and area frames, the list esti-

mates Zx, Yo and X ; are independent of the area estimates Z 4x, Yar and X 4x. Thus

the Taylor series variance approximation can be rewritten as:

K
V(G)=V (Z 3Gz, Z1x + 0Gy, Yii + aGij(Lk)

k=1
K
+V (Z 0Gz,Z ax + 0Gy, Yar + 6G.YkXAk) . (4)
k=1

Since the list frame sample for the Agricultural Labor Survey (i.e., for the follow-
on current period survey) is drawn independently of the list frame sample for the June
Agricultural Survey (i.e., for the base survey), the list estimate Z 1k is independent of the
other list estimates Y7 and Xg. Thus the first term of Equation (4) can be rewritten
as:

K
vV (Z ank A 8Gka/Lk -+ 8ka5(Lk)
k=1

K K
=V (Z OGz,,ZL,k) +V (Z 8Gyk}h"LLk + aGka(LLk) . (5)
k=1 k=1
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where on the right side of the equation the subscript Lj represents the June Agricultural
Survey list and the subscript Lg represents the Labor Siurvey list.

The area frame component of the Labor Survey is based on approximately 40% of the
June area frame sample replicates - the so called, 60/40 sample split. All the replicates
associated with rotational vears 4 and 5 and occasionally a small fraction of the replicates
associated with rotational vears 1, 2, and 3 constitute the Labor Survey area frame. Since
each June area frame replicate is drawn independently, except for the restriction imposed
by sampling without replacement, Yk, X 4; and the Labor Survey area frame component
of Z 44 are essentially independent of the replicates of the area frame component of Zax

that are not used in the Labor Survey. In fact, let

Zank = Zayochk + Zas chk-

where the two components of Zax for the original sampling stratum h are denoted

respectively by Z‘Atmchk anl Z.AJ\Lhka h=1,2,...,H. Then it is easy to see that:

i

(& 1 L fan )y

() = () (Bwn) (1172 v (B o)
k=1 Soned

for original stratum A. Here f represents the sampling fraction. This formulation allows
the samples to be drawn nsing a stratified random sampling design as 1s the case with
most agricultural surveys.

Thus the second term of Equation {4) can be rewritten as:

%
1% <Z 0Gz, Z‘qk + 0Gy, Y + 0Gx, ir/lk)
k=1

A' N 1\—
=V OGZk'ZA\J A F 1% (()széxanik 4 (f)(:'ykyr,;ck + OG‘\'F{{ALk . (6)
\
k=1 y

k=1

where on the right side of the equation the subseript A indicates aggregation of the
expanded June area frame data over the replicates used in the Labor Survey, the subseript
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A indicates aggregation of the expanded June area frame data over the replicates
not used in the Labor Survey and the subscript Az indicates Labor Survey area frame
expansion and aggregation. This equality assumes that appropriate adjustments are
made to all variance calculations as discussed above to account for differences in finite
population correction factors. Operationally these differences can be ignored since almost

all area frame sampling fractions are less than one percent.

Replacing the right hand side of Equation (4) with the expression given in Equations

(5) and (6), the Taylor series expansion variance of G becomes:

K K
V(G)=V (Z 0Gz, ZL,k) +V (Z 3Gy, Vi x + 0Gx,55{1,ck)
k=1 k=1

K K
+V (Z 0Gz, ZA_,\CI:> +V (Z 0G 2, Zaynck + 0Gy, Yak + aGX,,XACk) ;
k=1 k=1
(7)

where the subscript

(1) Lj represents data expansion and aggregation for the June Agricultural Sur-
vey list,

(2) L. represents data expansion and aggregation for the Labor Survey list,

(3) Ajnc represents data expansion for the June Agricultural Survey area frame
and aggregated over the replicates used in the Labor Surveys (replicates
associated with rotational years 4 and 5 and a small fraction of the replicates
associated with rotational years 1, 2, and 3 ),

(4) Aj\c represents data expansion for the June Agricultural Survey area frame
and aggregated over the replicates not used in Labor Surveys, and

(5) Ag represents Labor Survey area frame data expansion and aggregation.

To complete the derivation of the computational form of the Taylor series variance
estimation formula, some additional notation is needed. For the list component of the
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June Agricultural Survey, let

Zik= Z Z1 hk,
hEHLJ

Zihe = Wi, Z zp i 0(k, Lyht), (8)

1, if unit 7z of JAS list stratum 4 15 in post-stratum k
&(k,Lyht) =
0. otherwise.
Note that the notation ), 5 denotes the summation over all strata corresponding to
survey type S. For example, S = Lj 1s the June survey using the list frame.
In Equation (8), the expansion factor Wy p = Ny, p/n; . where N4 and np,j are

respectively the population size and sample size for JAS list frame stratum h.

For the list component of the Labor Survey, let

Yioe = Z Yo hks

hEHLC
Yo one = Wich Z YL e Ok Lok, (9)
€np
and
N = Z X1 hks
hEHLC
‘{"!,[hk‘—"VVLch Z j"LLhiNI"-LC’I"")a (10)
€Ny h
where

1, if unit z of Labor list stratum /4 15 in post-stratum k

§(k, Lchi) = {

0. otherwise.

In Equations (9) and (10}, the expansion factor Wy 4 = Ny a/ny n, where Ny, and
n[ .k are respectively the population size and sample size for Labor list frame stratum h.
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For the area frame component of the June Agricultural Survey, let

Zajack = Z Z A nchks

h€Hasn,
Zasnchk = Wasn Z ZAjnchik>
1€nA;0 h
ZAsachit = Y Zasnchij 6(k, Ainchij), (11)
JEMa . hi

where

(1) EiEnA,nL;. indicates the sum is over all ny, .5 June area frame sample
segments of stratum A that are used in the Labor Survey area frame,

(2) EjeMA_,an indicates the sum is over all My, pi tracts of sample segment
Ajnche,

(3)

1, if tract j of segment Ajnchi is in post-stratum k
6(k, Ajnchiy) = {

0, otherwise

and
ZAJ\Lk = Z ZAJ\Lhk’
hEHAJ\L
Zapehk =Wash Y ZAchiks
‘E"A;\Lh
ZAnchik = ). ZApchij 6(k, Anchif), (12)
TEMay chi
where

(1) ZiEnAJ\ﬁh indicates the sum is over all ny,, .» June area frame sample seg-
ments of stratum A that are not used in the Labor Survey area frame,

(2) Xjem, \chi indicates the sum is over all M4, (i tracts of segment Aj\chi,
J\chi

9



(3)
1, if tract j of segment MA_,\th‘ 1s In post-stratum k

6(k,Aj\chij) = {

0. otherwise.

In Equations (11) and (12), the expansion factor Wa,n = N4, n/na,n, where Ny,

and n 4, are respectively the population size and sample size for June area frame stratum

h.
For the area frame component of the Labor Survey, let
Yace = Z Y4, hk,
hEHAC
Vache = Waen Y fachi,
1€nAL R
Jachik = Y Wiachis¥achis S(k, Achij) (13)
JEM 4 hi
and
Xagk = ) Xache,
hEHAL
Xache =Wagn Z T Achik,
1€nY h
Faghik = Y WarchijTachi 6(k, Achig), (14)
JEM A hi
where

(1) 2 ien,., indicates the sum is over all ns n Labor area frame segments of
£
stratum A (June stratum h segments used in Labor Survey),
2 - _indicates the sum is over all m 4 3, NOL tracts of segment Achi,
JEMA LR < gm
(3)

1, if NOL tract j of segment Aht is in post-stratum k
5(k, Achij) =

0, otherwise.
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In Equations (13) and (14), the first phase expansion factor Wa.p = Na p/na.p =
Nah/nach , where Ng.p = Na,, and ng,p are respectively the population size and
sample size for Labor area frame stratum h. The second phase expansion factor for tract
J from segment : and stratum h which is selected in second phase sample from post-
select stratum s is Wya hij = Nga h/MsAch , Where Nyg, p and nga, ) are respectively the
population size and sample size for post-select stratum s.

By substituting Equations (8) through (14) in Equation (7) and rearranging the order

of summation the first-order Taylor series variance can be rewritten as:

K
V&) =V, | Y Wi Y, (ZBGZ,‘zLJ;,,-é(k,LJhi)) +

hEHLJ iEnLJh k=1

K
Vie | ) Wi Y (Z{aGy,,yL,_-h;+3Gx,,chhi]5(k,Lchi))) +

€HL, i€ng p \k=1

K
VAJ\L ZWA;h z Z (ZBszzA_,\ch,'j5(k,AJ\5hij)) +

K
VAC Z WAJ’I Z Z (ZanszJnchij 6(k’AJﬂChl])) +
€Hane €A ;0 h JEMA o hi \E=1

K
> Wan Y. > W, achii (Z[aGkaALhij + 0G x, T A hij) 5(k,Achij))

heH, 1€nA h [JEMA I k=1

5)

The sequence of computations necessary to produce the first- order Taylor series

variance estimate are indicated more clearly by rewriting Equation (15) as:

VIE)Y= > Vi, | D tomi |+ D0 Vi | D) trem |+

hEHLJ iEnLJh hEHLr_ I'EnLC;,
VAJ c tA_] chs + VAL (tAJnLhi + tAcht') )
\ \
heHAJ\C ienAJ\ch hEHAL ‘.E"Ach

(16)
11



where

K
trhi = Wi, Z 0G 2,z ki 0(k, Lyht),
k=1

K
trchi = Wik Z{aGnyLLh.‘ + 0G x, x hi] 6(k, Lghi),
k=1

K
tapnchi = Wasn D Y 0Gz,za,chij 8(k, Apchij),
jEM4J\£hi k=1

K
tA nchi = Wasn Z ZaGZ,,ZAJm;h:'j o(k, Ajnchiy),
JEM 4, ni k=1
- A’
Paghi = Wach > Waaghii 3 [0Gviyaghi; + 0G x, 2 achi] 8(k, Achij).

JEM g oha k=1

The general form of the formula for computing the stratum level variance estimates

in Equation (16) is given by:

2
Vi Z thi | = ({Vh];hnh) (nhni 1) Z the — "(’gﬁ;‘:‘;i)— ; (17)

1€n) 1Eny

where the stratum population and sample sizes are determined by the subscripts as these
appear in Equations (16) and as previously defined in Equations (7)-(14).

The use of Equation (17} to compute the stratum level variances is discussed in Kott
(1990b). Equation (17) provides unbiased stratum level variance estimates for the first
and second terms of Equation (16) and for the third term when the finite population
correction factor is adjusted as indicated in the discussion preceding Equation (6). Since
the fourth term of Equation (16) involves a second phase of sampling, the stratum level
estimates derived from Equarion (17) will be slightly conservative, [see Kott (1990b)
pages 19-22, particularly Equation (26) on page 22, therein]. Operationally, the finite
population correction factors in Equation (17) are generally ignored. The effect of
ignoring the finite population correction factors on the variance estimates is not important
since the sampling rate in most strata is very small.
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EMPIRICAL SIMULATION EVALUATIONS

In this section, we evaluate the performance of the generalized post-stratified estima-
tor and its variance formula discussed in the previous section by conducting a simulation
study. The NASS sampling design involves separate stratifications for the list and area
frames. So it is desirable to simulate data for the two frames separately for the evaluation.
In the post-stratification approach described above, the JAS serves as a base survey and
the ALS as a follow-on survey. As such we have used this base and follow-on survey
format to simulate the data. Although we consider simulations based only on a single
type of sampling frame and hence, do not exactly simulate the two separate stratifications
analogous to NASS, it however emulates the basic approach adopted in the construction
of the generalized post-stratified estimator which makes use of JAS sample responses
to estimate post-stratum sizes and ALS sample responses to estimate the post-stratum
means. The sampling procedure and estimators considered for simulation evaluations are

described next.

Description of sampling procedure for simulation.

The sampling procedure for simulation is based on the concept that the original
stratification i1s common to both the base survey and the follow-on survey. This ap-
proach is general enough to be applicable to many situations involving follow-on sur-
veys. Presently we consider the stratification for the list frame and evaluate the post-
stratification methodology for the list-only estimators. Therefore, the subscript L (for

list frame) will be dropped from the notations in previous sections.

(1) Suppose there is a sample of size nIp representing the JAS sample values,
from the list frame which consists of H original strata with Ny, as the size
of h-th stratum, h =1,2,..., H.

(2) After a JAS sample is taken, observations are post-stratified into K post-
strata according to some stratification variables with some observed charac-

13



teristics. Population counts for the post-strata are produced once annually
from the JAS and then these counts are fixed for the ALS.

(3) My k is the number of units in the h-th original stratum classified into the
k-th post-stratum in the JAS sample.

(4) An independent sample of size nep representing the ALS sample values, is
drawn from the list frame.

(5) After an independent ALS sample is taken, we post-stratify observations,
according to the stratification variable, into A" post-strata same as those for
the JAS sample.

(6) Meh k is the number of units in the h-th original stratum classified into the

k-th post-stratum in the ALS sample.

Estimators under consideration for simulation.
We denote by Y¢; the generalized post-stratified estimator given in Equation (1), that
1s

A K -
=Y Gk, (18)

where

- N
Zy=) ——my (19)
he1 “Jh Th,

an estimate of the "size” of post-stratum k derived from JAS,

. Ny

represents an estimate of the "size” of post-stratum k derived from ALS, and

H

~ N
i=)_ ni Yhi (21)
h=1 Lh i€S,

14



represents an estimate of the total, Y} , for the item of interest for post-stratum k, derived
from the ALS.

Note that the generalized post-stratified estimator can also be re-written as

)}th = ZMki/ka (22)

k=1

where
. . A Nin

het1 "Jh Th,

and BNy
f/ 3 h= 1n£h Ziesk Yhi N L
k= = —

Zh 1n£hm£h k Xk

Since }:"k is a weighted mean of the sample observations in post-stratum k, Yg 4 corre-
sponds to the weighted post-stratified estimator given in Equation (1.3).
The other post-stratified estimator considered is one that uses the simple mean of

the sample observations in a post-stratum:

K
YGunwt = Z MkY};, (23)
k=1
where u
- Njy, 2 _
M, = —Lm‘]h B Yk = Uk
"JTh

This corresponds to the unweighted post-stratified estimator given in Equation (1.4).

In this simulation study, another post-stratified estimator considered is based on the
use of the combined expansion factor, i.e. the unweighted post-stratum count estimates,
in addition to the unweighted post-stratum mean estimates. This unweighted “combined”

estimator is:

}}G unwt(C) = Z Mk}_,k’ (24)

15



where i
H
- N
Alk:———-—z’;l‘l Jh E m

- Jh,k’ }:k = Y.

This estimator is motivated by the observation that there can be large variation in
estimating the post-stratum count separately in each original stratum and so a com-
bined population count estimate across all post-strata will stabilize this variation. The
term “combined” is used here in the manner similar to the “combined ratio estimator”
discussed in survey sampling literature. [See, for example, Cochran (1977, pages 164-
169).]

For the sake of comparison, also considered is the direct expansion estimator of Y

given by

H
Yoo = _ Niath. (25)
h=1

Model for data generation.

The following steps are followed to generate a response variable y and a correlated
auxiliary variable r to formm a population of H original strata with stratum size Ny
for h = 1,2,..., H, and another auxiliary variable w for post-stratification of population
units. In the context of the ALS, the variable y represents the number of hired workers,
z is the size of farm operation and w is the peak number of workers expected during the

year for the farm labor.

(1) For each h = 1.2,..,H, i = 1,2,...,Nj;, stratnm data are gencrated as
follows:
(a) First we generate a population of base values zp; uniformly distributed

over an interval, say
zhi ~ U(Z1, Zy).

where U7 stands for the uniform distribution and interval (Zy, Z3) is
chosen to be (5, 8).
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(b) The values for the auxiliary variable z representing the farm operation

size are generated using the model,
Thi = U + apzpi T €2, (26)

where e2 ~ N(0,02), vp ~ U(V1,V2) and o ~ U(A1,Az2). The
parameter values chosen are: 02 =1, (V1,V3) = (3,5) and (A, Az) =
(0.5,4).
Steps (a)-(b) would generate values that may vary due to size, stratum or
other characteristics of population units. More specifically, z;; represents the
unit size, v represents the stratum mean, and ay, represents the dependence
of the stratification variable on the unit size.
Next, we consider another auxiliary variable w to be used for post-stratification.
This variable may be similar to z, but invariably it is expected to reflect
additional information.

(c) Generate
2'h =z + €1, where ¢ ~ N(0,0),

where a% 1s chosen to be 1.

(d) From values generated in steps (b) and (c), generate

whi = pr pi + (1 — pp)zhs, (27)

where pj is generated randomly from the uniform distribution over
an interval. Presently the interval is taken to be (0.0,0.1). This
makes wjp; not to be too different from z,;. This consideration is
quite appropriate in the context of the ALS since the use of the peak
number of workers as a stratification variable is reflected in the list
frame stratification.
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(e) For the response variable y, generate

Yhi = ih + Brwni + €3, (28)

where €3 ~ N(0,02) and yp are selected randomly from U(M;, M3)
and 3, are selected randomly from U(B;,B;). This model takes
into account the differences in response due to stratum and other
characteristics of population units.

(2) The variate wy,;, representing an auxiliary variable for post-stratification, is, in
theory, a better stratification variable than the original stratification variable
in order for the post-stratification to be eflicient.

(3) Once wp; are generated, we sort the values of vy, and find the cut-off points
for the post-stratification. (Say, A} < A2 < ... < Ay _) are the cut-off points
so that if wp; € (Ag_;, Ax), then the unit is classified as belonging to post-

stratum k.)

Simulation parameters.

Several parameters (which, we think, will not affect the outcome much) are fixed in

this simulation study:

(1) Population sizes are randomly generated from U(500, 5000).

(2) The number of original strata H = 6 and the number of post strata , K = 8.
The total sample size for ALS i1s ng = 50,100, 200, 400. where

H

ng = Znﬁh‘ (29)

h=1

The relative size of the expausion factor Ny, /n Ch is randomly generated; where we first
generate randomly Ej from U(50,200), and then rescale Ej such that lez{:l nep = L
It is straightforward to compute the appropriate scaling constant ¢ for the expansion
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factors, Njh/nﬁh =cx*xFEpfor h=1,2,...,H, so that

c= Zf:l NJh/Eh

n

We then selected the following cases of the various parameters in Equation (28).

(1) The standard deviation of error term €3 is chosen to be 03 =1 and o3 = 2.

(2) The intercept of py, is selected from the range (M1, My) = (5.0,8.0).

(3) The slope of 8 is selected from the interval (B, B2) = (1.0,2.0) and the
interval (Bj, B2) = (3.0,4.0).

In general, the post-stratification will be more effective than the original stratification,
if (1) €3 is smaller, (2) the range of (M;, M) is narrower and (3) the values of (B, By) are
larger. However, when the range (M), M;) was considered to be (5.0,6.0), the evaluation
results were similar as in the case of range (5.0, 8.0).

The JAS sample is used to estimate the population size of each post-stratum. We
consider the sample size ratio, nJ/nE =1.0,1.5,2.0,2.5,3.0,4.0,5.0, where njy is the total

sample size in June and ne is the total sample size for ALS.

Simulation procedure.
Recall that we have assumed both JAS and ALS have the same sampling frame for
the purpose of this simulation study. The simulation procedure and the computations

made are as follows:

(1) For a given stratum h, a sample (corresponding to JAS) of size Ny = R *T
(r =1.0,1.5,2.0,2.5,3.0,4.0,5.0) is selected from the population. The sample
data are used to compute the estimate of the k-th post-stratum population
count, Mk, fork=1,2,...,K.

(2) For a given stratum h, an independent sample (corresponding to ALS) of size
nep is selected from the ALS. The sample data are used to compute f’k or
Yk, the sample average of k-th post-stratum, k£ =1,2,..., K.
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(3) For each sample selected according to the parameters chosen, we compute
YG,,,W,,, Yg,mw, Yth and the direct expansion estimator Vi

(4) Repeat the above step 2,000 times and compute its mean deviation from the
true population value as an estimate for the bias. The percent biases of the

four estimators, Y¢; ynwt, Yo unwi(C)> Y& wt and Yy, are computed as follows:

(1 .
By = || ;o Yo | /Y — 1] +100%,
" (2000 200§mes St) / " ’
1
Bu= (——6— Z YGunwt) /) - 1:| * 100%,
2000 times
1 A’ r
B“(C) = (50_— 2000 - }Gunwt(C)) /} - 1} * 100%,
By = Youwt | /Y = 1] + 100%,
(‘)000 2000 times t) / J ' %

where Y = Z,’f:] Nj;,Y, is the population total.
(5) Similarly, compute its mean squared deviations from the true population value

as an estimate for the MSE:

( > (h—YV)w
2000 times

2
YGunu't -} ) ) .
2000 times

( YGunw - Y ) )
2000 times

Z (yth - ) )

2000 times

(6) The sample variance, S4, computed according to the approximate variance
formula given in the previous section (with the necessary simplification) is
also obtained for each iteration and then is averaged over all 2000 iterations.
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(7) The relative percentage biases, By, By(c), and By, and the relative efficiencies,

V/Su,V/Sy(c), and V/Sy, of the post-stratified estimators are computed.

In order to distinguish between various parameter inputs and stratifications, we also

compute the design efficiency for the original stratification and for the post-stratification

as follows:
1-f g2
Deff-H = e
H — )
S WS,

where ng, the total sample size, is defined in Equation (29),

H
f:thlnch fh:n‘Ch Wh: N]h
S iy N Nin Sy Nun
and
Nyp H N

1 _ 1 _
St= > (g~ i), S?= 55 (ywi — V)
PN -1 :‘=1( =Y ZIIz{=1NJh_1h:1 :'=1( ' )

Similarly, the design efficiency of the post-stratification, Deff-K, is computed. The

design efficiency, Deff-H (or Deff-K) is the relative efficiency that can be expected for
the stratified (or post-stratified) estimator over the direct expansion estimator when the
population counts are known. Of course, the population counts for post-stratification are

unknown in our case and these have to be estimated from JAS.

Numerical Results.

The simulation evaluation results are listed in Tables 1-4. In two cases (Tables 1-2),
Deff-H and Deff-K are not too much different and hence the post-stratification is not
much more efficient than the original stratification. However, Deff-K is substantially
higher than Deff-H in the other two cases (Tables 3-4), making the post-stratification
much more efficient than the original stratification. Based on the numerical results, the

following conclusions are drawn:

(1) The relative efficiencies for the three post-stratified estimators, the weighted
(Yo wt), the unweighted (Y ynwt), and the unweighted “combined” (Yo unwi(C))s
21



(3)

(4)

(5)

as shown in Tables 1-4 are increasing functions of ny/ng, the ratio of sample
sizes between JAS and ALS. This can be attributed to the fact that the larger
the sample size is in JAS, more efficiently the post-stratum population counts
are estimated. One also finds that when the two samplé sizes n; and ng are
about equal, there 1s no gain in the post-stratificd estimators over the direct
expansion estimator.

When the total sample size in ALS is small, say ng = 50, and when the post-
stratification i1s not effective as reflected in the Deff-K value of being close
to 1, all three post-stratified estimators have larger variances than the direct
expansion estimator stt [Tables 1 and 2 with ng = 50].

For a moderate to large ALS sample size, say 1 = 100, 200 or 400, the com-
bined unweighted estimators (fbunuvt(C)) and the weighted estimator (Y wt)
have smaller variances than the direct expansion estimator (ﬁt), especially
when the post-stratification is more effective. [Tables 1-4]. On the other
hand, when the efliciencies of the original and post-stratifications are about
the same [Tables 1 and 2], Yo unwit(C) May not he better than Y.

The observed variance approximation S 4 is very close to the observed mean
square error (MSE) of the post-stratified estimator Yg ., when nge > 100.
However, when the ALS sample size is small. say ng = 50, the approximate
variance formula underestimates the observed MSE by 30%-50%.

Among three post-stratified estimators considered, the weighted estimator
(f’c wt) tends to have the smallest bias, and the unweighted estimator (Y unwt)s
the largest bias. For example, when ng > 100. the bias of Y is always less
than 0.16% of the true population total; wherecas the largest biases of the
unweighted estimators (fc unwi(C) and Y umwt) are about 0.6% and 1.0% of
the true population total. Of course, the direct ¢xpansion estimator f"st 1s an

unbiased estimator of the population total.

22



6) The unweighted “separate” estimator (Yg unwt) is the worst post-stratified
g P

(3)

estimator both in terms of the bias and the MSE. The unweighted “combine”
estimator (f’c anwi(C)) is slightly better than the weighted estimator (}}G wt) N
some cases [Tables 3 and 4], and Y& wt is slightly better ?Gunwt(C) in one case
[Table 1]; while in other case [Table 2], ?Gunwt(C) is better when ng < 200
and Y ¢ is better when ng = 400. The main reason is that as the sample
size becomes larger, the bias (which is of the constant order) becomes more
dominant than the variance (which is of order 1/n.) in the MSE and thus
the weighted estimator (Y u¢) becomes more efficient because it has smaller

bias.

RECOMMENDATIONS

When the sample size ng is small, the post-stratification estimators are not
recommended even when there is a good post-stratification variable.

The general weighted post-stratified estimators (fc wt) 18 recommended pro-
vided ng is moderate to large and there is an effective post-stratification
variable. The unweighted “combined” estimator Yo unwi(C) Sometimes tends
to have a slightly smaller variance, however, Y& wi tends to have a smaller
bias. There is one major advantage of Y& wi Over fbunu»t(C)i the variance
formula and its variance estimate are readily available for Y& wi- Therefore,
f’c wt 18 recommended over f"g unwt(C)-

The performance of the post-stratified estimators is a function of the ratio of
two sample sizes, nj/nc. The relative efficiency of Y& wi OF }""Gunwt(C) over Yy
increascs as ny/ng increases. For a post-stratified estimator to be efficient,
ny/ne > 1. Based on the results in Tables 1-4, it is recommended to have
the sample size ratio nj/ng > 2.
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(4) The Taylor series approximate variance formula 1s recommended for estimat-
ing the design variance of the post-stratified weighted estimator, Y& wt, since
it is found to be reasonably accurate for moderate size samples and highly

accurate for large size samples.

In the above recommendations, the sample size ng is termed small, moderate or large
on the basis of the following criteria for average number of sample units per stratum,
say fipp: L is small if nepn < 10, n i1s moderate if 10 < Yl < 30, and ng is large if

ﬁﬁh > 30.



Table 1: Relative Percent Bias, Relative Efficiency

and Approximate Variance Ratio.

deft-H= 1.6764, deff-K= 1.8743
o3 =1.00, 8 ~ U(1.0,2.0)

ne =50
Rel. Percent Bias Rel. Efhciency Ratio
ny/nc B, Byqc) By V/Sa V/S,,(C) V/Sw Sa/Sw
1.000| 0.974 0.604 0.153 0478 0.545 0.503 0.813
1.500 [ 0.846 0.634 -0.001 0.494 0.550 0.511 0.672
2.000 [ 0.963 0.587 0.142 0.549 0.613 0.588 0.607
2.500 | 0.920 0.637 0.088 0.676 0.738 0.725 0.651
3.000| 0.985 0.632 0.147 0.659 0.743 0.727 0.642
4.000 | 1.090 0.732 0.257 0.750 0.857 0.857 0.635
5.000 | 0.952 0.582 0.102 0.720 0.799 0.790 0.547
ne = 100
nJ/nC Bu Bu[C) Bw V/Su V/Su(C) V/Sw SA/Sw
1.000 | 0.942 0.473 0.080 0.570 0.742 0.711 1.041
1.500 | 0.978 0.549 0.128 0.662 0.875 0.872 1.010
2.000 | 0.918 0.458 0.066 0.832 1.140 1.109 1.026
2.500 | 1.022 0.571 0.157 0.839 1.160 1.213 1.005
3.000| 0.989 0.527 0.128 0.863 1.236  1.265 1.019
4.000 | 1.000 0.538 0.136 0.916 1.315 1.376 0.975
5.000 | 0.969 0.503 0.103 0.991 1.457 1.504 1.010
ne = 200
nj/ne B, By B, V/Su V/Suc) V/Sw Sa/Sw
1.000 | 0.909 0.411 0.028 0.507 0.774 0.772 1.013
1.500 | 0.904 0.401 0.027 0.629 1.020 1.061 1.040
2.000 | 0.999 0.482 0.119 0.594 1.020 1.133 0.973
2.500 | 0.946 0.446 0.068 0.674 1.179  1.304 1.009
3.000 | 0.915 0.405 0.027 0.653 1.167 1.258 0.975
4.000 | 0.957 0.443 0.070 0.699 1.316 1.500 1.017
5.000 | 0.946 0.448 0.062 0.719 1.340 1.580 1.001
ne = 400
nj/nc B, Byq By V/S. V/Su(c) V/Sw Sa/Sw
1.000 | 0.921 0.417 0.011 0.388 0.729 0.858 0.993
1.500 | 0.921 0.416 0.018 0.405 0.837 1.045 1.013
2.000 | 0.931 0.433 0.023 0.421 0.910 1.165 0.974
2.500 | 0.951 0.451 0.049 0.416 0.928 1.279 0.984
3.000 | 0.945 0.449 0.034 0.454 1.052 1.508 1.023
4.000 [ 0.955 0.460 0.045 0.451 1.064 1.600 1.003
5.000 | 0.958 0.460 0.052 0.463 1.115 1.724 0.994
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Table 2: Relative Percent Bias, Relative Efficiency

and Approximate Variance Ratio.

deff-H= 1.2790, deff-K= 1.4369
o2 =2.00, 8 ~ U(1.0,2.0)

ng = 50
Rel. Percent Bias Rel. Efficiency Ratio
ny/nc B, Byq) By V/Su V/SuLC) V/Sw Sa/Sw
1.000 | 0.929 0.555 0.166 0.614 0.670 0.610 0.843
1.500 | 0.777 0.564 -0.033 0.611 0.656  0.597 0.702
2.000 | 0915 0.537 0.152 0.663 0.708 0.669 0.672
2.500 | 0.854 0.570 0.069 0.768 0.807 0.759 0.696
3.000 0916 0.563 0.123 0.779 0.833 0.787 0.718
4.000 | 1.078 0.720 0.295 0.814 0.875 0.833 0.689
5.000 | 0.884 0.518 0.080 0.809 0.850 0.816 0.625
ne = 100
‘n]/ng Bu Bu((') Bw V/Su V/Su(c) "/Sw SA/Sw
1.000 | 0.891 0.423 0.076 0.726 0.842 0.777 0.983
1.500 | 0.932 0.502 0.142 0.783 0.914 0.859 0.968
2.000 | 0.841 0.330 0.043 0.942 1.099 1.013 0.987
2.500 | 0961 0.512 0.135 0.948 1.107  1.062 0.944
3.000 | 0.938 0474 0.120 0.933 1.113 1.056 0.999
4.000 | 0961 0.500 0.138 0.966 1.141 1.095 0.928
5.000 | 0.895 0.430 0.072 1.039 1.232  1.161 0.959
ne = 200 ~
TLJ/ﬂ[, Bu Bu((_') Bw V/Su V/SU(C) V/Sw SA/Sw
1.000 [ 0.849 0.351 0.018 0.701 0.808 0.835 0.981
1.500 | 0.819 0.316 -0.004 0.819 1.055 0.997 0.992
2.000 | 0971 0454 0.139 0.776 1.050 1.032 0.947
2.500 | 0.902 0.402 0.074 0.860 1.156 1.109 0.962
3.000 | 0866 0.356 0.022 0.833 1.113  1.055 0.928
4.000 | 0.914 0.401 0.070 0.869 1.197 1.158 0.967
5.000 | 0.889 0.350 0.052 0.890 1.209 1.189 0.976
ne =400
TlJ/TlC Bu Bu(C') Bw V/Su V/Suﬁ) V'/]Sw SA/Sw
1.000 | 0.851 0.347 -0.012 0.598 0.897 0911 0.990
1.500 | 0.866 0.362 0.018 0.615 0.968 1.010 1.005
2.000{ 0.872 0374 0.010 0.638 1.017  1.037 0.956
2.500 | 0917 0.419 0.069 0.619 1.009 1.089 0.973
3.000 | 0.898 0.402 0.031 0.672 1.122  1.212 1.030
4.000( 0912 0418 0.0581 0.669 1.115 1.214 0.984
5.000 | 0918 0.419 0.061 0.677 1.131 1.256 0.974
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Table 3: Relative Percent Bias, Relative Efficiency

and Approximate Variance Ratio.

deff-H= 1.2635, deff-K= 4.6269
02 =1.00, 8 ~ U(3.0,4.0)

ne = 50
Rel. Percent Bias Rel. Efficiency Ratio
nJ/nC Bu Bu(C) Bw V/Su V]Su(C) V/Sw SA/Sw
1.000 [ 0.474 -0.008 -0.008 0.650 0.730 0.657 0.822
1.500 | 0.340 0.072 -0.163 0.725 0.809 0.723 0.688
2.000 | 0.489 -0.004 0.003 0.874 0.957 0.891 0.623
2.500 | 0.424 0.056 -0.070 1.131 1.225 1.144 0.658
3.000 | 0.492 0.028 -0.008 1.116 1.234 1.140 0.631
4.000| 0.622 0.153 0.130 1.407 1.598 1.491 0.630
5.000 | 0.502 0.019 -0.008 1.321 1.430 1.361 0.522
nce = 100
TlJ/nc Bu Bu(C) Bw V/Su V/Su(C) V/Sw SA/Sw
1.000 | 0.524 -0.094 0.014 0.771 0.914 0.828 1.016
1.500 | 0.584 0.017 0.083 1.018 1.245 1.116 0.982
2.000 | 0.499 -0.105 -0.003 1.380 1.692 1.504 0.987
2.500 | 0.627 0.033 0.116 1.533 1.994 1.807 1.019
3.000 | 0.589 -0.020 0.081 1.684 2.218 1.968 0.974
4.000 | 0.594 -0.015 0.086 1.954 2.626 2.358 0.971
5.000 | 0.574 -0.040 0.064 2.236 3.060 2.739 1.005
ne = 200
ny/nc B, Byq B, V/Su V/Sucy V/Sw Sa/Sw
1.000 | 0.521 -0.139 0.003 0.761 0.957 0.864 1.009
1.500 | 0.533 -0.132 0.017 1.097 1.440 1.325 1.049
2.000 | 0.610 -0.072 0.094 1.130 1.646 1.472 0.944
2.500 | 0.556 -0.105 0.042 1.392 2.002 1.828 0.994
3.000 | 0.525 -0.152 0.001 1.402 2.009 1.847 0.974
4.000 | 0.566 -0.113 0.044 1.677 2.662 2.445 1.006
5.000 | 0.568 -0.096 0.048 1.821 2977 2.772 0.989
nge = 400
Tl]/nc Bu Bu(c) Bw V/Su V/Su(C) V/Sw SA/Sw
1.000 | 0.540 -0.126 0.004 0.709 0.997 0.937 0.985
1.500 | 0.531 -0.137 -0.001 0.853 1.292 1.232 1.001
2.000 | 0.552 -0.108 0.017 0.997 1.706  1.567 0.986
2.500 | 0.562 -0.100 0.032 1.048 1.924 1.782 0.987
3.000 | 0.566 -0.092 0.029 1.192 2352 2171 0.982
4.000 | 0.570 -0.085 0.032 1.286 2.768 2.568 0.983
5.000 [ 0.574 -0.085 0.040 1.383 3.241 3.030 1.011
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Table 4: Relative Percent Bias, Relative Efficiency
and Approximate Variance Ratio.
deff-H= 1.1857, deft-K= 2.9776

03 =2.00, 8~ U(3.0,4.0)

ne =50
Rel. Percent Bias Rel. Efficiency Ratio
TLJ/TLC Bu Bu(c) Bw V/Su V/S“(C) V/Sw SA/Sw
1.000 | 0.447 -0.038 0.000 0.690 0.760 0.682 0.838
1.500 | 0.298 0.029 -0.182 0.726 0.794 0.709 0.689
2.000 | 0.459 -0.034 0.009 0.864 0.925 0.864 0.651
2500 ( 0384 0.015 -0.082 1.079 1.145 1.059 0.683
3.000| 0.450 -0.013 -0.022 1.082 1.163 1.072 0.677
4.000 | 0.614 0.146 0.153 1.277 1.396 1.292 0.670
5.000 [ 0.461 -0.021 -0.021 | 1.226 1.285 1224 0.583
ne = 100
ny/ng By By By | V/Su V/Suc)y V/Swu | Sa/Sw
1.000 | 0.493 -0.125 0.012 0.807 0.922  0.837 1.008
1.500 | 0.555 -0.012 0.091 0.997 1.161 1.036 0.964
2.000 | 0.452 -0.152 -0.017 1.317 1.502 1.349 0.977
2500 | 0.590 -0.004 0.103 1.428 1.684 1538 0.982
3.000 | 0.557 -0.052 0.077 1.492 1.785 1597 0.976
4.000 | 0.571 -0.039 0.087 1.638 1.956 1.774 0.944
5.000 | 0.530 -0.084 0.045| 1.845 2.193 1.983 0.973
ne = 200
'n_]/n[: B, Bu(C) By V/Su V/Su(C) "'/Sw SA/Sw
1.000 | 0.485 -0.175 -0.004 0.811 0.961 0.868 0.995
1.500 | 0.481 -0.184 -0.002 1.113 1.321 1.222 1.019
2.000 | 0.593 -0.080 0.106 1.125 1.468 1.319 0.936
2.500 | 0.529 -0.132 0.045 1.343 1.707  1.547 0.974
3.000 | 0.495 -0.181 -0.002 1.307 1.625 1.491 0.943
4.000 | 0.540 -0.139 0.044 1.513 2.003 1.830 0.981
5.000 | 0.832 -0.131 0.042 1.621 2.133  1.987 0.974
ne = 400
Tl_]/nL Bu Bu(C) Bw V'/Su V/Su(C) ‘/Sw SA/Sw
1.000 | 0.498 -0.169 -0.010 0.782 0.997 0.946 0.988
1.500 | 0.498 -0.170 -0.001 0.911 1.217 1.168 0.996
2.000 | 0.516 -0.144 0.009 1.032 1.471 1.357 0.965
25001 0.541 -0.120 0.044 1.064 1.608 1.490 0.971
3.000 { 0.537 -0.121 0.027 1.221 1.918 1.785 1.009
4.000 | 0.543 -0.111 0.036 1.278 2.073 1.923 0.977
5.000 | 0.550 -0.109__ 0.046 1.349 2248 2114 0.979
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APPENDIX A:
ESTIMATING THE DESIGN-BIAS AND ITS VARIANCE

Since any direct expansion estimator is design unbiased, the design-bias of the gen-

eralized post-stratified estimator,& , can be estimated by:

(Z':Yk) ¥
Xk

where )A’kd represents the direct expansion estimator of the total,Yy, for the item of interest

K K
B=G-Vi=3 (6:-%) =) (A1)
k=1 k=1

for post-stratum k derived from the Agricultural Labor Survey, and where Zk, X; and
Y} are defined as in Equation (1).

In terms of the above notation, the first-order approximation of the design-variance
of the estimated bias, 3, of the generalized post-stratified estimator estimator, G, can be

written as:

K
Vg =V (Z 080Gz, Zx + 0Gy, Yy + 0G x, X — ?kd) (A2)
k=1

where the partial derivatives and other notation are interpreted as in Equation (2).
Equation (A2) is easily justified by considering separately two cases, one where Y = }}kd,
and the other where f’k # Y, and then observing that BY;fkd =1, fork=1,--- K.
(Actually for completeness, the proof requires one to consider, as a special case, the
special situation where Y; # ?kd and yet Yinp = l?kdﬂ p for some subdomain D. An
example of this situation occurs when ?kd is the direct expansion estimate over both the
list and NOL, and Y} is the direct expansion estimate over the list only.)

Since Equation (A2) can be derived from Equation (2) by replacing 0GYy, Vi with
aGykf/k - )A’kd, it follows that the computations necessary to produce the first-order
Taylor series variance estimate of design-bias of the generalized post-stratified estimator
estimator, G, are given by the equation that result from making similar changes to
Equation (16):
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VY= Y Vi, | Dt )+ D Vi | DL teew |+

hGHLJ iE"LJh hEHLL "G"Lch
Z Vane Z tapchi | + Z Va, Z (tAynchi +tacni) | s
IIEHAJ\C 'E"AJ\Lh hEHAC iEnALh (A3)
where
K
trni=Win Y 0Gz 51, 8(k, Lihi),
k=1
K
tichi = Wich Y _[0Gv,y1 ni + 0Gx, 71 i) 8(k, Lehi),
k=1
X
tapchi = Wasn Z L OG 7,245\ chij Ok, Anchiy),
JEMy o hi k=1
X
tasnchi = Wa,n Z ZaGZkZAmchij 6(k, Ajnchiy),
JEMu o hi k=1
K
achi=Wach > Weachij ) [GGkaAchij — Yhohi, + aGXkl'Achij} 6(k, Achj).
JEMY L hi k=1

The stratum level variance estimates in Equation (A3) are computed with the formula

given in Equation (17).

APPENDIX B:
VARIANCE OF THE RATIO OF POST-STRATIFIED
ESTIMATORS FROM TWO OCCASIONS

Suppose a population has been sampled and the characteristics of interest estimated
with the same generalized post-stratified estimators on two occasions. (For example, a
characteristic on the Agricultural Labor Survey has been estimated from the common

30



replicates on two monthly surveys.) Let

R=7— (B1)

where
K K 5 <t
~ ~ ZkYkl
o=3op =32
k=1 k=1 k
and X
K Ot
A Zi Y, ?
o= 30 -3 2
k=1 k=1 Xk

The superscripts t; and t; represent respectively estimates from the first and second

occasion. The Taylor series estimator of the variance of the estimated ratio is:

R R ~iy Arig 7it il
Vi) < e V(G | VIED) _,COV(En,Gm) 52)
(Gt1)2 (Gtz)'Z Gt]Gtz
Since
K (oo ppa\ K Z (58490
th + Gt2 _ Z (ZkAYkl + ZkAYkz) _ k ( kA k )
k=1 Xk Xk k=1 Xy
and

200V(Gh,G) =V (G +G%) -V (G1) -V (61),

the variance of the ratio is easily evaluated by applying the computational variance
formula given in Equation (16) to each of the components G!1, G2 and Gt + G'2, and
then substituting the results in Equation (B2).

The derivation given above for the variance of the ratio of two generalized post-
stratified estimators simply combines two Taylor series variance formulas. Thus, the
derived formula is not the same as one would have obtained by applying the Taylor series
methodology directly to the ratio of the two generalized post-stratified estimators, which

can be easily verified. However, the two variance formulas are asymptotically equivalent.
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