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Calibration makes the general regression (GREG) estimator under Poisson
sampling practical when there are a number items of interest.  The question
becomes how to estimate mean squared errors in an equally practical
manner.   When all the selection probabilities are small, and the GREG is
expressible in projection form, an appropriately-defined delete-a-group
jackknife variance estimator can have desirable asymptotic properties
making it a useful measure in many applications.    
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1.  Introduction 

Poisson sampling is perhaps the simplest form of unequal probability selection.  Its

application often leads to inefficient estimation, which is why it is not more widely used. 

As noted by Särndal (1996), however, when combined with a regression-type estimator

the advantages of Poisson sampling can be realized.   This is one reason why the

National Agricultural Statistics Service (NASS) has recently overhauled its major crop

survey program and adopted  Poisson sampling.  Another is the usefulness of Poisson

sampling in coordinating surveys.  For that, see Kott and Bailey (2000)

This note reviews the theory supporting Poisson sampling coupled with a general

regression (GREG) estimator.  It then shows when a delete-a-group jackknife variance

estimator may be used with this estimation strategy.   Section 2 introduces the strategy,

and Section 3 discusses its properties.   Section 4 discusses delete-a-group jackknife

variance estimation, while Section 5 investigates three modest empirical examples, the

first based on real data.  Section 6 provides some concluding remarks.   New proofs

have been relegated to the appendix. 

2.  Background  

Suppose we want to estimate a population (U) total, T = 3U yk based on a sample (S) of

y-values.  If the probability that population unit k is in the sample is Bk > 0, then the

expansion estimator for T is t = 3S yk /Bk.  Another useful way to render t is as 

t = 3U  ykIk/Bk, where Ik is a random variable equal to 1 when k0S and 0 otherwise.  The

simple expansion estimator is a randomization-unbiased estimator of T; that is Ep(t) = T,

where the subscript p denotes the expectation with respect to the Ik (this is a

convention; the p derives from “probability”).

Under Poisson sampling (see, for example, Särndal, Swensson, and Wretman

1992, pp. 85-87), each unit k is sampled independently of every other unit in the

population.   The randomization variance of t is 
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Varp(t) = 3U (yk /Bk)
2(Bk ! Bk

2) =  3U (yk
2/Bk)(1 ! Bk),

which has a simple unbiased estimator:

varp(t) = 3S (yk /Bk)
2(1 ! Bk).

Using Poisson sampling with t,can lead to a larger-than-necessary randomization

variance because the sample size is random.   This problem vanishes when  Poisson

sampling is coupled with the GREG estimator : 

tR = t + (3U xk ! 3S Bk
-1xk)(3S ckBk

-1xk'xk)
 -1 3S ckBk

-1xk'yk,                                                  (1)

where xk = (xk1, ..., xkQ)  is a row vector of values known for all S, ck is a constant, 3U xk

is known, and  3S ckBk
-1xk'xk is invertible.   

The GREG estimator can be rewritten as tR = 3S wkyk, where wk is the regression

weight of k:

wk =   Bk
-1 + (3U xi ! 3S Bi

-1xi)(3S ciBi
-1xk'xk)

 -1 ckBk
-1xk'.                                                      (2)

It is well known (and easy to see) that the wk satisfy the calibration equation: 

3S wkxk = 3U xk (Deville and  Särndal 1992). 
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3.   Properties of the Estimation Strategy        

The GREG estimator in equation (1) has well known randomization-based and model-

based properties under mild conditions.   We will review them briefly below. 

3.1  Randomization-based Properties

The randomization-based properties of tR are asymptotic (we use the more accurate

modifier “randomization” in place of the often-used  “design”).   That is to say, they

depend on the expected sample size, say n*, being large.   A sufficient condition for an

estimation strategy (an estimator coupled with a sampling design) to be randomization

consistent is that its relative mean squared error should approach 0 as n* grows

arbitrarily large. 

In what follows, we assume N-1(3U ckxk'xk) is invertible, where N is the size of U. 

Let  B = (3U ckxk'xk)
-1 3U ckxk'yk, and  ek = yk ! xkB, so that 3U cixi'ei = 0.  We assume

further  that the population values are such that 3S ciBi
-1xi'ei and 3S Bk

-1xk ! 3U xk are

OP(N/¾n*).  We can express the error of tR as  tR ! T =  3S ei /Bi ! 3U ei  +  Op(N/n*).   

The derivation of this equality relies on the equality 3U cixi'ei = 0 rather than, as often

asserted in the literature, the asymptotic identity of each wi with its corresponding 1/Bi. 

See Kott (2004).

3.2 Model-based Properties

Suppose the yk were random variables that satisfied the following model:

yk = xk$ + ,k,                                                                                  (3)

where $ is an unknown column vector, E(,k|xk, Ik) = E(,k,g|xk,xg, Ik, Ig) = 0 for k � g, and 

E(,k
2|Ik) = Fk

2.  The Fk
2 need not be known. 

It is easy to see that as long as the regression weights satisfy the calibration
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equation, 3S wkxk = 3U xk, tR will be model unbiased in the sense that E,(tR ! T) = 0.  

Moreover, its model variance is  E,[(tR ! T)2]  = E,[(3S wi,i ! 3U ,i)
2] = 3S wi

2Fi
2 !

 23S wiFi
2 + 3U Fi

2  . 3S wi
2Fi

2 ! 3S wiFi
2.    The final near equality  is exact when Fi

2 has

the form xih for a non-necessarily-specified vector h.  See Kott (2004) for an alternative

justification.

3.3  Simultaneous Variance Estimation

Särndal (1986) proposed the following estimator for both the model variance and

randomization mean squared error of tR:

vS = 3S wi
2(1 ! Bi)ri

2.                                                                                                        (4)

where ri =  yi ! xib, and b = (3S ckBk
-1xk'xk)

-1 3S ckBk
-1xk'yk.  When the Bi are ignorably

small so that almost all wi
 2 >> wi, vS is nearly equal to v0 = 3S (wiri)

2.  

4.  Delete-a-Group Variance Estimation

Many surveys have multiple variables of interest.  The problem with vS in equation (4) is

that is requires rk to be calculated separately for each such variable, even when a

common regressor vector, xk, is employed.   That is one reason why a delete-a-group

jackknife variance estimator can prove helpful in practice.   The term can be found in

Kott (2001), while the variance estimator itself in some form has long been used, not

always with theoretical justification.  A NASS research report, Kott (1998), discusses a

wide variety of uses for the delete-a-group jackknife.  

In this section, we assume that all the Bk are ignorably small for variance

estimation purposes.   This means the model variance of tR,  E,[(tR ! T)2] . 3S wi
2Fi

2 ! 

3S wiFi
2,  is approximately V0 = 3S wi

2Fi
2. 

   Let the Poisson sample be randomly divided into G replicate groups, denoted

S1, S2, ..., SG (some groups can have one more member than others).  The complement
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of each Sg is called the jackknife replicate group S(g) = S ! Sg.    A sets of replicate

weights is computed for each replicate group.  For the gth set: wi(g) = 0 when i 0Sg; and 

wi(g) = [G/(G!1)]wi  + (3U xk ! 3S(g) [G/(G!1)]wkxk)(3S(g) ckBk
-1xk'xk)

-1ci Bi
-1xi'                      (5)

otherwise.  The wi(g) have been computed to be reasonably close to the corresponding 

[G/(G!1)]wi for i 0S(g) and to satisfy the calibration equation  3S wk(g)xk = 3U xk for all g. 

The delete-a-group variance estimator for tR is :

vJ = (G ! 1/G)  3G (3S wi(g)yi ! tR)2,                                                                                  (6)

which WESVAR (Westat 1997) calls JK1.    In the appendix, we show that vJ is an

asymptotically model unbiased estimator for V0 = 3S wi
2Fi

2 and an asymptotically

indistinguishable from v0 = 3S (wiri)
2 when ci = 1/(xi()  for some  vector (.  It can have a

slight upward bias otherwise.   The condition that ci = 1/(xi()  for some vector ( assures

tR can be put into projection form: tR = (3U xk)bc, where bc = (3S ckBk
-1xk'xk)

 -1 3S ckBk
-1xk'yk.

Särndal, Swensson, and Wretman (1992, p. 231) make a similar point. 

5.  A Modest Empirical Example

Farm data from the 1997 Census of Agriculture in Puerto Rico were used to study the

delete-a-group jackknife’s applicability given a GREG estimator under a Poisson

sample.   The cash from coffee production for farm k was used as yk in equation (1),

while xk was the total land on farm k, a scalar value.    Each farm’s selection probability

was set at  Bk = 200¾xk /3U ¾xi, where U was the set of 19,951 records in the population.

That meant Bk was proportional to ¾xk, and the average sample size was 200. 

Two estimators were considered.  One had ck = 1/xk, and collapsed into the

standard ratio estimator: trat = (3U xk)brat, where brat  = [ 3S (yk /Bk) / 3S (xk /Bk)].  The other,

the optimal estimator (see Rao, 1994)  had ck = (1!Bk)/Bk, so that topt =  3S (yk /Bk) + 

[3U xk ! 3S (xk /Bk)]bopt, where bopt = 3S yk(1!Bk)/[3S xk(1!Bk)].   The optimal estimator gets
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its name from  b* =  3U yk(1!Bk)Bk /[3U xk(1!Bk)Bk] = {Varp[3S (xk /Bk)]}
-1 Covp[3S (xk /Bk), 

3S (yk /Bk)], the probability limit of bopt.  The choice b = b* minimizes the randomization

variance among all estimators of the form: t =  3S (yk /Bk) + [3U xk ! 3S (xk /Bk)]b.  

The ratio estimator is already in projection form.  The optimal estimator, by

contrast, can not be put in projection form. 

The use of 15 replicate groups was investigated since that is what NASS uses in

its applications.  The results of 10,000 simulations are summarized in Table 1.   Both

estimators appear to be virtually unbiased and have small (empirical) relative mean

squared errors.  The optimal estimator is slightly more efficient.  This small difference in

efficiency appears to be real since, over the 10,000 simulations, the value of [(tR ! T)/T]2

has a standard deviation of roughly 0.02 for either estimator.

Most of the variance/mean-squared-error estimators displayed appear to have

small absolute biases (less than 5%).   The biggest exception is the delete-a-group

jackknife under the optimal estimator, which has a negative bias of 7.8%, in contrast to

the very slight positive bias in v0 (0.2%) .   This negative bias is what our theory predicts

when  the model, yk = $xk + ,k, where E(,k |xk) = 0, fails.    In contrast to that, the theory

predicts that vS should be (asymptotically) unbiased, and the remaining variance/mse

estimators slightly biased upward since not all the Bk are ignorably small.   

Nominal two-sided 95% coverage intervals were computed for the two jackknives

using 14 degrees of freedom since there were based on only 15 replicates.   The other

coverage interval were computing using the 60 degrees of freedom corresponding the

ah hoc use of two-standard-error intervals.   The delete-a-group jackknife covered a bit

worse than v0 for both estimators.  It covered slightly better for the ratio estimator than

for the optimal estimator.  All coverages were between 90 and 95%, indicating a slight

imperfection in the asymptotic theory.   



7

Table 1.   Variance summaries for the Puerto Rico data (10,500 simulations)   

T normalized to equal 1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                            The ratio estimator            The optimal estimator

                                                      !!!!!!!!!!!!!!!           !!!!!!!!!!!!!!!!!!

Averages over the simulations:

!!!!!!!!!!!!!!!!!!!!!!!!

RE   =   t ! T  .0043  .0026

MSE =  (t ! T)2  .0355  .0334

(v0 ! MSE)/MSE    -.0115   .0023

(vS ! MSE)/MSE -.0132 -.0181  .

(vJ ! MSE)/MSE -.0340 -.0781

Nominal 95% coverage rates:

!!!!!!!!!!!!!!!!!!!!!!!!

v0 (60 df)  93.2  92.2

vS (60 df)  92.9  92.0

vJ (14 df)   92.7  91.2
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  A second and third set of 1,600 simulations were conducted to try to uncover the

origin of the imperfection.  In the second, each yk was generated as a multiple of farm

land, xk, plus ¾xk time an independent and identically distributed normal error term.   All

the variance/mse measures had a absolute relative bias of less than 2% with vS having

an absolute relative bias of less than 0.5% for both estimators.  The nominal 95%

coverages were all between 94.8 and 95.4%, suggesting the non-normality in the

Census-of-Agriculture data was a key source of the modest undercoverage in the

original set of simulations.  Note that in this set of simulations, the model fit the data

exactly.  As a consequence, the delete-a-group jackknife produced a good measure of

the relative squared error for the optimal estimator, as our theory predicted.

In the third set of simulations,  coffee sales were first regressed on an intercept

and farm land using all the Census-of-Agricultural data.  Both coefficients were

significantly positive at the .001 level, but the R2 was less than 0.03.  The fitted sales

values served as the yk in computing the ratio and optimal estimators from 1,600

Poisson samples.   Consequently, the errors in the ratio and optimal estimators for T

resulted fully from the failure of the intercept-free linear model implicit in their

construction.  Not surprisingly, given this model failure,  the optimal estimator was more

efficient that the ratio (its empirical relative mean squared error was .0046 as opposed

to .0073).  The delete-a-group jackknife had a negative bias of 27.9% for the optimal

estimator, but only 0.1% for the ratio, which conformed to our  theory.  The

variance/mse estimator v0 had a slight positive bias of 2.6 and 1.8% for the optimal and

ratio estimators, respectively.   

A surprise came in the nominal 95% coverage intervals, where using v0 lead to

an average coverage of 89.9% for the optimal estimator, but 95.7% for the ratio.   The

delete-a-group jackknife covered the ratio estimator well, at 94.9%.  That is gratifying,

but the relatively poor coverage of v0 for the optimal estimator is a bit mystifying (the

delete-a-group jackknife covered even worse, at 84.1%).  Perhaps, greater sample-to-

sample instability in bop compared to brat was the cause.    
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6.  Concluding Remarks

 When both n and N are large, but N is so large that all the Bk are ignorably small for

variance estimation purposes, the delete-a-group jackknife variance estimator (vJ in

equation (6)) can be used to estimate both the model variance and randomization mean

squared error of the GREG estimator (tR in equation (1)).  The asymptotic unbiasedness

of the latter requires on additional assumption: ci = 1/(xi() for some vector (, which

means the estimator can be put into projection form.  Otherwise, it can be

asymptotically biased downward.  On the other hand, if the Bk are not all ignorably

small, the delete-a-group jackknife can be asymptotically biased upward. 

Had the sample been drawn with probability-proportional-to-Bk with replacement,

it is well know that the Bk, in this context the expected number of times k is selected for

the sample, need not be small.  Moreover, equation (A.4) in the appendix (translated to

allow the same unit to be in S more than once) shows that the delete-a-group jackknife

is an asymptotically unbiased estimator for the randomization mean squared error of tR

whether or not the GREG is expressible in projection form.   

Finally, the construction of the jackknife replicate weights for i 0S(g) in equation

(5) was nonstandard.  The interested reader can verify that using the formulation:

wi(g) = [G/(G!1)]Bi
-1  + 

      (3U xk ! 3S(g) [G/(G!1)]Bk
-1xk)(3S(g) ck[G/(G!1)]Bk

-1xk'xk)
-1ci[G/(G!1)]Bi

-1xi',                (5')

does not change the asymptotic results. 
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Appendix: The Asymptotic Properties of vJ

The delete-a-group jackknife in equation (6) can be  re-expressed as  

vJ = (G ! 1/G)  3G (3S wi(g)ui ! 3S wiui)
2                                    

where ui may be either ,i or ei depending on whether we are interested in model-based

or randomization-based properties.    

We assume for this appendix that all the Bi are O(n*/N), so each wi is Op(N/n*).  

Without loss of generality, we assume each n/G equals an integer, d.   To do otherwise,

complicates the derivation of the subsequent formulae without adding insight.  We also

assume that (n*/N2)V0 and (n*/N2)EP(vS) each converge to a positive constant and that 

3U ckxk'xk /N converges to a positive definite matrix as n* grows arbitrarily large.  

The sets Sg and S(g) (denoted Sg and S(g) are subscripts) can be viewed as

simple random subsamples of S.  With this in mind, we will assume that  

3Sg wixi ! 3S wixi /G is OP([N/n*]¾d ).   Since dG = n, either d or G (or both) must grow

arbitrarily large, in probability, with n*.  Remembering that  3S wixi = 3U xi, we have: 

3S wi(g)ui  ! 3S wiui =   [G/(G!1)]{ ! ( 3Sg wiui ! 3S wiui /G)  

                                          + ( 3Sg wixi ! 3S wixi /G) (3S(g) ckBk
-1xk'xk)

-1 3S(g) ciBi
-1xi'ui}

                             = ! [G/(G!1)]{ 3Sg wiui ! 3S wiui /G} 

                                                                   + O(1 x q)p(¾d/[n*!d]) 3S(g) ciBi
-1xi'ui.         (A.1)     

          

Consequently, 

E,[( 3S wi(g),i  ! 3S wi,i)
2]  = 3Sg wi

2Fi
2(1 ! [2/G]) + 3S wi

2Fi
2/G2 + Op([ N/n*]2d/[n*!d])

                                         = 3Sg wi
2Fi

2(1 ! [2/G]) + 3S wi
2Fi

2/G2 + Op([ N/n*]2/[G!1])
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From this, and equation (6),we can see that the delete-a-group is asymptotically model

unbiased estimator for V0 = 3S wi
2Fi

2:  

E,(vJ) =  3G 3Sg wi
2Fi

2  +  Op([ N/n*]2).

Establishing the asymptotic randomization-based properties of vJ is a bit more

difficult.  From equation (A.1): 

3S wi(g)ei  ! 3S wiei  =  ! [G/(G!1)]{ 3Sg wiei ! 3S wiei /G} 

                                                                               + O(1 x q)p(¾d/[n*!d]) 3S(g) ciBi
-1xi'ei.

                              =  ! [G/(G!1)]{ 3Sg wiei ! 3S wiei /G} + Op([N/n*]¾d /¾[n*!d]}) 

                              =  ! [G/(G!1)]{ 3Sg wiei ! 3S wiei /G} +  Op([N/n*] /¾[G*!1]}.          (A.2)

              

We can combine equations (6) and (A.2) thusly:

vJ  =   [G/(G!1)]3G { 3Sg wiei ! 3S wiei /G}2 + Op([N/n*]2)                                              (A.3)

 We now turn our attention to the randomization expectation of vJ under random

the subsampling of sample S in creating Sg.  Note that E2{( 3Sg wiei /d ! 3S wiei /n)2} =

{(1 ! [d/n])/d}{3S (wiei)
2 !(3S wiei)

2/n}/(n!1), where the subscript 2 refers to the

subsampling.  As a result,  

E2(vJ
2)  =  {3S (wiei)

2 !(3S wiei)
2/n}  + Op([N/n*]2)                                              (A.4)

    We need an additional assumption; namely,  ci = 1/(xi()  for some  vector (.  Under

this assumption, 3U ei = 3U ('xi'ciei = ('3U cixi'ei = 0 From which we can conclude  

E2(vJ) = 3S (wiei)
2 + Op([N/n*]2), which is asymptotically indistinguishable from 

v0 = 3S (wiri)
2.  
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From the derivation of equation (A.4), we see that when ci � 1/(xi(), so that 

3S wiei � Op(N/¾n*), vJ can have an downward bias as an estimator of the randomization

mean squared error of tR.  


