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This overview begins by discussing the uses of models in 
establishment surveys. These range from providing some statistical 
structure when using estimation strategies with cutoff or 
convenience samples to improving the accuracy of more robust 
strategies based on probability sampling.  In both situations, a 
statistician usually constructs an estimator unbiased (or nearly so) 
under a simple, yet plausible, linear model.  A model-based 
measure of the estimator’s variance given a particular sample can 
be estimated.  Alternatively, one can measure the estimator’s 
variance under the combination of the model and the random-
sampling mechanism.   Of particular interest are ratio estimators 
that are both unbiased under certain assumed models and nearly 
unbiased under the random-sampling mechanism.  Robust model-
based variance estimators for a ratio often possess better coverage 
properties than the conventional probability-based alternative.  
Results for the ratio extend to calibration estimators.   Models can 
also be helpful in variance estimation when there is unequal-
probability sampling within strata, additional phases of sample 
selection, reweighting for unit nonresponse, and imputation for item 
nonresponse.  
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1. Introduction:  Why Do We Need Models? 

 

It was once a common practice to base establishment surveys on 

nonrandom samples such as cut-off and convenience samples.  Estimates were 

derived using purely ad-hoc methods, leading to inferences that were often 

dubious and never testable.    

A cut-off sample of a population of N establishments consists of those  

n < N establishments believed to be the largest in some sense.  A convenience 

sample is based on expediency, containing n establishments that are easy to 

contact or eager to participate in the survey. 

Scientifically defensible inferences are possible with a nonrandom sample 

when they are based on a plausible model of survey-variable behavior.   By 

clearly stating his (her) model assumptions, the statistician often possesses tools 

for assessing the quality of the resulting inferences.   

Nowadays, most establishment surveys, especially those conducted by 

governments, are based on randomly selected samples.  Estimates are derived 

from such samples using probability-sampling theory.   

A limitation of this theory is its asymptotic nature.  With small samples, 

even random ones, models are needed for reasonable estimation.  The skeptical 

reader is directed to Basu’s infamous elephant example (Basu, 1971), where a 

random sampling scheme is designed to select what is believed to be the most 

representative of 50 elephants with a 99% probability.  The resulting estimate for 

the total weight of the 50 elephants, although unbiased according to probability-

sampling theory, has a 100% probability of being disastrously bad. 

An estimation strategy is a sampling plan, usually random, coupled with 

an estimator.   Even when a survey statistician intends to draw a random sample 

of respectable size and to compute an estimator with good probability-sampling-

theory properties, invoking a plausible model can be of great assistance in 

choosing among alternative estimation strategies.    

There are other ways models can be useful.  Estimation strategies 

incorporating unequal probability sampling within strata often feature estimators 
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with hard-to-estimate measures of accuracy (variances and mean squared 

errors).  Assuming a model can simplify this task considerably.    

Coverage intervals derived from probability-sampling theory need to be 

based on large, sometimes very large, samples to justify the normal 

approximation.  A model can speed up the asymptotics with middling-sized 

samples, improving the accuracy of calculated coverage intervals. 

Finally, models are particularly helpful when adjusting for nonresponse 

and for errors in the frame (duplication and undercoverage).  Models provide 

both methods for treating nonresponse and frame errors and means for 

assessing the accuracy of those methods.   

 

 

2. Model-based Estimators (for totals) 

 

To keep things simple, we focus this discussion on estimating a total for a 

finite population, U, in a situation where the population and sampling frame 

coincide.  We further assume that there is no nonresponse (for now) and that all 

survey respondents provide correct information upon enumeration.  

  Our goal is to estimate the population total y k
k U

T y
∈

= =∑ kU
y∑ with a 

sample, S, of n elements (establishments).   Suppose there is an auxiliary 

variable, xk ∈S, about which x kU
T x=∑  is known.  The auxiliary-variable total 

may come from administrative data or a census.  A commonly used auxiliary 

variable, although not often the best choice, is xk =1 for all elements in the 

population.    

We will use the following motivating example throughout this discussion.  

Consider a population U of farms, where 

xk is the total land (believed to be) on farm k, and 

yk is the planted corn acres on the farm.  

Our goal is to estimate the total acres of planted corn in the population 

based on a sample.  The total-land value is assumed to be known before 
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sampling and enumeration.  It cannot be changed by survey information even if 

found to be in error for a particular farm k.    

A characteristic of establishment surveys rarely shared by demographic 

surveys is the frequent existence of measures of size for members of the 

population whether in the sample of not.  The total-land variable in our motivating 

example is one such measure of size.  A plausible model can often be assumed 

relating a survey variable of interest, planted corn in the motivating example, to 

one or more of these measures of size.   We will focus here on estimation 

strategies incorporating a single auxiliary variable/measure of size both because 

they are commonly used in practice and because they are mathematically 

simpler than strategies employing multiple auxiliary variables.         

If we assume that each  yk ∈ U satisfies the simple linear prediction model:  

 

                                                         ,k k ky x= β + ε                                             (1) 

 

where ( | ) 0k kE xε = , then the ratio estimator, 

  

                                                
kr S S

y x x
k SS

y y
t T T

x x
= =

∑
∑

,                                         (2) 

 

is a (model) unbiased estimator (predictor) for Ty in the sense that ( ) 0r
y yE t Tε − =  

as long as the sampling mechanism is ignorable .  The sampling mechanism is 

ignorable when the distribution of |k kxε  is that same whether or not k S∈ .  This 

means (among other things) that ( | ) ( | ; ) 0k k k kE x E x k Sε = ε ∈ =  

The ignorability assumption is the reason why the x-value cannot be 

changed by the survey: k k ky xε = − β  must be the same whether or not 

establishment k is in the sample.   The assumption is unnecessary for simple 

random samples and cutoff samples based on the elements with the largest x-

values (as long as population values aren’t changed by survey information), but 

is needed for convenience samples.    
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3. Model Groups 

 

Some populations naturally separate into G mutually exclusive groups, 

each denoted by Ug, where the behavior of the y-variable is consistent within 

each group but (may) vary across groups.   For example, a population of farms 

may naturally be separated into agricultural districts, each with distinct soil and 

weather characteristics.    

When the group x-totals, xg kUg
T x=∑ , are known, it is possible to 

compute the separate ratio estimator: 

 

                       
1 1 1

G G Gk k gS Sg g gSsr
y xg xg xg

g g gk k g gSS Sg g

y y n y
t T T T

x x n x= = =

= = =
∑ ∑

∑ ∑ ∑
∑ ∑

,                    (3) 

  

where Sg is that part of the sample from group G.  This estimator is not only 

unbiased for Ty under the simple linear model in equation (1), but also the group-

ratio model:  

  

                                                for ,k g k k gy x k U= β + ε ∈                                 (4) 

 

where ( | ) ( | ; ) 0k k k kE x E x k Sε = ε ∈ = .   The simple ratio estimator r
yt  in equation 

(2) is generally not unbiased for Ty under this model.  

When all the xk =1, the group-ratio model is called the “group-mean 

model.”  The separate ratio estimator has the familiar form: 

   

                                          
1 1

.
G GkSgPS

y g g gS
g gg

y
t N N y

n= =

= =
∑

∑ ∑  
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Although the G groups look like H design strata, the difference is that samples 

need not be selected independently across groups.  A popular name for PS
yt  is 

the “post-stratified estimator” (hence the superscript “PS”) so named because 

groups are often formed after the survey design stage where the strata are 

created.    

 

 

4. Prediction Form 

 

Returning to the simple linear model in equation (1), an estimator for Ty 

having the form:  

 

                                           ˆpred
y k kS U S

t y x−= + β∑ ∑  

 

is model unbiased when β̂  is an unbiased estimator for ββββ .    This estimator uses 

the model to predict the y-values for the nonsampled elements.  (Purist would 

say that since Ty is itself a random variable under the model, pred
yt is more 

properly called a “predictor” rather than an “estimator”  for Ty.) 

If we assume the kε  are uncorrelated and each has variance 2
kσ , then the 

best linear unbiased (BLU) estimator for Ty is 

 

                                       

2

2

2

.

j j

S jBLU
y k k

S U S
k

S j

x y

t y x

x−

 
  σ = +
 
  σ 

∑
∑ ∑

∑
 

With some work, one can show that this collapses into the ratio estimator if and 

only if 2
k kxσ ∝  (so that  β̂ / )S Sj jb y x= = ∑ ∑ . 
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5. Model-assisted Randomization-based Estimators 

 

Unfortunately, models can fail.  In particular, the ratio k

k

y
k x

r =  may tend to 

increase or decrease along with xk.  In our motivating example, the corn-to-land 

ratio on a farm may tend to increase along with the size of the farm (smaller 

farms tend to concentrate on more specialized crops than corn).   Nevertheless, 

from a probability-sampling viewpoint, r
yt  under simple random sampling is nearly 

unbiased.  In fact, one can show its relative mean squared error under 

probability-sampling theory will tend to zero as the sample size grows arbitrarily 

large under mild conditions. This property is called “randomization (or design) 

consistency.”  Henceforth, we will use the modifiers “randomization” and 

“randomization-based” when referring  to properties derived under probability-

sampling theory.  Although the asymptotic properties of strategies under 

probability-sampling (randomization) theory are central to many of the methods 

discussed here, a more thorough discussion of them is beyond the scope of this 

paper. 

Let B = y xT T  be the corn-to-land acres ratio in the population and 

U yy T N=  be the average size of a farm in land acres.  When the element-by-

element values of  ek = yk − Bxk tend to be smaller than those of k Uy y− , the ratio 

estimator will likely have less randomization mean squared error than the 

expansion estimator, .e N
y k SSn

t y N y= =∑  In other words, k k ky x= β + ε , however 

imperfect, is a better implicit prediction model than k ky = µ + ε , and the ratio 

estimator a better estimator for the population total under simple random 

sampling than the expansion estimator. 

There are more than two ways to estimate a total in a nearly randomi-

zation unbiased fashion based on a sample of a specified size.  Without a model 

of survey-variable behavior, it is often impossible to choose among them.  As a 

result, it is often helpful to: 
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1. Restrict attention (if possible) to nearly randomization-unbiased or 

randomization-consistent estimation strategies, and  

 

2. Look at the model expectation of the randomization mean squared error 

(mse) of these strategies.    

 

We will call the model expectation of the randomization mse of an estimator its 

“combined mse” (the term “anticipated variance” or “anticipated mse” is also 

commonly used).  

Let  kπ  denote the selection probability of establishment k.  Suppose we 

want to estimate Ty with an arbitrary random sample and a ratio of two 

randomization-unbiased expansion estimators.  This is known as the Hajek 

estimator: 

                                   .

k
eS
yHajek k

y x x e
k x

S
k

y

t
t T T

x t

π
= =

π

∑

∑
                                           (5) 

Each kπ  can take on any value in the interval (0, 1] (this interval excludes 0 but 

includes 1).  Under mild conditions, the Hajek estimator is nearly randomization 

unbiased.   

Suppose we want to find the set of selection probabilities that produces 

the Hajek
yt  with the smallest randomization mse given an (expected) sample size  

n.   Formally, this sample-size restriction means that Pr( )
U

k S∈ =∑ kU
nπ =∑ .  

This task would be impossible unless we assume a structure for survey-value 

behavior.  By assuming the linear model in equation (1) and further that the 

kε are uncorrelated, each with variance 2
kσ ,  one can show that the combined 

mse of the Hajek estimator is approximately  
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                            ( ) ( )
2

21 1 .
k

Hajek
rand y y kU

E E t Tε π

  
− ≈ − σ    

∑                             (6) 

 

This approximation works especially well when the sample size is on the large 

side (say n > 20). 

The large-sample combined mse on the right hand size of equation (6) is 

minimized under Brewer selection:   

                                                       k
k

jU

n
σ

π =
σ∑

 . 

This allocation requires k jU
nσ ≤ σ∑  for all elements in the population.  Any  k 

for which this inequality fails should be selected with certainty and Brewer 

selection applied to the remaining elements of the population. 

Although the kσ  need only be known up to a constant to use Brewer 

selection, even that is unusual in practice.   Often, it is speculated in 

establishment surveys that k kx
γσ ∝  for some γ  between 1/2 and 1 (equivalently, 

2 2
k kx

γσ ∝ ). It is important to recognize that the frame value xk must be known for 

all elements in U  to use this speculation.   

In our motivating example, γ  = 1 means that the corn-to-land ratio, rk, acts 

like a random variable with a common mean, β, and variance, c, across indepen-

dent farms.  Consequently, ( ) ( ) β βk k k k kE y E x r x x= = = , and 2σ (ε ) ( )k k kV V y= = =  

( )k kV x r = 2 2.k kx c cx=   At the other extreme, γ  = 1/2 means that rk acts like a 

random variable with a common mean and variance across independent acres of 

land, so that   ( ) βk kE y x= again, but now 2

1

σ ( ) ( ) .
kx

k k k k k
i

V y V r x c cx
=

= = = =∑  

Any assumption about the kσ  is speculative, even under the most ideal 

conditions (such as the frame x-values never being in error).  Fortunately, a faulty 

assumption about the kσ  does not diminish the randomization consistency or 

model unbiasedness of the Hajek estimator.    
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On the other hand, insisting that the estimation strategy be randomization 

consistent rules out systematic probability-proportional-to- kσ  sampling from an 

purposefully-ordered list since such a designed effectively produces a cluster 

sample of size one.   It also rules out using a separate ratio estimator (equation 

(3)) under stratified simple random sampling (stsrs) when the samples sizes 

within strata (the groups of equation (3)) are too small.    

A very popular estimation strategy for establishment surveys is the 

combined ratio estimator under stsrs:  

 

                                              1

1

h

hh

h

hh

H
N

kSn
cr h
y x H

N
kSn

h

y

t T

x

=

=

=

∑ ∑

∑ ∑
.                                             (7) 

 

It is special case of the Hajek estimator in equation (5) with k h hn Nπ =  when k is 

a sampled establishment in stratum h (denoted Sh).   The strategy is randomi-

zation consistent and model unbiased under the simple linear model in equation 

(1) but not the group-ratio model in (4). 

 

 

6. Estimating the Model Variance of r
yt  

 

Observe that under the simple linear model: 

 

( )
( )

,

kr S
y y k kU U

kS

k kS
k k kU U

kS

U
k kS U

S

y
t T x y

x

x
x x

x

Nx

nx

− = −

β + ε
= − β + ε

= ε − ε

∑
∑ ∑

∑

∑
∑ ∑

∑

∑ ∑
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which explains why r
yt  is model unbiased for Ty.  If the kε are uncorrelated and 

each has variance 2
kσ , then the model variance of r

yt  (as an estimator for Ty ) is 

 

                            ( )
2

2
2 2 22 ,r U U

y y k k kS S U
S S

N x N x
E t T

nx nx
ε

  
− = σ − σ + σ     

∑ ∑ ∑               (8) 

 
which can be estimated in a unbiased fashion if we knew an unbiased estimator 

for the 2
kσ .     

If we can assume 2
k kσ ∝ υ  for a known set of kυ  (say kx

γ  for some γ ), 

then 

            

2

2

2

1
ˆ

1

j j

j S ji i
k k

i S i i j

j S j

x y

y x

n x

∈

∈

∈

  
   υ  σ = − υ 

−  υ υ    υ  

∑

∑

∑

 

is an unbiased estimator for 2
kσ  

Since assumptions about the 2
kσ  are very often dubious, a more robust 

approach to modeling variance estimation is advisable. For k ∈ S, let  

 

                      
( )

2 2

2

1 /

S S S
k k k k k

S k S k S Sn

x y yn
s y x y x

x x x n x x x

      
= − = −      

− −        
. 

 

This is an unbiased estimator for 2
kσ  when 2

k kxσ ∝ ,  and nearly (asymptotically) 

unbiased otherwise when n is large because 

 

                         ( )
2

22 2 2S
k k k k k k k

S

y
s y x r y x

x

 
≈ − = ≈ −β = ε 
 

 . 

 

Observe that 2
k kxσ ∝  implies 2 2 .U

k kS U
S

N x

nx
σ = σ∑ ∑   Consequently, 
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2

2 2.robust U U
k kS S

S S

N x N x
v s s

nx nx
ε

 
= − 
 

∑ ∑                                  (9) 

 

is an exactly unbiased as an estimator for the model variance of r
yt when 2

k kxσ ∝ .  

Moreover, robust
vε  is almost unbiased as long as both n and N n  are large, in 

which case 2
ks  can be approximated by 2

kr
2

1
(or  ),n

kn
r

−
  and  robust

vε  by  

  

                                                  approx
vε =

2

2U
kS

S

N x
r

nx

 
 
 

∑ . 

 

N n  large means that the sampling fraction, n N , is small.  This is often, but not 

always, the case with establishment surveys.   

 

 

7. Estimating the Randomization MSE of the Hajek Estimator 

 

A conventional randomization mse estimator for the Hajek under an 

arbitrary sampling design is   

 

                                        

( )

1
,

2

,

1 ,

kj k j jk

k j S kj k j

kj k j jk k
k

k S k j Sk kj k j
k j

rr
v

rr r

∈

∈ ∈
≠

π − π π
=

π π π

π − π π 
= − π + 

π π π π 

∑

∑ ∑
               (10) 

 

where ( )e e
k k y x kr y t t x= − , and kjπ is the probability that both elements k and j are 

in the sample (by definition, ).kk kπ = π    This estimator is nearly randomization 

unbiased under mild conditions so long as kjπ is positive for all pairs of elements 

in the population.  That condition rules out systematic (equal or unequal) 
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probability sampling from a purposefully ordered list because, except under rare 

circumstances, it is impossible to jointly select adjacent elements on the list.  

The Horvitz-Thompson mse estimator in equation (10) can be re-

expressed for the combined ratio estimator under stsrs, cr
yt , as 

                                  ( )
2

2
1

1

1 .
1

h

H
cr h h h

k hS
h k Sh h h

N n n
v r r

n N n= ∈

   
= − −   

−   
∑ ∑                      (11) 

 

For the special case of r
yt  under srs, H = 1, and 1 0.Sr =      

The expression 1
cr

v  also estimates the (large-sample) combined mse of 

cr
yt :  

( )
2

2

2

1

1
1

1

h

cr
rand y kU

k

H
h

k
h k Sh

E E t T

N

n

ε

= ∈

   
− ≈ − σ     π    

 
= − σ 

 

∑

∑ ∑

 

 

under the simple linear model when the kε  are uncorrelated.  This is a special 

case of equation (6).   

With many sampling designs, we cannot always avoid incorporating kjπ  

terms for distinct k and j  when estimating the randomization mse of a Hajek 

estimator.  By assuming the kε  are uncorrelated, however, the combined mse of 

the general Hajek can be estimated with 

 

                            ( )
2 2

2
1

1 1
1

Hajek k
k kS S

k k k

r
v r

    
 = − π = −   

π π π     
∑ ∑ .                     (12) 
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Here 1 k− π  serves as an element-specific model-based finite population 

correction (fpc) term.  Its average values is  21 jS
n− π∑  (a pooled, model-based 

fpc term), not the ad-hoc formulation, 1 – n N .    

Unlike 1,v  the mse estimator in equation (12) can be used with systematic 

probability sampling from a purposefully-ordered list.   Remember, however, it is 

the combined (model and randomization) mse that is being estimated.   A 

combined mse requires the model to be correct or at least a reasonably good 

approximation to be an effective accuracy measure.     

A key model assumption for estimating the combined mse estimation 

under purposefully-ordered systematic sampling is that the εk are uncorrelated no 

matter where they are on the list.  When the εk for adjacent elements on the list 

tend to be more positively correlated than other pairs, 1
Hajek

v  can be shown to 

overestimate the combined mse.   That is to say, there are potential efficiency 

gains (mse reduction) to be had from purposefully ordering the list not reflected 

within 1
Hajek

v .  

As for the combined ratio estimator under stsrs, some work reveals 

 

                 

22

2
1 1

1

1

1

1
h h

H
Hajekcr h

k k
h k S k Sh h

Hajek

N
v v r r

n n

v A

= ∈ ∈

     = + −      −    

= +

∑ ∑ ∑
, 

where A has a model expectation of (nearly) zero, but will, in fact, be negative if 

the kε  within a stratum tend to be correlated.  When there is only one stratum 

(i.e., under srs), the model expectation for 1
cr

v  will be slightly higher than that for 

1
Hajek

v  because 0kS
r =∑ .  
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8. Randomization-assisted Model-based Variance Estimation 

 

The weighted residual variance estimator for the Hajek estimator is  

 

                              

2 2

1
,

kj k j jx k x
wrve e e

k j S kj k jx x

rT r T
v v

t t∈

   π − π π
= =      π π π   
∑ ,                      (13) 

 

where .e
Sx k kt x= π∑  Like  1v  in equation (10), wrvev is a good estimator for the 

randomization mse of Hajek
yt . 

 Using reasoning similar to that producing equation (8), the model variance 

of the Hajek estimator can be shown to be  

 

2
2 2

2

2
2 .robust x k x k

kS S Ue e
x k x k

T T
V

t t
ε

  σ σ
= − + σ   π π 

∑ ∑ ∑  

When the kπ  are all small (<< 1), this expression is dominated by 

                                               

2
2

2

approx x k
Se

x k

T
V

t
ε

  σ
=    π 

∑ . 

Consequently, wrvev is a nearly unbiased estimator for the model variance of the 

Hajek (since k kr ≈ ε , ( ) ( ) 0
k j k j

E r r E≈ ε ε =  when k and j are distinct). 

 Estimates of model variance are only as good as the models on which 

they are based.   When the model is a reasonably good representation of reality, 

however, a coverage interval based on a model-variance estimate and the 

normal approximation will often be superior to an analogous one derived solely 

using randomization theory.  This is because model variance is conditioned on 

the sample actually drawn while a randomization mse is averaged over all 

possible samples. 
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The following expressions are even better than wrvev  at estimating the 

model variance of the combined ratio estimator and the general Hajek estimator:  

 

                                         ( )
2

2
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1

,
1
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H
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∑ ∑  
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  
 = −   π π  

∑ .                                     (14) 

The estimator 2
cr

v retains the large-sample randomization-based properties of 1
cr

v , 

and is nearly model unbiased when 2
k kxσ ∝  even when some of the kπ  are not 

small.  

The estimator 2
Hajek

v  is also nearly model unbiased when 2
k kxσ ∝ , but 

tends to have a small downward bias since  
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is less than 2σk  for most k.   A slightly improved version of 2
Hajek

v  replaces the 2
kr  

with 2

1
n

kn
r

−
  or, better yet,  

 

                         2 2 2

1
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e
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k k ke
x k k

e
k x

t n
s r r

t x nx
n

t

π

 
  
  = =     −    −    π  

.   
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Like 1
Hajek

v ,  the quality of 2
Hajek

v  as a measure for the accuracy of Hajek
yt  

depends on the quality of the model.  By contrast 1
cr

v  and 2
cr

v  are reasonable 

measures for pure randomization mean squared error of  cr
yt .  

In general, the slight model bias of a nearly model-unbiased variance 

estimator v for t  can be removed under the assumption 2
k kσ ∝ υ .  One way to do 

this is with the ratio adjustment:   

                                           

2( )
.

( )

E t T
v v

E v

ε

ε

 −
 =�
�

   

Usually, v�  will retain the large-sample randomization-based properties of v , if it 

has any. 

 

 

9. Calibration and the General Regression Estimator 

 

For our present purposes, a calibration estimator for Ty  is one that can be 

put in the form  ,cal
y k kS

t w y=∑ where the vector (of) calibration equation(s) 

 

                                                    k k kS U
w T= =∑ ∑ x

x x                                    (15) 

 
 
holds for a row vector xk of auxiliary variables, and the vector of auxiliary-variable 

totals, T
x

, is known.   

This cal
yt  is unbiased under the multivariate model: 

  

                                                ,k k ky = + εx β                                                    (16) 

 

 where ( | ) ( | ; ) 0k k k kE E k Sε = ε ∈ =x x .  A calibration estimator is nearly randomi-

zation unbiased when kw converges to 1/k kd = π  for each element in the sample 

as n grows arbitrarily large.  
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 In surveys with multiple survey variables of interest (like planted corn 

acres, planted wheat acres, planted soy bean acres, etc.), there may be one 

auxiliary variable associated with each survey variable (a corn-frame value for 

each farm in the population, a wheat-frame value, etc.).  A single set of 

calibration weights satisfying equation (15) can produce estimators that are 

nearly randomization unbiased for the estimated total of each survey variable 

(total planted corn acres, total planted wheat acres, etc.) yet are also unbiased 

under a simple linear model in equation (1) applicable for each survey variable 

separately (a linear model relating planted corn to frame corn, one relating 

planted wheat to frame wheat, etc.).   

A possible calibration estimator sets each 

 

                            ( )
1

( ) .k k j j j j j k kS S
w d T d d d

−
′ ′= + −∑ ∑x

x x x x  

When xk  is not a scalar, this formulation produces the most popular of the 

general regression (GREG) estimators.   The model parameter β  in equation 

(16) is effectively estimated by 1( )GREG j j j j j jS S
d d y

−′ ′= ∑ ∑b x x x .   

When xk is a scalar, usually denoted by xk, a different version of the GREG 

is more common.  This formulation sets ( )e
k x x kw T t d=  and results in the Hajek 

estimator.  

Variance estimators for cal
yt  mimic what we have seen before.   Paralleling 

equations (13) and (14) we have.  

 

,

kj k j
wrve k k j j

k j S kj

v w r w r
∈

π − π π
=

π
∑ ,                          (17) 

and     

                                                   ( )" " 2 2
2 .

Hajek
k k kS

v w w r= −∑  
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where k k k GREGr y= − x b .   Several methods are available to reduce or remove 

the slight downward model bias in " "
2

Hajek
v . 

 

 

10. The Group-ratio Model 

 

Suppose the population is divided into G mutually exclusive groups.  Let xk 

be a row vector containing G components all but one of which are zero.  If 

element k is in group g, the gth component of xk is the scalar xk.  The estimator 

 

                                                
1
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g

G k kSgrm
y xg
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d y
t T

d x=

=
∑

∑
∑

 

can be put in calibration form with .
g

xg
k k

j jS

T
w d

d x

 
=   
 ∑

  It is a straightforward 

generalization of the separate ratio estimator in equation (3) and is likewise 

unbiased under the group-ratio model:  

  

                                             for .k g k k gy x k U= β + ε ∈                                 (4) 

 

Let k k g kr y b x= −  for gk S∈  and .g

g

j jS
g

j jS

d y
b

d x
=
∑

∑
 A very good 

estimator for model variance of grm
yt , especially when 2

k kxσ ∝ , is 
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Compare and contrast this with the weighted residual variance estimator in 

equation (13) under stsrs (g = h): 
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When the scalar xk is a constant (say 1) across all elements, grm
yt  

becomes a generalized version of the post-stratified estimator with 

g

g
k k

jS

N
w d

d

 
=   
 ∑

, and g

g

j jS
k k

jS

d y
r y

d
= −

∑
∑

. 

 

11. Two Phase Sampling 

 

It is increasingly popular to use two-phase sampling in establishment 

surveys.   The first phase is often used to remove deadwood (establishments no 

longer in operation) and to collect enough information to divide the remaining 

sample into mutually exclusive and exhaustive groups.  The second phase of 

sampling, which is often srs within groups,  is used to collect more detailed 

information.   

Suppose we have a first-phase sample as described above.   The sample 

is segregated into groups, one of which is reserved for the deadwood.  Since we 

know  yk = 0 for all establishments in the deadwood group, we can pretend the 

group is completely enumerated in the second-phase sample.   

Under the group-ratio model, a good estimator for T is 

 

                                              
1

ˆ ,
g

g

G k ksgrm
y xg
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d y
t T

d x=

=
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∑
∑

                                         (18) 
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where ˆ
xgT  is an estimate for xgT  based on the first phase sample. 

For near randomization unbiasedness,  dk  is the inverse of the product and 

the first and second-phase selection probabilities, and gs  is the second-phase 

sample within group g.  For future reference, let 
1

G
gg

s s
=

=∪  be the total second-

phase sampling.   

When the second-phase sampling design is srs within groups, the  dk in 

equation (18) can be replaced by the first-phase selection probabilities without 

changing its value.  

The auxiliary variable xk (which may be 1 for all elements) is collected 

during the first phase of sampling.   When all xk = 1, ˆ ˆ
xg gT N= .  This value is an 

estimate because the population size of each group is unknown before the first-

phase sample is enumerated.    

Now the combined randomization/model variance of grm
yt  can be 

estimated by adding together two term.  The first is 
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∑ ∑
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            (19) 

 

The second is an estimator of the randomization variance from the first-phase of 

sampling using ˆky =  
g

g

j js

k
j js

d y
x

d x

∑

∑
 in place of yk for elements in group g.   Call it 

2mb
randv . 

The expression grm
vε  in equation (19) estimates the model variance from 

both phases of sampling (in a nearly unbiased fashion when ng and Ng are large 
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enough or 2
k kxσ ∝ ),   while 2mb

randv  estimates the randomization-based expectation 

of the square of the model bias resulting from ˆ
xgT  being used in place of  xgT .   

Of course, if we knew xgT , then we could compute  

                                               
1

,
g

g

G k ksgrm
y xg

g k ks

d y
t T

d x=

=
∑

∑
∑

 

and estimate its model variance (and combined mse) with grm
vε  in equation (19) 

(each ˆ
xgT  equaling xgT in this case). 

 

 

12. Adjusting for Nonresponse 

 

We treat unit (whole-element) response/nonresponse in a single-phase 

survey as if it were a second-phase of sampling (the respondent sample, R,  

being the second-phase sample s ).  Under the group ratio model, grm
yt  in 

equation (18) − with xgT  either known or estimated from the original sample 

before nonresponse, and dk equal to the original-sample weight of k  − serves as 

a model- or combined-unbiased  estimator for Ty, and grm
vε  in equation (19) (or 

grm
vε + 2mb

randv ) as an estimator for its model (or combined) variance.   

The model, again, is fork g k k gy x k U= β + ε ∈ (equation (4)) with 

( | ) ( | ; )k k k kE E k Rx xε = ε ∈ = 0.  The key assumption in prediction modeling for 

unit nonresponse is the ignorability of the response mechanism.  It is not 

necessary for all the elements in a group to have the same probability of 

response.  That is the assumption of an alternative and complementary 

paradigm: quasi-random response modeling.   
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Now  grm
yt  can be put in reweighted form as ,grm

y k kR
t w y=∑ where  

ˆ

g

xg
k k

j jR

T
w d

d x
=
∑

 for .gk R∈    We can likewise, rewrite grm
vε  as 
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with for .
j jRg

k k k g
j jRg

w y
r y x k R

w x
= − ∈

∑

∑
 

Surveys are usually designed to estimate totals for a number of variables.  

Often reweighting for unit nonresponse is done by setting all the xk = 1, so that 

the same set of adjusted weights, {wk}, can be used for every survey variable.    

When there is item nonresponse for some y-variable closely related to an 

auxiliary x-variable known for all sampled elements, a missing y-value is often 

imputed with:  

                                               ˆ ,
g

g

kj jj R

k k
kj jj R

a y
y x

a x

∈

∈

=
∑

∑
 

where the akj can have any number of forms.  With weighted-ratio imputation,  

akj = dj,  while  akj = 1/xj with unweighted-mean-of-ratio imputation.   Another 

popular technique is random-ratio imputation, where j is randomly selected from 

among Rg, and yk is imputed with ( )ˆ .k k j jy x y x=   Here akj = 1 when j is the 

element randomly selected to impute for the missing  yk  and 0 otherwise.  

In each of these variations we can rewrite the estimated total in the form of 

a reweighted estimator and compute grm
vε  as in equation (19).   Note that there is 

a possibly different reweighted estimator for each survey variable, so that this 

reweighting is done for variance-estimation purposes only.   

There are other approaches.  
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13. Concluding Remarks 

 

 With the sole exception of Basu (1971), I have avoided putting references 

in the text.  The interested reader is directed instead to the reference section for 

further readings on this topic.  Important early papers demonstrating the 

usefulness of models in choosing among estimation strategies with good 

probability-sampling properties are Brewer (1963) and Isaki and Fuller (1982).  

Brewer selection (although not named such) is found in the former, while the 

latter sets up an asymptotic structure for analyzing randomization theory that has 

been used ever since.   

Brewer (2002) is a text book on combining models and probability 

sampling that uses Basu’s elephant example as its starting point.  By contrast 

Valliant et al. (2000) is written from a purely model-based perspective.  

The weighted residual variance estimator is introduced in Särndal et al. 

(1989) and calibration weighting in Deville and Särndal (1992).   Kott (2004) 

discusses in depth the approach to variance estimation often taken here:  

simultaneously estimating the model variance and randomization mean squared 

error of a calibration estimator (the simple, combined, and separate ratio 

estimators being special cases).   Two co-authored articles of mine in the 

references contain other ideas finding expression here.  

Let us turn briefly to extensions of the methods described in the text.    

When the frame exhibits coverage errors (duplications or missing population 

elements), and true group population totals are known for some auxiliary variable 

x, then we can treat the process of moving from the population to the frame as 

the first phase of a two-phase sampling scheme, where the actual sample is the 

second phase of sampling.  One can show that  grm
yt  in equation (18) with 

ˆ
xg xgT T=  is a model unbiased estimator for Ty under the group-ratio model, 

assuming the coverage mechanism is ignorable.  The expression grm
vε  in 

equation (19) serves as a model (and combined) variance estimator. 
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We can extend the treatment of two-phase estimation to incorporate 

additional phases (or stages) of sampling.   We can also include a more complex 

set of benchmark variables than the estimated group totals for a scalar x.   

We can incorporate nonlinear prediction models for the yk.   Some care 

must be taken, however, because y kU
T y=∑  is itself a linear function of random 

variables under the prediction model.   See, for example, Breidt et al. (2005).  

Finally, when all the sampling fractions (the h hn N are small enough to be 

ignored,  

( )
2

2
2

1

,
1

h

H
cr h x h

approx k hSe
h k Sh hx

N T n
v r r

n nt
−

= ∈

 
= −   − 
∑ ∑  

 

is a good estimator for the randomization mean squared error of cr
yt estimator 

under stsrs and an even better estimator for its model variance.    

It can be shown that 2
cr

approxv −  is asymptotically closer to the stratified 

jackknife variance estimator than to the conventional estimator of randomization 

mean squared error (ignoring the sampling fractions):   
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This suggests the stratified jackknife should be viewed as a robust (to 

misspecification of the 2
kσ ) model-based variance estimator rather than a 

randomization-based variance estimator.    
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