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PREFACE

Overview

This course provides a solid grounding in modern survey-sampling theory and methods.
The lesson plan includes the first 9 chapters of the assigned text (probability sampling,
stratification, allocation, multi-stage sampling, ratio and regression estimation, domain
estimation, variance estimation in complex surveys, and methods for handling
nonresponse) and Chapter 12 (two-phase sampling, small-domain estimation, multiple
frames, capture/recapture).  This is augmented by the instructor’s comments on the text
plus supplemental notes on topics like Wilson confidence intervals for small proportions,
unequal probability sampling, and the large-sample properties of common estimation
strategies.  A final lesson covers the multiple-regression estimator.   

Required Textbook

Sharon L. Lohr, Sampling: Design and Analysis, Duxbury Press, Pacific Grove, CA. 1999.
(Go to http://www.duxbury.com/statistics_d/ , and then search for title)

Prerequisites: 

At least one previous college-level course in mathematics or statistics and a familiarity with
fundamental probabilistic concepts (expectations, variances) is essential.  More advanced
knowledge will be helpful for some of the supplemental notes. 

The ability  to download and  manipulate (sort, add, take squares, etc.) data on a CD-ROM
accompanying the textbook is required to do the homework assignments.    

The final lesson will be nearly impossible to follow without previous course-work in matrix
algebra.  Students without such exposure may omit that lesson. 
 

Course Origin

This course has been developed by the National Agricultural Statistics Service (NASS)  of
the US Department of Agriculture with the intention of providing training to professional
personnel located in various State offices and in Washington, D.C.  It replaces a previous
course developed by a predecessor USDA agency for the same purpose.   Although

http://www.brookscole.com/cgi-wadsworth/
http://www.duxbury.com/statistics_d/
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tempered by the NASS experience, the course can be of value to anyone needing to learn
about the how’s and why’s of modern survey sampling.   There is, for example, material
not easily found elsewhere on estimating proportions, which is not a major concern at
NASS (although it can be for some clients of NASS services, whether at other USDA
agencies or in the states).   

Course Organization

The course largely follows Professor Lohr’s lucid and thorough book on modern survey
sampling.  Two chapters from that book on the analysis of survey data are of secondary
interest to producers of survey statistics  and omitted from the course.

Commentary on the chapters and supplemental notes on a number of subjects are
contained herein.  A good deal of this additional material is not often covered in traditional
survey-sampling courses.   

Course Objectives 

The course will develop the student’s ability for choose the proper sampling and estimation
strategy when planning a survey.  It will familiarize the student with many popular sampling
techniques, demonstrate the advantages and disadvantages of alternative strategies
(sample plan and estimation method), and discuss the circumstances under which each,
or some combination, can be expected to provide statistically and operationally efficiency.
The course has broad application to all kinds of sample-survey situations, be they of
households, establishments, institutions, animals, vegetation, land masses, or something
else.  Special emphasis is placed on techniques used by NASS.  

More students will begin this course than end it.  It is often difficult for working profes-
sionals to find the time to master the contents of a course like this one and to do the
assignments.  Moreover,  there  is  enough  material  here  to  fill  two  full trimesters  at an
accredited university, one of them at the graduate level.  

A student will not have to finish all 14 lessons to profit from the course.   Anyone
successfully completing the assignments for Lessons 1 through 7, 9, 10, and 12 (the last
without reading the accompanying supplemental note) will have finished the equivalent of
a full semester’s work in the theory and practice of survey sampling.  

That being said, the material in Lessons 8, 11, 13, and 14 are of particular interest to
NASS.  These lessons cover Brewer and maximal-Brewer selection (what has come to be
called “multivariate probability-proportional-to-size sampling” or “mpps” at NASS), two-
phase sampling, multiple-frame sampling, and calibration weighting.   Some students may
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want to acquaint themselves with all or part of this material even if they do not complete
the accompanying homework assignments. 

Course Operation

Each student is held responsible for reading the assigned material, lesson by lesson, and
for doing all the assigned homework .   It is highly recommended that the reading be done
before attempting the homework. Many students will have difficulty with some of the
supplemental readings, especially those dealing with large-sample properties and variance
estimation for complex statistics.  Nevertheless, they should be able to satisfactorily
complete the course (in all or in part) without mastering that material. 

There is no final examination.  Instead, a “graduating” student will be encouraged to
complete a project utilizing what (s)he has learned, most helpfully on a topic of interest to
NASS.   Such a student should prepare a journal-length paper summarizing the results of
the project and a 15-minute talk advertising the paper of sufficient quality that a typical
government statistical agency or contractor would approve of its presentation at a technical
session of the Joint Statistical Meetings.  

Studying statistics is like studying mathematics in that material nearly incomprehensible
when first encountered can seem obvious after the third or fourth exposure.   Moreover,
“one sound brick must be laid on each earlier brick.”  Long gaps between lessons make
review of earlier lessons necessary and can materially lengthen the total time required for
completing the course.  Work submitted will be returned to the student after grading.
Students need not wait for this work to be returned, but can move ahead to the next
lesson.   Although this is largely a self-study course, the instructor is available to guide the
student through difficulties (s)he may have with the text, commentary, supplemental notes,
and homework assignments.  
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THE LESSONS
  

(Chapters and Sections refer to Sampling: Design and Analysis by Lohr)

Lesson 1 Introduction: Chapter 1.  With some additional definitions.........................  1

Lesson 2 Simple Probability Samples I: Sections 2.1 to 2.3. ...................................  3
Supplemental note on asymptotics in survey sampling*............................  6

Lesson 3    Simple Probability Samples II: Sections 2.4 through 2.9. ............. 15
Supplemental note on Wilson confidence intervals for proportions
under simple random sampling...............................................................  19

Lesson 4    Ratio and Regression Estimation: Chapter 3.   
Includes additional material on asymptotics and the weighted-residual 
variance estimator................................................................................... 22
Table of large-sample results (for SRS)*................................................... 28

Lesson 5   Stratified Sampling:  Chapter 4. .............................................................. 31

Lesson 6     Cluster Sampling with Equal Probabilities: Chapter 5. ........................... 35
  
Lesson 7     Sampling with Unequal Probabilities I: Sections 6.1 - 6.5. ...................... 37

Supplemental note on particular unequal-probability designs including
a discussion of the Hartley-Rao variance estimator ............................... 40

Lesson 8 Sampling with Unequal Probabilities II: Sections 6.6, 6.7. .......................48
Supplemental note on Brewer and maximal-Brewer selection................. 51

Lesson 9 Complex Surveys: Chapter 7. ................................................................. 59

Lesson 10 Variance Estimation in Complex Surveys: Chapter 9 
                      (Section 9.1 requires Calculus and can be viewed as optional).    
                      Additional material treats linearization without Calculus and other   

 other subjects.......................................................................................... 62
Supplemental note on the delete-a-group jackknife................................. 71

* Asymptotics play a major role in modern survey-sampling theory.  Consequently,
students should attempt to digest the material presented in these notes.  Experience,
however,  suggests that many will not.  As a result, no homework assignment will depend
on them.  
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Lesson 11 Two-Phase Sampling: Section 12.1. .......................................................73
Supplemental note on the double and reweighted expansion estimators. 76

Lesson 12 Nonresponse: Chapter 8.  
Additional material ties in supplemental note in Lesson 11 to the

 treatment of nonresponse......................................................................... 84

Lesson 13 Other Topics in Sampling: Sections 12.2 - 12.5, excluding Subsection
                     12.2.4 (Read supplemental note below first.) .......................................... 91

Supplemental note on multiple-frame estimation ..................................... 93

Lesson 14* Multiple Regression and Calibration Weighting:
A supplemental note................................................................................108

Additional References ......................................................................................................126

* Requires familiarity with matrix algebra

Note: Completing Lessons 1, 2, 3, 4, 5, 6, 7, 9, and 10, coupled with reading Chapter 8 in

Sampling: Design and Analysis and doing the homework assignment at the end of  Lesson

12 (page 90 of these notes) is the equivalent of a rigorous semester-long class is survey

sampling.   A student may want to end the course at that point and study some or all of the

remaining material informally.   
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Lesson 1: Introduction

Comments on Chapter 1 of Sampling: Design and Analysis

One of the problems with survey sampling is that terms do not always have definitive
meanings.   They can vary from textbook to textbook.  In these notes, we will usually
conform to the usage Professor Lohr has adopted.  Sometimes, very soon in fact,
alternative terminology and definitions will be discussed.   With the plasticity of meaning
in mind, students should take pains to define terms when writing about survey-sampling
issues outside of this course.     

The Population of Interest

Like many textbooks, Sampling: Design and Analysis draws a distinction between the
target and sample populations (p. 3), calling the target population “[t]he complete collection
of observations we want to study,” and the sample population “[t]he collection of all
possible population observation unit that might have been chosen in the sample.”  For
example, a statistician may want to study some behavior within the entire adult population
of the US, the target population, but for operational reasons her sample population
excludes residents of Alaska, Hawaii, and the territories (Puerto Rico, the Virgin Islands,
etc.).  

A different set of definitions follows Groves (1989*).   In the above example, the entire US
adult population is the population of inference or inferential population, while the adult
population in the 48 contiguous states is the  target population.  The sample population
(which is also known as the frame population) includes only those members of the 48
states who could have been sampled with the methodology employed.  For example, if the
survey is conducted in April, the sample population excludes residents of the 48 states who
are out of the country during that month.  

Another term, the survey population, refers to those members of the sample population
who would have responded to the survey if selected for the sample.  

* Most references can be found in Sampling: Design and Analysis.  Additional references
are in the back. 
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Errors of Observation/Errors of Nonobservation

It is standard to draw a distinction between sampling and nonsampling errors as the text
does in Section 1.6.    Groves (1989) argues that the more important distinction is between
errors of observation and errors of nonobservation.   Errors of observation are
measurement errors caused by a disconnect between what the analysts wants to measure
and what the sample respondent actually provides.   They are beyond the scope of this
course.  

Errors of nonobservation are due to differences between the target population and the
respondent sample.   They have three potential sources.   
1) The sample population is not identical to the target population.  
2) Not every element (observation unit) in the sample population is selected for the

sample. 
3) Not every sampled element responds to the survey.  
        
The primary focus of this course is the second source: sampling error.   Lesson 11 is
mostly dedicated to the third: survey nonresponse.  The first source is referred to as
coverage or frame errors.   Sometimes, the sample population is larger than the target
population; for example, the sample population may be a list of  business establishments
including dormant entities not in the target population.   A simple technique for handling
potential overcoverage in this situation is discussed in Lesson 3.  Undercoverage, errors
of nonobservation due to the sample population missing elements from the target
population, is a harder problem to address.  One popular method for handling
undercoverage is poststratification, which can also be used to adjust for nonresponse.  It
is discussed in both contexts in Lesson 11.  

Unless otherwise noted, the target and sample populations will be assumed to be identical
in the remaining lessons of this course.    

Homework for Lesson 1

Do Exercises 1, 2, and 8 in Section 1.7 (starting on p. 17) of Sampling: Design and
Analysis.
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Lesson 2: Simple Probability Samples I

Comments on  Sections 2.1 to 2.3 of Sampling: Design and Analysis

Terminology 

Simple random sampling without replacement is sometimes designated srswtr.  Särndal

et al. (1992) use SI.    They likewise use SIR for simple random sampling with replacement.

Often the right side of equation (2.10) on page 44 is called the “estimated standard error
                                                                                                       

       ^of y6 (not the “standard error”).  More often than that, it is denoted SE( y6).  In my own work,

I prefer to use lowercase letters to denote estimators (se for estimated standard errors, v

or var for estimated variances, cv for estimated coefficients of variation)  and uppercase 
letters for their  full-population analogues.   Students may find it convenient to adapt this

practice in their homework, especially if they find “hats” are difficult to type.  Here, we follow

the text. 

What is often called the “standard error of y6” (but not by Professor Lohr), we will call the

standard deviation of y6, 

SD(y6) = ¾V(y6), 

which should not be confused with the population standard deviation, S.  The text fails to

define the  coefficient of variation  for y6,  although it  does  define the  estimated coefficient

of variation.  The coefficient of variation for y6 is 

 UCV(y6) = SD(y6) & y6 .  

UNotice that in estimating CV(y6) (in equation (2.11)  on page 33)  both  SD(y6) and  y6   are

replaced by estimates. The square of CV(y6) is called the relative variance of y6:

 UrelV(y6) = V(y6) & y6  = [CV(y6)] .2 2

 

The terms  “standard  error of  y6,” “coefficient of  variation of  y6,”  etc.  can be applied  to

estimators other than the  sample mean.    One of the  homework assignments will be to
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                                                         ̂ define these terms for an estimator t of t. 

Root Mean Squared Errors and Related Terms

An important  concept  is the root mean squared error  of  an estimator.  This is because

many estimators in survey sampling are not unbiased.   The root mean squared error of

                       ^                   
an estimator t for t is 

              ̂               ̂       
RSME(t) = ¾MSE(t).   

                                                                                                       ^     ^
Related concepts are the estimated root mean squared error, RMSE(t),  the relative root 

mean squared error, 

     ^                ^
 relRMSE(t) = RMSE(t) & t, 

                                                                                              ̂     ̂       ^     ^ ^             
 and the estimated relative root mean squared error, relRMSE(t) = RMSE(t)/t.   The squares                                                              

of the relRMSE and the estimated relRMSE are the relative mean squared error (relMSE)

and estimated relative mean squared error, respectively. 

           ^                                                                                       ^When t is unbiased, the estimated root mean squared error of t is its standard error  (as

defined in the text), and its relative root mean squared error is its  coefficient of variation.

The formulae discussed above apply to any estimator, not just estimators of totals.

The Expansion Estimator

                                                                                           ^The text is ambiguous  in Chapter  1  on the meaning  of  t.   Sometimes  it  is  a general 

U iestimator for t = 3 y .  At others it is the expansion estimator,

^
 S it = Ny6 = (N/n)3  y ,
                      

under simple random sampling.  
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U SIn these notes 3  and 3  are compact ways of expressing the sum over all elements in the

population and sample, respectively. 

The Variance for an Estimated Proportion

The text correct states the variance of an estimated proportion based on a simple random

 sample in equation (2.15) of page 35.  When N $50, which is usually the case  in practical

application, N/(N!1) . 1, and equation (2.15) has the useful approximation: 

    ^
 V(p) . (1 ! n/N) p(1 ! p) /n 

         =  (1 ! f) p(1 ! p) /n,                                                                                              (S1)

where f = n/N is called the sampling fraction under SRS.

We often will appear more concerned  with computing an estimator for variance (see

equation (2.16) in this context), rather than with the variance itself.  This is because the

latter most often cannot be directly measured in practice.  In the case of a proportion,

however, the variance formula can be used to create Wilson confidence intervals as we

will see next lesson.

Useful additional reading  –  Pages 423 to the middle of 428 in Appendix B of Sampling:

Design and Analysis, up until the words “close but not equal.”  
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On Asymptotics in Survey Sampling

Cochran Consistency

Suppose we wanted to estimate the soybean yield (bushels per acres) from three farms

by selecting one of those farms at random giving each farm an equal probability of

selection.  The situation is described in the following table:

Farm  Harvested acres Bushels Bushels per acre

 1 100   3,000 30

 2 200   7,000 35

 3 300 12,000 40

The soybean yield is 36.667 bushels per acre; that is (3,000 + 7,000 + 12,000)/(100 + 200

+ 300).   The expected value of our estimator, however, is 35 bushels per acre, since it can

be 30, 35, or 40 with equal probability.  Our estimator is biased!  

y U i x U iLet t  = 3 y , t  = 3 x , and x6 the estimator for the population mean  of the  x-values.   In

                                                                                                                                ^
y xgeneral,  we estimate  a ratio  like B = t /t  under  simple  random sampling  with B = y6/x6,

which need not be unbiased.   We  will  learn more  about ratios and  ratio  estimators in

Lesson 4.   For now,  it is easy to see that had we chosen the entire target population as

                                 ^
as the sample, then B would equal B. 

 
Cochran (1983) calls an estimation strategy – the combination of a sampling plan and an

    
                 ^                        ^
estimator, t, “consistent” if t = t when n,  the sample size, equals  N,  the population size.
 
We will refer to this property as Cochran consistency.

The problem with Cochran consistency is that it does not behave as we wish consistency

                                    ^                                                                                                     ^
would.  An estimator, t,  is thought to be  consistent  if the absolute difference between t

and  t  is small when n is very large.   Some government agencies to base their statistics

on  purposive samples  of what  they  judge to be  the n  biggest  units  in the  population.
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S S SIf  that  judgment  were   based on y values,  both  ny6  and  Ny6 ,  where y6  is  the simple

i y Uaverage of the  y   in the sample,  would be Cochran consistent estimators  for t   =  Ny6 .

When N is several times the size of n, one of the estimators (and sometimes both)  has to

be doing a terrible job even when  n  itself is very large.    

Design Consistency

                                                                                                       
             ^

A more useful definition of consistency relates to the accuracy of t as both n and N grow

arbitrarily  large  (as large  as one  can  think  and  then  maybe  larger).    Many  survey
   
statisticians  resisted developing an asymptotic  (large-sample)  theory  for two  reasons:

  
Target populations in survey sampling are inherently finite, so it seems unreasonable to

develop a theory based on their sizes growing arbitrarily large.  Moreover, many estimands

in survey samples are totals, like t, which themselves would grow arbitrarily large along with

the population.

The real issue in asymptotics, however, is the size of the sample, not the population.

Sample sizes in survey sampling are usually very large, often in the hundreds and

thousands.  They are typically much larger than in other branches of statistics.  The goal

of asymptotic theory is not to study the effects of arbitrarily large samples sizes per se, but

the impact of a realized large sample sizes using an idealized (i.e., mathematically

simplified) framework.  Asymptotic theory is actually more relevant in survey sampling than

most other branches of statistics.  

As for a total, like t, as long as it is positive, as is typically the case in survey sampling, we

                                                                                                                       ^                ^
can concentrate on its relative error.   The relative error of an estimator t for t  is  RE(t) =

     ^                                                    ^
(t ! t)/t.   When the relative error of  t  tends  to zero  (in probability)  as the  sample  and
                                                      ^ 

population grow  arbitrarily  large,  t  is said to be  design  (or randomization)  consistent.
  

Actually, it is not the estimator that is design consistent, but the estimation strategy.  That

design consistency  is  not  just  a  property  of  the  estimator,  but  the  estimator  and  the

sampling design taken together, is one reason the prefix “design” is used.  
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Asymptotic theory is mathematically difficult, so much so that it is usually ignored is survey-

sampling courses even though  it has a pivotal role  in modern theory.   We offer here  a

stripped-down version of the necessary asymptotic theory.    For a rigorous treatment of

asymptotics in statistics,  see Fuller (1976).  For a fuller treatment of asymptotics in survey

sampling, see Isaki and Fuller (1981).  For our purposes,  an estimation strategy for  t  is
                                                                                       ^
design consistent if  the  relative mean squared error of t tends to zero as the sample and

population grow arbitrarily large.
 

We have been vague on how the sample and population grow arbitrarily large.  For simple

1 2 3 random sampling,  we can think as a sequence of populations,  U  d  U   d  U  d ...  with

1 2 3 rsample sizes N , N  = 2N, N  = 3N, ...  From each population,  U , a fresh simple random

r 1sample of size n  = rn  is selected.  The relative mean squared error (and relative variance)

r Ur rof the sample mean, y6 , as an estimator of the population mean, y6 , of U  is 

r r r r r   Ur r 1  UrrelMSE(y6 )  =  [(1 ! n /N )S /n ] / y6  =  [(1 ! f)S /(rn )] / y6 ,                                          2 2 2 2

 r                                  N
 

r r i  Ur 1 1 r rwhere S  = [1/(N !1)] 3 (y  ! y6 ) ,  f = n /N  = n /N  for all r.   As r grows arbitrarily large,2 2

Urso does the sample and population size.  As r grows arbitrarily large, if y6  in the denom-

 4 rinator converges to a positive value, say y6 , and  S  converges to something finite,  say2

4 rsay  S , then relMSE(y6 ) converges to zero.   Thus, y6 is design consistent  under simple2

                                                        ^
yrandom sampling.  The estimator,  t  = Ny6,  which has the same relMSE as y6,  is likewise

design consistent under simple random sampling. 

r rAlthough it is technically r, N , and n  that grow arbitrarily large  in asymptotic theory,  we

conveniently,  if sloppily,  will speak of  n and N  getting  large  in the  remainder  of  this

discussion.   After all,  it is size of the actual sample, the real n,  that matters in practice.

One useful way of expressing this is to say that  n is  sufficiently large that the results of

asymptotic theory have practical relevance.   



9

U rAnother technical point: One needs quantities  like  y6  and S   to converge  to finite values,2

4 4y6   and  S ,  as  r  grows  arbitrarily  large  for  the  asymptotic  theory  to  work.  Although2

  
a clever statistician can think of sequence of populations where such  convergences don’t

take place, we will always assume they do in these notes.  

Some Examples

                                                                   ^
U ULet us return briefly to the ratio estimator, B =  y6/ x6, for B = y6 /x6 .  As  n grows  arbitrarily

large, both the mean squared errors of y6 and x6 tend toward zero.   Consequently, as long
                                                                                                                              ^

Uas the limit of x6  is positive,  it seems reasonable that the mean squared error of B, which

                                                                                             ^
is  the  average of the  square of the  difference between  B  and  B  across  all possible

samples, also tends toward zero.  This is not a formal proof  (Lesson 4  hits closer to the

mark), but it does give us a feel for what will happen with a sufficiently large sample.  

We will see in the next lesson that s  (defined in equation (2.8) on page 33) is an unbiased2

estimator for the finite population variance, S  (defined in equation (2.5) on page 29) under2

simple random sampling.  Rarely, however, is s an unbiased estimator for S.  To see why

the expected value of the square root of a random variable is not necessarily the square

root of its expectation, consider the random variable, X, in the following table:

 x P(X = x) q = ¾x 

 1      ½      1 
 4         ½     2

       !!!!!!                       !!!!!!
    E(X) = 2.5                   E(Q) = 1.5

X takes on the value 1 with probability ½, and the value 4 with probability ½.   Its expected

value is 2.5 ([1 x ½] + [4 x ½]) .   The random variable Q = ¾X takes on the value 1 with

probability ½ (when X =1) and 2 with probability ½ (when x = 2).  Clearly, E(Q) = 1.5 is not

equal to ¾E(X) = ¾2.5 .1.58.
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Although s is not typically an unbiased estimator for S, it is design consistent under simple

random sampling, as we shall soon see.

Asymptotic Orders

Equation (2.7) on page 32 shows how the variance of the estimator y6 relates to the finite

population variance, S , while equation (2.9) on page 33 does the same for the estimator2

 
                                                                   ^ 

of V(y6) and s .   We would like to say that V(y6) is a consistent estimator for V(y6),  but we2

                                                                ^             ^          ^                    
have a problem with the relative error of V(y6), RE{V(y6)} = [V(y6) ! V(y6)]/V(y6).  As the sample
                                                                                           ^
size grows arbitrarily large, V(y6) in the denominator of RE{V(y6)} tends towards zero.  How

can we tell if the numerator is tending towards zero any faster? 

 
The answer is with asymptotic orders.  First, note that, for any n,  V(y6) = (1 ! f)S /n is a2

constant, even though y6 is a random variable.  We say that as n grows arbitrarily large, a

constant, c, is O(1/n) ! of asymptotic order 1/n –  if nc converges to a fixed finite limit,

nwhich can be zero.  More precisely put, c is a sequence of constants, {c }.  The value of

n nc  can vary as n grows, but nc  converges to a fixed finite limit.  

We can flesh this out a bit with  the constant  V(y6).    Observe  that  nV(y6)  converges   to

4(1 ! f)S , a finite value.  Thus, V(y6) is O(1/n), which is intuitively appealing since  it can be2

expressed as a positive value, (1 ! f)S , times 1/n.  2

One can replace n in the definition O(1/n) by any power of n.  In practice, we usually see

constants that are O(1/n), O(1/¾n), O(1/n ), O(1/n ), or O(1/n ) = O(1).    We can also see2 3/2 0

constants that are O(n), O(n ), or O(n ).   For example V(y6) =  (1 ! f)S /n is O(1/n) while2 3/2 2

41/V(y6) is O(n) as long as S  converges to a positive number.  This effectively adds the2

iweak assumption that not all the y  have the same value (so S  is not zero). Of course, if2

iall the y  did have the same value, there wouldn’t be much need to draw a sample. 

Many random variables are conceptually unbounded.   A normally-distributed random

variable, for example, has a small probability of being greater than any number you can

imagine.  For that reason, statisticians have developed the concept of a probability limit.
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The formal definition of a probability limit is are beyond the scope of this course.   For our

Ppurposes, a random variable, X, is O (1/n)  –  of asymptotic order 1/n in probability – when

n{E(X )}  converges to a fixed finite limit.  Notice that X is first squared before  taking its2 1/2

                                                           ^                                              
expected value.  To see why, let  X =  t ! t.  Since E(X) = 0, nE(X) = 0 for all positive n, yet

pit makes little intuitive sense to think of the  random variable X as  O (1/n).  On the other
                                    ̂             
hand, {E(X )/n}  = {E[(t ! t) ]/n}  = {N (1 ! f)S /n }  = {(1 ! f)S /f } .  So {E(X )}  is O(¾n),2 1/2  2 1/2 2 2 2 1/2 2 2 1/2 2 ½

                                                                                ̂
pand  X is O (¾n),  which makes some sense since t and t grow with n, and the difference,

^
  t! t, which averages to zero across all samples, tends to get larger in absolute terms for

                                                                      ̂
a particular selected sample along with {E[(t ! t) ]} .2 1/2

pIf a random variable X is O (1/n), then one can show that E(X) is also O(1/n).   This does

not contradict what was said above.   If nE(X) = 0 for all n, nE(X) does converge to a fixed

finite limit, 0.   

P 4The sample mean y6 is easily shown to be O (1) (recalling that we have assumed y6  is

U U Pfinite).  Its relative error, RE(y6) = (y6 ! y6 )]/y6 , is O (1/¾n).  This is because the relative

mean squared error of y6, which is this unbiased random variable’s relative variance,

UE{[RE(y6) ]}=  (1 ! f)S /(ny6 )  is O(1/n).   2 2 2

PMost, but not all, of the estimation strategies we will study in this course will have O (1/¾n)

relative errors.  Under simple random sampling and appropriate mild restrictions  on the

                                                                                                 ^               ^
population values, this includes not only y6 (and x6), but also B, s , and V(y6).  2

We said before that any random variable with a relative mean squared error converging

to zero as n grows arbitrarily large is design consistent.  It is consequently  easy to see that

Pany random variable with an O (1/¾n)  relative error  (and thus an O(1/n)  relative mean

squared error)  is design consistent.
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The following rules will prove helpful in calculations involving asymptotic orders. 

If x is O(n ) and y is O(n ) with a > b (a and b can be negative),  a b

x + y is O(n ),   which can be written as x + y . x;   x is said to dominate y.     a

xy is O(n ).a+b

x  is O(n ).c ac

Morever, if a < 0  

(1 + x)  = 1 + cx + [c(c!1)/2]x  + q,  where q is O(n ).                                                  (S2)c 2 3a

            = 1 + h,  where h is O(n )a

            . 1.

This means in the following examples: 

12/n + 50/n   is  O(1/n).    2

(12/n + 50/n )(2/n  + 45/n)  is  O(1/n ).2 1/2 3/2

(12/n + 50/n )   is  O(1/n ).2 ½ 1/2

[1 + 12/n + 50/n ]  = 1 + 6/n + q, where q is O(1/n )2 ½ 2

                                 = 1 + h, where h is O(1/n).   

PAll the above apply when O(.) is replaced by O (.).  
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Showing that s is Biased, Yet Consistent

Let us assume that s  is unbiased under simple random sampling and that its relative error2

pis O (1/¾n).   What can we say about s?  

We can rewrite s  as s  = S  + (s  ! S ) = S {1 + (s  ! S )/S }.   Consequently, invoking2 2 2 2 2 2 2 2 2

equation (S2),  

  s =  S{1 + (s  ! S )/S }     2 2 2 1/2

p    =  S{1 + ½ (s  ! S )/S  ! c[(s  ! S )/S ] } + q, where q is O (1/n )                         (S3)2 2 2 2 2 2 2 3/2

   

From which we can conclude

 E(s) = S{1 + 0 ! c relV(s )} + E(q),  where E(q) = O(1/n )2 3/2

        = S + h,  where h = O(1/n).

That is to say, s has a negative bias as n grows large, but that bias itself tends towards

zero as the sample grows.  We say that s is asymptotically unbiased or nearly unbiased

for sufficiently large n.   

Furthermore, we can deduce from equation (S3), 

 p(s ! S)/S = ½ (s  ! S )/S  + p,  where p is  O (1/n) , and2 2 2

 E{[(s ! S)/S] } =¼ E{[(s  ! S )/S ] } + w, 2 2 2 2 2

where E{p(s  ! S )/S } is the dominant term in w = O(1/n ).2 2 2 3/2

The relative mean squared error of s is thus asymptotically ¼ of the relative mean squared

Pof s .  Put another way, s is design consistent with a O (1/¾n) relative error.  2
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Homework for Lesson 2

How do the variance, relative variance,  standard deviation,  relative standard deviation,

mean squared error, relative mean squared error, root mean squared error, and relative

                                                                 ^                         ̂     ^
Uroot mean squared error of an estimator t for a total and 6y  = t/N for a mean compare?  

Look at the table in the middle of Page 428 of Sampling: Design and Analysis.   Treat the

four rows of numbers as the four observations in the population.   

                                                                ̂                                                                       ^
a.  With all the SRS of size 1, compute B.  What is the bias and mean squared error of B?

b.  Do the same with all SRS of size 2 (there are six such samples).

c.  Do the same with all SRS of size 3 (there are fours such samples)

d.  Do the same with all SRS of size 4. 
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Lesson 3: Simple Probability Samples II

Comments on  Sections 2.4 to 2.8 of Sampling: Design and Analysis

Two-Sided Wald Confidence Intervals

The observant student will notice that the book only discusses two-sided confidence

intervals.  Often one sees one-sided confidence intervals for a population mean based on

a simple random sample of the form 

" [y6 ! z SE(y6), 4)   or 

" ( ! 4,  y6 + z SE(y6)], 

iwhere the !4 can be replaced by 0 when all y  $ 0 and y6 > 0. 

UFor 100(1 ! ")% of samples to produce  y6 such that  y6  is within a one-sided confidence

interval often requires either a much larger sample than the two-sided interval in the book,

"/2 "/2 [y6 ! z SE(y6), y6 + z SE(y6)],                                                                                        (S4)

i or a much more symmetric distribution of y  values than we usually see in survey sampling.

  

The two-sided interval in equation (S4) is properly called a two-sided Wald confidence

interval.  The large-sample theory behind the Wald interval applies to all unbiased

estimation strategies, not just y6 under simple random sampling.   

A better interval that the one in equation (S4) would replace SE(y6) by the actually standard

deviation of y6.   Doing that speeds up the asymptotics considerably; that is to say, makes

the confidence interval effective with a much smaller sample.    Of course, we do not know

i Uthe actually standard deviation of y6.   Nevertheless, when y  is a 0/1 variable, so that y6  is

the proportion, p,  we can do something.  We can use Var(y6) = (1 ! f) [p(1 ! p)]/n from2

equation (S1) to make a better two-side confidence interval than the one equation (S4).

A supplemental note on these Wilson confidence intervals begins on page 19. 
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Confidence intervals are constructed after a random sample has been drawn.  When

determining what sample size is needed before the sample is drawn, p, which can only be

guessed, is the relevant value.   Sample-size determinations do not need a Wilson-like

adjustment.  It is prudent to be conservative when determining sample sizes, since once

a sample is drawn, the statistician is stuck with it.  Consequently, it makes sense to set S ,2

which virtually equals p(1 ! p) when N > 50, at its maximum possible value, p = ½, so that

S .p(1 !p) = 1/4.2 

Systematic Sampling 

Suppose we have a target population with 48 elements, and we want a systematic sample

U iof size  5 to estimate  t = 3 y .  The alert student  will quickly observe that  N (48)  is not

divisible by n (5).   A  simple  solution  augments  the  frame population  by  two dummy

imembers, elements 49 and 50 – with y  set to 0 for both.   In general, suppose n goes into

N k times with remainder r > 0; that is,  N = nk + r,   where  0 < r < n.   We then add n ! r

Fdummy observations  to the frame.   Let  N   denote  the  size  of the  augmented frame

Fpopulation (in our example, 50).  Mathematically,  N  = N + (n !r) = n(k + 1).  Our estimator
      ^
 SYS F S i F t  is t  = (N /n) 3  y .   In our example, N /n = 50/5 = 10.    

 
                                                    ^      ^                  ^              ^                       

U U  SYS  SYS UOne can also estimate 6y  with  6y  =  t /N.  Both t   and  6y   are unbiased  under  the

randomization theory described in Section 2.7, but neither is unbiased  under the  model-

                     ̂                                                   ^
 SYS M  SYS Mbased theory  in Section 2.8.   If t  were model unbiased, then E (t ) would equal E (t).

                                         ^
M  SYSWhen the sample includes one of the two  dummy elements,  E ( t )  is  10(4:) = 40:.

                                                                                                  ^
M  SYSWhen  the sample does not contain one of the dummies,  E ( t )   is 10(5:) = 50:.  By

         

Mcontrast,  E (t)  is always   48:.    It is interesting to note  that the  model expectation  of
 
     ^ 

M  SYSE ( t )  averaged  over  all  possible  samples  is indeed  48:.   Model-based analysis,
   

however, keys on the  particular sample  drawn and views the average across all samples

as irrelevant.

Unlike the Sampling: Design and Analysis, we do not use upper case letters to describe

random variables under the model.
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               ^
SYSAlthough t  under systematic sampling is unbiased, it may not be design consistent.  To

see why suppose we have a population containing  married couples, and we want to

estimate the average body weight of an individual in that population.  There are 1,000

couples, and 2,000 individuals in the  population.  We first sort the couples in alphabetical

order by the husband’s last name and then list each wife before her husband.   If one

wanted to select a systematic sample of 100 observations, the  sampling interval would be

2,000/100 = 20.  If the random integer chosen between 1 and 20 for this purpose were

odd, then the first individual selected for the sample would be a woman, as would every

subsequently sampled individual.  If the random integer were even, the entire sample

would be male.  The estimator of average individual body weight would not be very good.

If the sample contained all men, it would be too high.  If the sample contained all women,

it would be too low.  Moreover, if we let the sample and population double (to 4,000) and

then triple ad infinitum using the same sampling scheme, the estimator’s relative error

would not tend toward zero, because the sample would always contain either all males or

all females. 

We could fix this problem by assuming that there are no patterns of y-values in the list from

which the systematic sample is selected.  This is tantamount to assuming a model about

the data.  Many argue that  randomization theory alone should be used what drawing

inferences from surveys.  “The problem with assuming models,” they argue, “is that models

often fail.” 

UModel-based advocates point out that even the assumption that y6  and S  converge to2

finite constants, needed for establishing design consistency under simple random

sampling, are model assumptions.   That may be true, but those assumptions are very mild

ones.  By contrast, the reason a statistician uses systematic sampling is because (s)he

believes something about the way the list has been ordered, often that elements next to

each on the list tend to have similar y-values.  Even if neighboring elements don’t have

similar y-values, the reasoning goes, the expansion estimator under systematic sampling

when N is divisible by n should be just as good as (have no more variance than) the

expansion estimator under simple random sampling.   
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The point being made here is that the use of systematic sampling from a ordered list

requires an assumption about the y-values on the list, which, however reasonable, renders

the estimation strategy design inconsistent.  The use of systematic sampling can be made

design consistent by randomly ordering the list from which the sample is selected.  If this

randomization occurs, and N is divisible by n, then systematic sampling is just another way

of drawing a simple random sample.  

iThe Random Variable Z  

iThe Random variable Z , introduced on page 44 of the Sampling: Design and Analysis, is

the heart of randomization-based sample-survey theory.   It is more common to see this

isample-inclusion indicator denoted  “ I ,” but we will follow the text here.

Useful additional reading  – The remainder of Appendix B in the Sampling: Design and

Analysis.    



19

                    The Wilson Confidence Intervals for a Proportion

Let

U i ip be a proportion ( p = 3 y /N, where y  is a 0/1 variable), and
^                                                                                     ^ 

S i p, its estimator base on a simple random sample ( p = 3 y /n). 
 

 
                                                                         ^A 100(1 ! ")% Wilson confidence interval for p contains all p values such that 

             ^             *p ! p|   
"/2))))))))))))))))   #  z      {(1 ! f)p(1 ! p)/n}    1/2

                                               

Consequently,

 ^
"/2(p ! p)  # z (1 ! f)p(1 ! p)/n   or2 2

^       ^
 "/2 "/2p  !2p p + p  # p z (1 ! f)/n ! p z (1 ! f)/n,  which implies2 2 2 2 2

                                      
                                        ^                              ̂

"/2 "/2[1 + z (1 ! f)/n]p  ! [2p + z (1 ! f)/n]p + p  # 0.  2 2 2 2

The above is a polynomial in p.  

 Since  ap  + bp + c = 0   Y  p = [ ! b/2 ± {(b /4) ! ac} ] /a,2 2 ½

"/2where  a = 1 + z (1 ! f)/n2

                         ^
"/2   b = ! [2p + z (1 ! f) /n]2

                   ^            c =  p ,  2

the extreme points of the inequality are (after some rearranging)

            ^                                                ^       ^
"/2 "/2 "/2          p + z (1 ! f)/(2n) ± z { (1 ! f)p(1 ! p)/n + z (1 ! f) /(4n )}2 2 2 2 ½ 

  p  =   )))))))))))))))))))))))))))))))))))))))))))))))))))                      
"/2                                          1 + z (1 ! f)/n2

                                           ^Adding and subtracting p from the right hand side, we get the Wilson confidence 

interval
 

                       ^                                        ^        ^ 

"/2 "/2 "/2      ^      (½ ! p) z (1 ! f)/n ± z {(1 ! f)p(1 ! p)/n + z (1 ! f) /(4n )}2 2 2 2 ½ 

  p = p +  )))))))))))))))))))))))))))))))))))))))))))))))))))    .                   (S5)        
"/2                                              1 + z (1 ! f)/n2
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                                                                                                             ^                    ̂          

Observe  that  the center of the  Wilson confidence interval for  p  is  p only when  p  =  ½;
 

                                                                           ^         ^                                               ^  otherwise, it is somewhere between ½ and p when  p > ½  or somewhere between p and
             ^ 

½ when p < ½. 

Observe further that 

          ^
"/2   "/2   when p = 0, the confidence interval is [0, {z (1 ! f) / n}/{1 +  z (1 ! f) / n}], and2 2

          ^
"/2  when p = 1, the confidence interval is [1/{1 +  z (1 ! f) / n}, 1].2

This contrasts with a two-sided Wald confidence interval, 

  
       ^                     ^        ^

"/2p = p  ± z {(1 ! f)p(1 ! p)/(n !1)}½ 

                             
  

                                                              ^           ^which collapses to a point when either p = 0 or p = 1.   That is to say, when the sample has

i ieither no y  equal to 1 or when all the sample y  values equal 1, a two-sided Wald confidence
                                                                                 ^                           ^interval with contain either the single point 0 (when p = 0) or 1 (when p = 1).  

                  ^When 0 <  p < 1, the Wilson confidence interval is approximately (dropping O(1/n ) terms)2

        ^              ̂                                        ^       ^
"/2 "/2p . p + (½ ! p) z (1 ! f)/n ± z {(1 ! f)p(1 ! p)/n} .2 ½ 

This is within an O(1/n ) term of the two-sided Wald confidence interval shifted to the right2

              ̂                                                                     ^ 
"/2 "/2by (½ ! p) z (1 ! f)/n  when p < ½ and to the left by (p ! ½) z (1 ! f)/n otherwise.  Note2 2

                                                                                                                                    ^that this shift is itself O(1/n), while the Wald confidence interval is O(1/¾n) when 0 < p < 1. 

Empirical studies confirm that Wilson confidence intervals work fairly well in practice even
            ^though p is far from normally distributed when p < .3 or p > .7.   

An Example

Suppose a city has 23,240 sources of drinking water.  The Mayor and City Council think

some fraction of the sources contain lead.   A perfect test will reveal whether a particular

source has lead, but the city only has the means to test 200 sources.   A simple random of

200 sources is selected, and 4 turn out to have lead.   What is our best guess of the number

of drinking-water sources with lead?  Can we determine a range within which we are 95%
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confident the actual proportion falls? 

In the absence of additional information, our best guess of the estimated fraction of

drinking-water sources having lead is 

p̂ = 4/200 = .02 = 2%, 

                                ^       ̂which translates to t =Np . 465 sources.

To compute 95% confidence intervals for the fraction of sources with lead, we can make

.975the following simplifications, f = n/N = 200/23,240 . 0, and z  . 2  (1 ! " = .95, " = .05,

1 ! "/2 = .975).  A two-sided Wald confidence interval is 

         ^            ^        ^
.975 p =  p  ± z {p(1 ! p)/(n!1)}1/2

 
   . 0.02  ±  2 {(0.02)(0.98)/199} . 0.02  ± 0.02   or  p 0 (0, 0.04), 1/2     

.975More appropriate  is the 95% Wilson interval.  Approximating 1 + z  (1!f)/n . 1 + 4/2002

by 1, the Wilson interval is approximately,  

      ^              ̂                                      ^        ^
.975 .975p . p + (½ ! p) z (1 ! f)/n ± z {(1 ! f)p(1 ! p)/n + z (1 ! f)/(4n )}2 2 2 ½ 

   .0.02 + 0.48(4)/200 ± 2{0.02(0.98)/200 + 1/200 }  . 0.03  ± 0.02   or p 0  (0. 01, 0.05).2 1/2

Our best estimate for p remain 2%, and for t roughly 465 sources.  The 95% Wilson

confidence interval, however, is asymmetric.  For p, it is between 1% and 5%.  For t, it is

between roughly 232 (1% of 23,240) and 1,162 (5% of 23,240).   

Homework for Lesson 3

Do Exercises 5 (histogram optional), 6, and 18 in section 2.10 (starting on p. 53) of

Sampling: Design and Analysis.   Whenever the text asks for a confidence interval for a

proportion, provide both the two-sided Wald and Wilson confidence intervals.   Redo

Exercise 6 with 3 children not overdue for vaccination. 



22

Lesson 4: Ratio and Regression Estimation

For the remainder of these  course notes  when  the  terms  “bias,”  “variance,” or  “mean

squared error”  are  unadorned  by a reference to a  model,  they  refer  to  design-based

properties.   

Comments on Chapter 3 of Sampling: Design and Analysis

Asymptotic Theory for the Ratio Estimator

y xThe text focuses on estimating B = t /t  based on a simple random sample and then using

y Uthat estimate to develop ratio estimators for  t   and  y .   The relative errors  for  all three

                           ^    ^   ^  ^        ^         ^        ^                                ̂    ^
y  x yr  x r Uestimators, B = t / t  , t  = t B, and 6y  = x6 B are the same: RE(B) = (B ! B)/B.   This is true

x Uwhether or not the sampling scheme is SRS because t  and x6  are constants. 

We will assume here that the estimation strategy and population are such that B is O(1) and

                                                            ̂                 ^
y y y x x x Pgreater than zero.  Moreover, both (t  ! t )/t  and (t  ! t )/t  are O (1/¾n).   This places very

mild restrictions on the population when the sample design is SRS.  

                           ^             ̂ ^            ^       ^   ^      ^                ̂         ^
y  x y x  x y y x x  xObserve that B ! B =  t / t  ! B = (t  ! Bt )/ t  = [(t  ! t ) ! B(t  ! t )]/ t .   Using equation (S3)

                                ^             ^
x x x x xand the equality, t  = t {1 + (t  ! t )/t }, 

 

     ̂                    ^
 x  x x x x1/ t  = (1/ t ){1 + (t  ! t )/t }  -1

                         ^
 x x x x P      = (1/t ){1 ! (t  ! t )/t  + g},   where g = O (1/n).

                             ^
Plugging this into B ! B, we have 

     ^                     ^                ̂                ^ 
x y y x x x x xB ! B = (1/t ) [(t  ! t ) ! B(t  ! t )]{1 ! (t  ! t )/t  + g}
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                        ̂               ^                
x y y x x          = (1/t ) [(t  ! t ) ! B(t  ! t )]

                          ̂              ^          ^
x y y x x x x x          ! (1/t ) [(t  ! t ) ! B(t  ! t )] (t  ! t )/t                                                                         (S6)

 
                         ̂              ^                

 x y y x x         + (1/t ) [(t  ! t ) ! B(t  ! t )] g.

p p pThe first term of (S6) is O (1/¾n), the second O (1/n), and the third O (1/n ).    We assume3/2

the sample is sufficiently large that we can ignore the third term in further discussions. 

                    ^
The bias of  B  is approximately the sum of the expectations of the  first  and  second terms

terms in equation (S6).  The expectation of the first is zero.  The expectation of the second

                                              ̂ ^     ^ 
y x xis also zero when B = Cov(t , t )/V(t ).   Unfortunately, we cannot assume that this equality

holds,  even approximately,  without assuming a model  for the data.    Consequently,  we
                                  ^

Pconclude that the bias of B is O(1/n) since the second term in equation (S6) is O (1/n).
  

We can divide the left and right hand sides of equation (S6) by B to get 

  
             ^                 ^                  ̂                   ^                ^           ^

y y y x x x y y y x x x x x x(B ! B)/B . [(t  ! t )/t   ! (t  ! t )/t ]  !  [(t  ! t )/t   ! (t  ! t )/t ] (t  ! t )/t .

  

                                                         ^
The relative mean squared error of B is then 

 

         ^                         ^                ^
y y y x x xE{[(B ! B)/B] }  . E{[(t  ! t )/t   ! (t  ! t )/t ] }2 2

                                      ^                ^                ̂ 
y y y x x x x x x                        ! 2E{[(t  ! t )/t   ! (t  ! t )/t ] (t  ! t )/t }                                                   2 

                                      ^                ^               ^
y y y x x x x x x                        + E{[(t  ! t )/t   ! (t  ! t )/t ] [(t  ! t )/t ] }.2 2

The first term on the right-hand size is O(1/n).  The other two are  O(1/n )  and  O(1/n ),3/2 2

                                                                                             ^respectively.  The first term dominates, and the relMSE of B is O(1/n).

                                                                     ^ 
Since B is O(1), the mean squared error of B is also O(1/n).   Recall that the mean squared

error of an estimator is equal to its variance plus the square of its bias  (page 28).  The bias
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     ^            
of B, like its relative bias,  is O(1/n).   The square of its bias is therefore O(1/n ).  The rela-2

                    ^                                                     ^                   ^
tive contribution of the bias of B to  its mean squared error is  [E(B ! B)] /MSE(B),  which2

tends to zero as n grows arbitrarily large.   That is why the (asymptotic) mean squared error

     ^of B is sometimes referred to as its variance.

                                                                                                         ^
The interested student can verify that the mean squared error of B under simple random

sampling is 

    
         ^            !

UE[(B ! B) ] = (1/x6 )V(d) + O(1/n ), 2 2 3/2

                                                                  ^   ̂
i i iwhere d  = y  ! Bx .  Moreover, the bias of V(B) in equation (3.7) on page 58 as an estimator

                                                ^
for the mean squared error of B is O(1/n ).3/2

Asymptotic theory for the regression estimator will wait until Lesson 14.

The Model for the Ratio Estimator

iSimilar to equation (3.16) of the text, suppose the y  were random variables such that 

i i iy  = $x  + , ,                                                                                                                     (S7)

M i i iwhere E (,  | x , Z ) = 0.  It is not always enough to assume, as the text and many other

M i isources do, that E (, ) = 0.  We often need the ,  to have mean zero irrespective of, 1, the

i ivalue of x  and,  2,  whether or not i is in the sample (i.e., Z  =1).     

i iWhen the distribution of ,  given x  is the same for both elements in the sample and not in

the sample, we say the sample design is ignorable or noninformative.   Simple random

M i i i isampling is always ignorable, but E (,  | x ) is not always zero when the y  and x  can be

ifitted by the model in equation (S7).   For example, suppose x  is a random variable with

i i i i i i imean 1, and y  = 1 + x  for all i.  One can write y  = 2x  + , , where ,  = 1 ! x .  The

i M i M i iunconditional expectation of , , E (, ), is zero, but the conditional expectation, E (,  | x ), is

not.
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          ^                            ^ 
y S i x S i When t  = [N/n]3 y , and t  = [N/n]3 x , regardless of how the sample was drawn,  

 ^
S i  S i B ! $   =  3 y /3 x  !  $

S i i  S i           =  3 (x $ + , ) /3 x   !  $

S i  S i S i  S i           =  3 (x $)/3 x   +  3 , /3 x   !  $

S i S i            =  3 , / 3  x .

Suppressing the conditioning for notational convenience, as we will often do here, it is easy

Mto see that E (B) = $.

iNotice that nothing had to be assumed about the variance of the ,  to establish the model

                               ̂                                                          ^
unbiasedness of B.   Determining the model variance of B is another matter.  For that, we

i i M i i i iassume that the ,  are uncorrelated conditioned on the Z   and that V (,  | x , Z ) = F , where2

i i i i iF  may be a function of  x   but not  Z .   In the text,  F   is proportional to x ,  but we do not2 2

necessarily assume that proportionality here.   

Again, suppressing conditioning for notational convenience, 

  
          ^          ^

M MV (B)  =  E [(B ! $) ]     2

M S i  S i           =  E [(3 , /3  x ) ]    2

S M  i   S i           =  3 E (, ) / (3  x )2 2

S i  S i           =  3 F / (3  x )                                                                                                       (S8)2 2

S i           =  [1/(nx6 )] 3 F /n.  2 2

                                                                                                    ^                            ^
The problem with our results on the model bias and variance of B is that they treat B as an

estimator for the model parameter, $,  rather than  the  finite-population target, B.   Using

parallel arguments to those above, we can show that B is also a model-unbiased estimator
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M U U ifor $ with model variance equal to Var (B) = [1/(Nx6 ) (3 F /N).  When N >> n, and both 2 2

U U ix6  and 3 F /N converge to positive constants when n grows arbitrarily large, the model 2 2

variance of B is effectively zero and the distinction between B and $ can be ignored.

When B is effectively equal to $, one can estimate the model variance in equation (S8) with

 
    ^    ̂                               ^

M S i iV (B) = [1/(nx6 )] 3 (y  ! Bx) /(n ! 1),                                                                            (S9) 2 2

                                                                                                                                         ^ 

i i iIdeally, F  would be estimated by (y  ! $x) , but since $ is unknown, we estimate it with B,2 2

and punish ourselves for that by replacing the n in the denominator by n!1.      The inter-

ested student can verify that under mild conditions the bias in this estimator for the model

variance is O(1/n ) when N >> n.2

                                                                                                                 ̂                        
Notice that the estimator for the randomization mean squared error of B in equation (3.7)

on page 68 is very similar.   It contains a finite-population-correction term, 1 ! n/N, that we

Uhave assumed is effectively 1.   It also contains x6  in the denominator instead of x6 .  The 2  2

 
                                                                                                 ^   ^

Minterested student can again verify that the bias from using  V (B) to estimate the  design
                                                ̂                 
design mean squared error of B under SRS is O(1/n ) when  N >>n.   This is no worse than3/2

 

 ^  ^
V(B) in equation (3.7).

 
                                                                                        ^     

It is important to remember that the model variance of  B depends on the  actual  sample

drawn, and is not the average across all possible samples.  The design does not have to

                                                  ^    ̂                                                                           ^
Mbe SRS.  Nevertheless, since V (B) is a good estimator for the  model variance of  B  and

                          ^   ̂                                                                          ^
no worse than V(B) at estimating the design mean squared error of B  under simple random

sampling, it seems the preferable choice in practice for the estimation strategy.  Empirical

                                                  ^   ^
Minvestigations have shown that V (B) tends to produce two-sided Wald confidence intervals

                                                             ^ ^
with better coverage properties than V(B).    

 
                             ^ 

i i iThe term e  = y  ! Bx  is called the sample residual for i under the model in equation (S7).

Särndal, Swensson, and Wretman (1989) advises that the sample variance of these sample
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e U  eresiduals, s , in equations (3.7), (3.8) and (3.9) of the text be replaced by (x6 / x6) s .  The2 2 2

results they dubbed  the weighted-residual variance estimators.   In particular, 

 ^    ^
W eV (B) = (1 ! f)s /(nx6 ),                                                                                                 (S10)2  2

  ̂   ^
W yr U  eV (t ) = N (1 ! f) (x6 / x6) s /n, and                                                                                 (S11)2 2 2

  ̂   ^
W r U  eV (y6 ) =(1 ! f) (x6 / x6) s /n.                                                                                             (S12)2 2

Under the model, the text develops a better finite-population-correction factor than 1 ! f, but

i i iit requires an assumption about the sizes of the  F ; in particular, that F  % x .  The fpc factor2 2

  Uis 1 ! f(x6 / x6 ).  See equation (3.17) on page 83.  In principle,   after making an  assumption

iabout the relative sizes of the F , one can adjust the variance estimators is equations (S10),2

(S11), and (S12) so that they are  exactly model unbiased.  This can be done without

sacrificing their large-sample design-based properties. 

                   ^     ^  ^
y  xRecall that  B = t / t   did not have to be based  on a  simple random sample to be  model

                                                                                                                 ^
unbiased.  It is reassuring, however,  that,  even if the model in equation (S7)  fails,   B  is

design consistent  when the sample is  SRS.  The  term  “model-assisted (design-based)

survey sampling” is often used to describe  the approach  that considers both  the model

and  design-based properties  of an estimation strategy.  Invoking a model allows us to draw

inference about the data in  the sample actually drawn without pretending it is an average

sample.   Design consistency provides protection against model failure.  The variance

estimators in equations (S9), (S10), and (S11) are good when the model is correct and not

bad when it fails as long as the sample is sufficiently large.

An exploration into the model-based properties of the regression estimator  will wait  until

Lesson 14.   Until then,  accept  without  further  explanation  that  the  weighted-residual

                                    ^
regvariance estimator for y6  is

 

  ̂   ^
W reg S i i S i iV (y6 ) =(1 ! f) [ 3 (ge )  ! (3 ge ) /n]/[n(n !1)]                                                            (S13)2 2

i U i  S j i  Uwhere g  = {1 + n(x6 ! x6)(x  ! x6) /3  (x  ! x6) }, and e  is defined on page 75.  When x6 = x6 ,2

                                    ^    ^                           ^  ^                             
i W reg regg is 1 for all i, and V (y6 ) collapses into V(y6 ).
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Table of Large-Sample Results
(excluding the regression estimator)

Parameters, Estimators, Assumptions

N is the size of U; n is the size of S; f = n/N > 0; Sample design is SRS.

y U i x U i y  x t  = 3 y ;   t  = 3 x ;   B = t / t ; 

U y 4y6  = t /N converges to y6  > 0 as n and N grow arbitrarily large; 

U x 4x6  = t /N converges to x6  > 0 as n and N grow arbitrarily large; 

y U i U y,4S  = 3 (y  !  y6 ) /(N !1) converges to S  > 0 as n and N grow arbitrarily large; 2 2 2

x U i U x,4S  = 3 (x  ! x6 ) /(N !1) converges to S  > 0 as n and N grow arbitrarily large; 2 2 2

     ^                       ^                        ^    ^  ^    ̂      ^     
 y S i x S i y  x yr xt  = (N/n)3 y ;  t  = (N/n) 3 x ; B = t / t ; t  = t B

        ^ 
S i S i r Uy6 = 3 y /n; x6 = 3 x /n; y6  = x6 B 

y S i x S is  = 3 (y  !  y6) /(n !1); s  = 3 (x  ! x6) /(n !1);2 2 2 2

                                           ^
e S i is  = 3 (y  ! Bx) /(n !1);2 2

Asymptotic Orders

                                                                           ^   ^          ^
y x y x yr Pt  and t are O(n) | t , t , and t are O (n)

|                                                    |                  |                  ^           ^
U U r py6 , x6  and B are O(1) | y6, x6, y6 , and B are O (1)

                                           |        |
      ^        ^              ̂                                   |            ^              ^

 y y x x yr y p y y x xt  !t , t  !t and t  !t are O (¾n) | E(t  ! t ) = E(t  ! t ) = 0  ||                                                                               ^
yr y | E(t  ! t ) is O(1)|| 

                  |             ^      ^            ^
y x yr | V(t ), V(t ), MSE(t )            are O(n)  |||

  |
   ^              ̂            ^                            |             ^               ^

y y y x x x r U r U(t  !t )/t , (t  !t )/t , y6  ! y6 , | E(y6  !y6 ), E(B ! B),  
|

 |          
                ^               ^                                        |              ^            

 pB !B and (B !B)/B are O (1/¾n) | and E[(B ! B)/B] are O(1/n) 
 |

|
|

 |                                            ^
r| relV(y6), relV(x6), MSE(y6 ), 

|
|          

                                                       |                   ^                       ^  

| MSE(B), and relMSE(B) are O(1/n) 
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Variance/Mean-Squared-Error Estimators

     
       ^  ^                             ̂^           ^  ^          ^ ^     ̂ ^

r e yr r r  UV(y6 ) = (1 !f)s /n;     V(t ) = N V(y6 );      V(B) = V(y6 )/ x62 2 2

                   ^    ̂                ^ ^      ^    ^           ^    ̂    ^   ^      ^  ^
W r U  r W yr W r W W r  UV (y6 ) = (x6 / x6) V(y6 );   V (t ) = N V (y6 );   V (B) = V (y6 )/ x62 2 2

Asymptotic Orders

          ^ ^               ^              ^    ̂            ^  
y y W y yE{V(t ) ! MSE(t )} and E{V (t ) ! MSE(t )} are O(¾n)

           ^  ^              ^          ̂ ^              ^
WE{V(B) ! MSE(B)}, E{V (B) ! MSE(B)}

               ^  ^               ^             ^    ̂             ^
r r W r rE{V(y6 ) ! MSE(y6 )}, and E{V (y6 ) ! MSE(y6 )} are O(1/n )3/2

        ^  ^              ^              ̂           
  E{V(B) ! MSE(B)} / MSE(B) and 

           ^    ̂               ̂             ̂      
W   E{V (B) ! MSE(B)} / MSE(B) are O(1/¾n)

i i iUnder the model: y  = $x  + , , 

i i iwhere the ,  are uncorrelated random variables conditioned on the x  and Z ,  

M i i i M i i i i U i 4E (, | x , Z ) = 0, V (, | x , Z ) = F ,  and 3 F /N converges to 6F  as n and N grow 2 2 2

arbitrarily large. 

                            ̂                 ^
M r U M yr y ME (y6  ! y6 ) = E (t  ! t ) = E (B ! B) = 0

If N >> n, then 

 
         ^    ̂          ^

M W y M yE {V (t ) ! V (t ) } is O(1)

       ^   ^             ^
M W ME { V (B) ! V (B)} and 

       ^     ̂           ^
M W r M rE { V (y6 ) ! V (y6 )} are O(1/n )2

        ^    ^            ^         ^
M W M  ME { V (B) ! V (B)} /V (B) is O(1/n)
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Homework for Lesson 4

Do Exercises 2, 3, and 6 in Section 3.6 (starting on p. 89) of Sampling: Design and

Analysis.    Plotting the data, as requested in a number of the exercises, is helpful but

optional. 
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 Lesson 5: Stratified Sampling

Comments on Chapter 4 of Sampling: Design and Analysis

The Expansion Estimator

The text uses the subscript hj to denote the jth unit in stratum h.  One could just as easily

                                             ̂   
strlet i denote a unit and write t  as

^
 str S i i S i i t  = 3 y /B  =  3 wy , 
 

                                                                                               ^
i h h h i i str,where B  = n /N  when i 0 S , and w = 1/B .   The estimator, t   is  a generalization of the

expansion estimator under SRS and is also called the expansion estimator. 

 

h h The notation U  will be used to denote the set of N  population units in stratum h. 

Asymptotics

                                                                                                               ^  
strThere are (at least) two ways to develop  large-sample properties  for  t   under stratified

simple random sampling (I prefer to add the modifier “simple” to “stratified random samp-

ling”)  or  STSRS.   Either  the number of strata, H,  can  stay fixed,  while the  number of

h hsamples per stratum, n , grow arbitrarily large along with n and N,   or  the  n   (once they

come into being) can stay fixed while  H  grows with  n and  N.    Whichever  structure  is

h h str,4 i   iassumed, if 3 (N /N)S  converges to a positive constant, say S  and max{B } / min{B }H 2 2

                                                                   ^                                                ^ 

STRis bounded, the large-sample properties of t under SRS can be extended to t .   From now

on,  however,  we will leave the demonstrations of design-based asymptotics to the inter-

ested student.
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Generalized Wilson Confidence Intervals 

                                                       
                                                                           ^

strThe generalized Wilson confidence interval for p  defined in equation (4.6) on page 102

is 

                           ^                          ^         ^
 str "/2 "/2 str str "/2                (½ ! p ) z /n* ± z {p (1 ! p )/n* + z /(4n* )}2 2 2 ½ 

      ^
strp = p  + ))))))))))))))))))))))))))))))))))))))))))))                             (S14)

       
"/2                                                  1 + z /n*2

                                                                                                        

                          ^         ^    ^ ^
str str strwhere n* = p (1 ! p )/V(p ) is called the effective size  of the  STSRS sample.   Observe 

                                                                                                                               that this is the same equation as (S5) with n* replacing (1-f)n.  Note that n* is undefined 

           ^
str S i S iwhen  p  = 0 or 1.  In that case, model-based theory suggests we let n* = (3 w) /3 w .2  2 

 
will be more on the notion of effective sample sizes in Lesson 8.  

The Model, Poststratification, and Conditional Selection Probabilities 

The model in Section 4.6 (starting on page 113) can be rendered

i h i hy  = :  + , ,  when i 0 U ,                                                                                                  (S15)

i i M i iwhere the ,  are uncorrelated random variables conditioned on the  Z ,  with E (, | Z ) = 0

                                                                                                                 ^
M i i h i strand V (, | Z ) = F .    Under this model and these assumption about , , t  is an unbiased2

                                                                                                     ^ ^
strestimator for t with a model variance that can be estimated by V(t ).   

                                                                                                ^  
strThere is thus a  model-based justification  for the estimator  t   irrespective of the  actual

   
sample design.  The model in equation (S15) has been called the group-mean model, since

each element in group h has the same mean.   The term “group” replaces stratum in  this

context because the model does not require that the groups be used when the sample is

is drawn.  “Strata,” by contrast, refer to design strata in most discourses on survey sampling.

The use of quota sampling (Section 4.8), often relies on a ! perhaps implicit ! assumption

of a  group-mean model.   One must be aware,  however,  when using quota sampling to

realize that  not only must the  group-mean model  hold,  but the sample design  must be
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M i iignorable (i.e., E (, | Z ) must be zero). 

Using a group-mean-model-based approach is particularly appealing with a simple random

sample, because SRS is an ignorable design.  This is one  justification for poststratification

as described in Section 4.7.   Indeed,  without an implicit belief that a group-mean model

holds, at least approximately,  for a particular set of mutually exclusive groups,  one should

not use poststratification.  For example, given a simple random sample of students, it may

make sense to poststratify the sample  by sex.   It usually make little sense,  however,  to

poststratify based on whether the student’s last name has more letters than his (her) first.

Poststratification under SRS can be given a fully design-based justification.  Suppose we

hdraw a particular simple random sample and observe n  > 1 units in each group h.  Usually

randomization theory  takes  averages  across  all possible  samples,  but  we  can take a

1conditional approach and only average across simple random  producing n  selections in

2 Hgroup  1,  n   in group 2, ...,  and  n   in group H.    For example,  if we have  a SRS of 20

students, 11 of whom were girls,  we can restrict our attention to simple random samples

with 11 girls and 9 boys.   

hConditional on the H values of the n , the probability of selecting a particular unit i in group

h h hh is n /N .  In fact, conditional on the realized n  values, we have a stratified simple random

sample.   All the results of the early sections of the Chapter apply!  The one caveat – and

hit is a big one – is that all the n  must be greater than 0; in fact, it has to be greater than 1
                                             ^

strto estimate  the variance of  t .  When deliberately  drawing  a  stratified  simple random

hsample, this isn’t an issue because the statistician controls the n .   With a simple random

sample, however, there is no guarantee that at least one unit will be in every group.  

The text’s requirement that the sample size  within groups be reasonably large  ($ 30)  is

unnecessary.  Moreover, the unconditional variance estimator is equation (4.15) is inferior

to the simple stratified variance estimator (equation (4.5)) based on the conditional selection

(inclusion) probabilities.  See Holt and Smith (1994) or Rao (1985).  The warning about data
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snooping being dangerous, by contrast, cannot be overemphasized.  

Another practical consideration for poststratification, which may seem obvious, is that all the

hN  need to be known.  Often, we would like to use poststratification but can’t, either because

h hnot all the n  are positive or because not all the N  known.  For example, suppose we have

a simple random sample of farms, which we want poststratify by size into those with sales

of less than  $100,000 in the past year and those with sales of $100,000 or more.   From

the survey itself, we may know into which of these two domains each of the sampled farms

falls, but we do not know the same about every farm in the population.  Consequently, we

cannot poststratify the sample into the two sales-size groups.   

Now suppose we have an educated guess about which farm is in which size category

before the survey goes out.  We can poststratify on those population totals.  Realize,

however, if a sampled farm was guessed to have small sales, but actually had large sales,

it would remain in the  small-sales group for poststratification.

Since we do not know the number of farms in the population in each sales category, we

cannot estimate the average sales across all farms using actual sales for postratification.

We can, however, estimate the mean within each domain (category) using a conditional-

1 1probability argument (e.g., the conditional probability of drawing a farm in domain 1 is n /N ).

This is an alternative approach to the one described in Section 3.3 (starting on page 77).

The same  estimates result, the sample mean within each domain, only now each is

(conditionally) design unbiased.  Unfortunately, since the domain population sizes are

unknown, we cannot estimate the variances of the domain sample means in an  unbiased

fashion.  More on this in an advanced homework exercise. 

Homework for Lesson 5

Do Exercises 5 and 10, parts a and c in Section 4.9 (starting on p. 118) of Sampling: Design

and Analysis.  Compute a 95% confidence interval for the proportion estimated in 10c.
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Lesson 6: Cluster Sampling with Equal Probabilities

Comments on Chapter 5 of Sampling: Design and Analysis

tThe sample statistic s 2

tThe sample statistic s , defined on page 135, can also be rendered2

                                 ̂         ^                                ^            ^
t S i S j S i S is  = [1/(n!1)] 3 [t  ! (3 t /n)]  = [1/(n!1)] {( 3 t ) ! (3 t ) /n}.2 2  2 2

                                                                                  ̂                                                     ^
t i i iIt is not an unbiased estimator for S  unless each t  = t .  The problem is that although t  is2

                                                ̂                                                            ^
i i i i ian unbiased estimator for t , t  is an unbiased estimator for t  + Var(t ), not t . 2 2 2

 

The Components-of-Variance Model

The model in equation (5.37) on page 163 can be rendered 

ij ij y   =  :    +       *
   

            

      iA ij =  :    +   ,  + , ,                                                                                                        (S16)

M ij M iA M ij M ij M iA Awhere  E (* ) =  E (, ) =  E (, ) = 0,  V (, ) = F , V (, ) =  F , regardless of whether i or2 2

ij iAij is in the sample.   Moreover the variance components, ,  and , , are uncorrelated across

M ij A ij iA ij ig iA ijall i and j, so that V (* ) = F  + F .   The  random variables, *  = ,  + ,  and *  = ,  + ,2 2

(g � j)  are correlated, however, since both  ij and ig are in the same cluster.   The model-

M A Abased  intracluster correlation coefficient  is D  = F /(F  + F ), paralleling equation (5.38).2 2 2

The Ratio Estimator

                                                                     ̂
iUnder this components-of-variance model, t  can be written 

^
 i i i ijt   =  3 (M /m )(: + * )  
 i       j0S

i i i ij    =      M:  +  (M /m ) 3 *
i                                   j0S 

i iS    =      M:  +          * , 
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iwhere all the summations are over S , the subsample of elements in cluster i.   Observe that

iS i i ij M iS M iS i*  = (M /m ) 3 *  is a random variable, uncorrelated across the i with E (* ) = E (* |M)=

M iS i i i A0.  We can  call  V (* |M) = F ,  although   F   clearly is a  function of  F  and  F .   What2 2 2 2

function  is the advanced homework exercise for this lesson.  

 
                                  ̂                                                                                               ^

rThe ratio estimator, y6 , in equation (5.28) of page 148 is a variant on the estimator B.  The

                                                                                     ^
same can be said about its one-stage “special case,”  y6, in equation (5.16) on page 144. In

                                 ^
i i i i Uthe general context,  t  plays the role of y ,  M  the role of x ,  and y6   the role of the  target, 

r PB.   Under mild conditions, y6   is O (1/¾n).   Recall  that  n is the number of  psu’s,  so the

asymptotic framework  assumes  the number of sampled psu’s  !  and not the number of

element sampled within each psu ! grows arbitrarily large.

The model in equation (S7) is implied by the components-of-variance model.  Moreover, the

iS i iexpectation of *  (which plays the role of ,  in (S7)) is zero conditioned on M.  Thus, when
 
                                                                       ^

U rN >> n, so that y6  . :, the model variance of y6  can be expressed by equation (S9) with the

appropriate role conversions.  In this spirit of this, the weighted-residual variance estimator
 
      ^   

r i Sfor y6  is equation (5.29) with M6  defined as the sample mean of the M, M6 .  The population

i imean will not do.  Similarly, for the special case of a one-stage sample (where m = M for

Uall i).  The weighted-residual approach replaces M6  in equation (5.18) on page  145  with

S U SM6 , and the summation in equation (5.19) is pre-multiplied by (M6 /M6 ) .2

Homework for Lesson 6

Do Exercises 3, 12a, and 22 (plotting is optional) in Section 5.9 (starting on p 170) of

Sampling: Design and Analysis.
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Lesson 7: Sampling with Unequal Probabilities I

Comments on Sections 6.1 to 6.5 of Sampling: Design and Analysis

The With-Replacement Variance Estimator

An alternative way of looking at a single-stage with-replacement sample is to view it as a

sample of n picks or  “hits.”  From each hit, we get an independent estimator of t, which we
~          ` 

h h h h hcan denote  t   =  t /R ,  where  t   is the value of the unit chosen in the h’th hit, and R  the

probability of selecting that unit with the h’th hit.   The reason for using a tilde (~) instead of

a hat (^) will be made clear shortly. 

 
                        ^

RThe estimator t  in equation (6.5) on page 188,  which is  sometimes called the  Hansen-

Hurwitz estimator,  can be rendered

         
    ~       n            ^                        

 R h h h h ht  =  3 t /n   =  3 t /(nR ) =  3 t /B *,                                                                             (S17)
       h=1

hwhere B * is the number of times we expect “unit h” (the unit  that was selected with the h’th

hit) to have been selected overall.  It is its pseudo-selection probability,  hence the desig-

h h hnation, B *.  We say  “pseudo”  because  the actual selection probability is B  = 1 ! (1 ! R ) ,n

h hwhich is slightly less than B *= nR .

                                          
                                           ^

RThe variance estimator for t  in equation (6.7) can be rendered                                 

                      n
      ^ ^                                  ^

R h h RV(t ) = (1/n)  3   ([t /R ] ! t ) /(n!1)2 

                   h=1                                 n                                                                 ^
h h R         = (n/[n!1])  3  ([t /B *] ! [t /n])                                                                                (S18)2

                         h=1

 ~                                                                                                                         

h h hThe key to establishing the unbiasedness of this variance estimator is that the t  = t /R  are

hindependent,  unbiased estimators for    t.   The situation doesn’t change when  each t   in
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          ^    
h hequations  (S17) and (S18) is replaced by  t , an unbiased estimator  for  t   based on an

independently-drawn second (and possibly additional) stage(s) of sampling.  Realize that
 
if  the same unit is drawn more  than once  in the  first stage  of sampling,  this  argument

requires independent subsamples be drawn for each hit. 

The with-replacement variance formula in equation (S18) is a very powerful tool.  We can

use it to estimate the variance of an estimator based on a multi-stage sample, often even

when the first stage it drawn without replacement, as we shall see.  It, or a variant, can also

be used to estimate the variance of a estimator based on a stratified sample with one (first-

                                                                         ̂         ^
str h hstage) selection in each stratum.   Consider the estimator, t  = 3 t  for t = 3 t .  If all theH H 

                                                                                           ^                                       ^  ^
h 0 h h h R t  where equal to, say,  t , then one can replace each  t /R  in equation  (S18) by t ,  t  by

^   
 strt , and n by H to get

                                H
   ^    ^                            ^      ^

col str h str V (t ) = (H/[H!1])  3 (t  ! [t /H])                                                                                   (S19)2

                              h=1
    

The sample arguments for unbiasedness apply.

The variance estimator in equation (S19) is called the collapsed-stratum estimator because

it essentially  collapses  all  the design strata  into one variance stratum.   It relies  on the
  

hassumption that  all the  t   are equal.   If they aren’t, then  the variance estimator  has an

hupward bias (it overestimates bias) of 3 (t  ! t/H) , which the interested student can proveH 2

in to himself (herself).   It is not  uncommon to use  the collapsed-stratum variance estimator

in practice, although often each variance strata  consists of  only  two  design  strata  with

hthought-to-be-close values for t .   Design  strata  must be collapsed  into variance strata

                                                           ^ 
hvariance strata before looking  at the t .  

When C = H/2 is the number of collapsed variance strata, 

                C       2  
     ^     ^                       ̂     ^      ^

col2 str cj c1 c2V (t ) = 3   2  3  (t  ! [t  + t ]/2)                                                                                   2

               c=1    j=1
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                                                            ^        ̂     ^              ̂      ^      ^
c1 c1 c2 c2 c1 c2 =  3 2  {  (t  ! [t  + t ]/2)  + (t  ! [t  + t ]/2)  }2 2

                                 ̂    ^         ^      ^  
c1 c2 c2 c1            =  3 2  {  ([t  ! t ]/2)  + ([t  ! t ]/2)  }2 2

                     C
                      ^      ^

c1 c2            =  3  (t  ! t ) ,                                                                                                   (S20)2

where the subscript cj refers to design-stratum j ( = 1 or 2) in collapsed-variance-stratum c.

Sometimes a variant of the collapsed-stratum method is used with a estimator based on a

systematic sample drawn from an ordered list.  Let N/n be an integer for convenience, and

[1] [2] [n]let y , y , ..., y  denotes the sample in order of selection with  n = 2C.  One can replace

cj [k]each t  in equation (S20) with an (N/n)y  and compute 

 ^     ^
col2 sys [2] [1] [4] [3] [n] [n!1]V (t ) = (N/n) {(y  ! y )  +(y  ! y )  +   ... + (y  ! y ) }.2 2 2 2 

                                                                                                                             ^     ^
col2 sysWhen n is not even, one of the collapsed strata is given three members,  and  V (t ) is

adjusted accordingly.  

An alternative way of writing this last variance estimator is as

 ^     ^
col2 sys [2] [2] [1] [1] [4] [4] [3] [3] [n] [n] [n!1] [n!1]V (t ) = ([y /B ] ! [y /B ])  +([y /B ] ! [y /B ])  +   ... + ([y /B ] ! [y /B ])   (S21) 2 2 2 

[k]where B  is the selection probability for the k’th systematic selection, which is  N/n for all

k.  Why bother with equation (S21) at all?   The variance formula is useful (if conservative)

when the sample is drawn using systematic probability proportional to size (pps) sampling

from  an ordered  list.  This sampling design  and  other without-replacement  pps designs

will be described shortly. 

The Horvitz-Thompson Estimator

                                                                                                           ̂           ^
HT S i iThe Horvitz-Thompson estimator in equation (6.12) on page 197,  t  =  3  t /B  is another

name for what we have been calling “the expansion estimator.” 
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       Some Methods of Without-Replacement Probability Sampling

This note discusses  four methods of selecting a  without-replacement probability sample

in a  single stage of sampling   (which can serve as the first stage of a  multi-stage sample).

The  term  “probability  proportional  (or proportionate)  to size”  is  often  used generically

whether or not the probability of selection for unit i is related to a measure of unit size.  More

i i often than not, B   is related to some  measure of size  in practice.   In that context, if  x  is

i i  U j i ithe unit-i measure of size, and R  = x /3 x  the unit’s relative measure of size, then B  = nR .

The table on the next page is based on the data in Table 6.1 on page 186, modified slightly.

Each class (the sample unit) was assigned a random number within the interval [0, 1) using

the random-number table on page 457.  Class 1, for example, was assigned the random

number .74970, based on the first number on the table.  Class 2  was assigned .74077

based on the second number in the first column, and so forth.  These random assignments

are called permanent random numbers or PRN’s.  The classes in the following table were

reordered based on the sizes of their  PRN’s.  In practice, one usually relies on statistical

software to produce a random number from the uniform distribution on [0, 1) rather than a

random-number table. 

Our goal is to draw a sample of size 3 giving each class a probability of selection

iproportional to its relative size.  The relative sizes are denoted by R , which is equivalent to

the selection probability for each hit in a with-replacement pps sample of size 3.  For a

i iwithout-replacement sample of size 3, the unit selection probabilities are denoted B  = 3R

Poisson, Collocated, and Bernoulli Sampling

A Poisson PRN sample of classes can be selection in the following manner.  A class i is

i iselected if and only if PRN < B .  In the following table, classes 12, 6, 14, and 10 are in the

sample. Poisson sample sizes are random.   We expected a sample size of  3, but this

expectation was not realized. 
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i i i i  Class     R            B  = 3R   PRN Cumulative          Collocated 

i iNumber                                                    PRN       B

    12    .03709 .11128 .01991 .06248   .11128

      6    .09737    .29212    .06176    .12915      .40340

    15    .02318   .06955    .11571    .19582      .47295

      3    .04019    .12056    .13557    .26248       .59351

      7    .03091    .09274    .17371    .32915      .68624

    14    .13456    .40368    .20121    .39582    1.11992

    10    .07255   .21765    .20516    .46248    1.30757

      8    .06801    .20402    .21223    .52915    1.51159

      9    .08346    .25039    .31842    .59582    1.76198

      5    .11747    .35240    .36135    .66248    2.11437

    13    .07110    .21329    .54377    .72915    2.32767

      4    .03400    .10201    .66824    .79582    2.42968

      2    .05100    .15301    .74077    .86248    2.58269

      1    .06801    .20402    .74970    .92915    2.78671

    11    .07110    .21329    .99277    .99582    3.00000

A related sampling technical is called collocated PRN sampling.   In this design the PRN’s

are  replaced  by  collocated  PRN’s.  This is  done by  first  ordering  the  PRN’s  by  size,

[1] [2] [N]PRN  < PRN  < ... PRN , as we have done, and then replacing the k’th ordered PRN  with

[k]PRN  = (k ! 1 + r)/N, where r is a random number selected from the interval [0, 1).c

Unfortunately, the sample drawn from the information in the above table and r = .93725

(based on the next number in the random-number table) now results in the three classes,

12 6, and 14.

The advantage of collocation is that when the original PRN’s bunch within the unit interval,

their collocated analogues will not.  For example, suppose every class had selection

i(inclusion) probability B  = .2, so that the expected sample size was again 3.  Using the

PRN’s in the table, the sample would consist of five classes, 12, 6, 15, 3, and 7.  All have

PRN’s less than .2.   With the collocated PRN’s, however, only classes 12, 6, and 15 are

selected.  

The special case of Poisson sampling where every unit has the same probability of
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selection is also called Bernoulli sampling.   When the expected size of a Bernoulli sample

is an integer, collocated sampling always produces a sample of that size.  

In practice, Bernoulli samples are often “stratified.”   That is to say, the population is broken

(1)into mutually exclusive groups with a group-specific selection probability, B  for units in

(2)group 1, B  for units in group 2, etc.  If the PRN’s are collocated within each group

separately before drawing the sample, and the expected sample size for each group is an

integer, then the result would be equivalent to stratified simple random sampling.  Even

under non-collocated stratified Bernoulli sampling, one can condition on the realized sample

size within each group and treat the resulting sample as if it were a stratified SRS. 

What the PRN mechanism adds to stratified simple random sampling is a means of

controlling overlap across surveys.  One way of doing that is described below.  Say we need

to draw two stratified simple random samples, A and B, and we want them to be distinct.

Let us focus on a particular unit i, which is in group h for sample A and h' for sample B.

(h) (h')Denote its probability of selection for sample A as B  and for B as B , where neitherA B

probability  exceeds ½.  We can avoid unit i being in both samples in the following manner.

(h)Choose the unit i sample A if its PRN (or collocated PRN) is less than B .  Choose the unitA

(h')for sample B if its PRN (or collocated PRN) is in the range [½, ½ + B ).   It is easy to seeB

that selected probabilities are what we desire them to be, and unit i cannot be in both

samples.  See Ohlsson (1995) for a broader discussion of how and where PRN techniques

are used to control overlap across samples. 

Systematic pps Sampling

Systematic pps sampling from a randomly-ordered list works like the cumulative-size

imethod in the text, except that the B  are first randomly ordered (in the case of the above

table, by their PRN’s) and then cumulated.  Choosing another random value, say r', from

[0, 1), the sample consists of those units whose cumulative B-total first exceeds, r', r' + 1,

... r' + n !1.  With r' = .65299, this means that the classes 7, 8, and 1 are selected for the

sample. The cumulative B-total for class 7, for example, is .68624, which exceeds .65299,

but the cumulative B-total for class 3 does not. 

Systematic pps sampling from an ordered list is just like systematic pps sampling from a

randomly-ordered list only the list is purposefully ordered.  Either way, it is possible to draw
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i i ia systematic pps sample when B * = nR  exceeds 1 for one of more units.   In that case, B *

iis the expected number of time unit i will be selected for the sample. When B * is an integer,

say e, i will be selected exactly e times.  Otherwise, the number of times i is selected will

i ieither be the smallest integer greater than B * or the largest integer less than B *.

i iWhen nR  is greater than 1, a popular alternative is to set B  =1 and select i with certainty.

Let c be the number of certainty selections (it may take a few iterations to find them all), and

U' the population with the c certainties removed, one can then selects systematic pps

i U' jsample with probability (n ! c)R / 3 R  assigned to non-certainty unit i. 

Rao-Sampford Sampling

One of the properties of systematic pps sampling from a randomly-ordered list, which is also

ij i jcalled Goodman-Kish sampling, is that  B /(BB ) .(n!1)/n.  This approximation, is better the

ismaller the maximum value of the B .  Sometimes, this maximum values is not as small as

we would like.  If that is the case, a better design in some sense (see Asok and Sukhatme,

1976) is  Rao-Sampford sampling.  In that design, the first unit is selected with probability

iR .   The remaining units  are  selected  with replacement  with  probability proportional to

i iR /(1 ! nR ).  If any unit is selected more than once, the entire sample is thrown out, and

one starts again. 

i i i i U j jIn the following table, the cumulated R  and R ' = {R /(1 ! nR )} / 3 {R /(1 ! nR )} have been

computed.  Using the random draws from [0, 1), .36671, .49870, and .50647, the sample

consisting of classes 14, 8, and 8  would be rejected.   The next three random numbers

from page 457 likewise do not produce a good sample.   The numbers, .51796, .41635, and

.04382 yield classes 9, 10, and 6.   
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i i  Class     R            Cumulative     R '           Cumulative
i iNumber                               R                                 R '

    12    .03709   .03709 .03031   .03031
      6    .09737    .13447    .09990    .13021
    15    .02318    .15765 .01810    .14830
      3    .04019    .19784    .03318    .18149
      7    .03091    .22875    .02474    .20623
    14    .15456    .38331    .20929    .41552
    10    .05255    .43586    .04531    .46083
      8    .06801    .50386    .06205    .52287
      9    .08346    .58733    .08086    .60373
      5    .11747    .70479    .13173    .73546
    13    .07110    .77589    .06563    .80109
      4    .03400    .80989    .02750    .82859
      2    .05100    .86090    .04373    .87232
      1    .06801      .92890    .06205      .93437
    11    .07110 1.00000    .06563 1.00000

The Hartley-Rao Variance Estimator

When the sampling design is single-stage Poisson, the variance of the expansion estimator,
^
 HT S i i U i i i i jt  = 3 y /B   = 3 y Z /B  is not hard to derive.  Since Z  and Z , i � j, are independent under

                                                                                              ^         ^          

i i i HT HT U i i iPoisson sampling, and  V(Z)  =  B (1 !B ), the variance of t  is  V(t )  =  3 y (1 ! B )/B , 2 

 
                                       ^ ^

HT S i i i which  is  estimated  by V(t ) = 3 y (1 ! B )/B . 2 2 

                                                             
                                                                   ^ 

HTThe  Hartley-Rao  variance estimator  for  t  under  a  systematic pps  sampling  from  a
      

irandomly-ordered list or a Rao-Sampford sampling is nearly unbiased when B  is ignorably2

small  (say  less than or equal to .2) for all i.   The  estimator remains  reasonable and con-

venient to use otherwise.  It can be expressed as

 ^    ^
HR HT i  k k i i j jV (t )  =  [n/(n!1)] 3  (1 ! B  ! 3 B /n + 3  B /n)(y  /B  ! [n  3  y /B ])                            2 -1 2

             
                                     i0S            k0S        k0U                          j0S   

                                                                                                                                    (S22)

i  k k i i j j             = 1/[n(n!1)] 3 (1 ! nR  ! 3 R  + 3  nR )(y  /R  ! [n  3  y /R ]) .                           2 -1 2

             
                                       i0S             k0S     k0U                        j0S   

This equation is a bit ugly.  What is effectively happening is that the squared difference from

i i S j jthe weighted mean  for each  sampled i,  (y  /B  ! [n  3 y /B ]) , has its own  finite population-1 2
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i S  k U k U kcorrection term:  1 ! B  ! 3 B /n + 3  B /n.  The value of 3  B /n does not depend on the2 2

sample actually drawn.   For the example of the class sample, it is .25349.  The value  of

S  k 3 B /n does depend on the sample, but is the same for each sampled unit.  If the sample

contains classes 7, 8, and 1, then it is .16693.   The actual finite population correction terms

are .907 for class 7 and .796 for classes 8 and 1, which have the same selection probability.
 

i iWhen B  is ignorably small  for all i, which is a much stronger assumption than the B  being2

all small, equation (S22) can be approximated with 

 ^     ^
WR HT i i j jV (t ) = [n/(n!1)] 3  (y  /B  ! [n  3  y /B ]) ,                                                                  (S23)-1 2

                                 i0S                j0S   

which is essentially the with-replacement variance estimator in equation (S18).   Thus, if we

have a multi-stage sample with one of these designs in the first stage and all the first-stage
                                                                                     

selection probabilities were ignorably small, the with-replacement variance estimator with

 ^        ^
i j i jt  (and t ) replacing y  (and y) would be nearly unbiased.  Sometimes it is used even when

ithe first-stage selection probabilities are not ignorably small.  When the B   are small, using2

the  with-replacement  variance estimator can be shown  to be,  if anything,  conservative

(biased upward).

iWhen all the B  in equation (S22) are equal, the equation collapses into the variance esti-

                 ^mator  for  t under simple random sampling in equation (2.14)  on  page 34.   When all the

iB   are not equal but n is large, the first line on right hand side is often approximately equal

to 

 ^     ^
WR HT i i i j jV (t ) . [n/(n!1)] 3 (1 ! B )(y  /B  ! [n  3  y /B ]) .                           -1 2

              
                                i0S                           j0S    

S  k U k Psince 3 B /n ! 3  B /n is O (1/¾n) under mild conditions.  This approximation is dubious2

when n is not large, which can happen in practice when systematic pps sampling from a

randomly-ordered list or Rao-Sampford sampling is used within strata.   
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iSuppose x  is the measure of size for unit i used in determining the  unit selection  proba-

i i i  U jbilities; that is, B  = nR  = nx /3 x .   Cumberland and Royall (1981), who are responsible for

noting that the complex variance estimator proposed by Hartley and Rao is equal to some-

thing  like  the second line  on the  right hand side  of equation (S23),  also point out that

   ^     ̂                                                                        ^
HR HT HTV (t ) is an unbiased estimator for the variance of t  under the model, 

i i i iy  = $x  + x, , 

i , i i , i iwhere the ,  are uncorrelated, with E (, |x ) = 0 and V (, |x ) = F .  As long as the design is2

ignorable,  it  doesn’t matter  how  the model  is drawn for this result  to be  true, which is
 
why the second line  of equation (S23) is rendered without the selection probabilities.  It is

                              ̂
HT S i i S i i U ieasy to see  that   t  = 3 y /B   =  (1/n)( 3 y /x ) 3 x   is a  model unbiased  estimator  for

U i U it = 3 y .  Both  have  a model expectation  of  $ 3 x .   It is a bit  harder  (and  left  to the

                                                                                                            ̂                 ^    ^
HT HR HTinterested student)  to see  that the  model expectations of both  (t  ! t)   and  V (t )  in2

U i U i U i equation (S23) are (3 x) {(1/n) ! 3 x /(3 x ) }F .  2 2 2 2
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Homework for Lesson 7

Using the data in audit.dat from the CD-rom with bookval (i.e., book value) as the measure

of size: 

a.   Draw a pps sample with replacement of size 8 using the cumulative-size method.

b.   Draw a systematic pps sample of size 8 using the list as ordered.

c.   Draw a systematic pps sample of size 8 ordering the accounts by bookval. 

d.  Treating the current list as if it were randomly ordered, draw a collocated sample of

expected size 8. 

e.  Draw a random sample of size 10 by first removing certainties and then using

systematic pps sampling for the remaining selections. 

After each of the above samples are drawn, estimate the total actual value of the population

iof books.   The data set on the CD-ROM only provides the booked value (call it x ) for each

account  i in the population.  Consequently, we need to provide actual account values (the

iy) here.  Let the actual value for sampled account i always be  $200 more than its booked

i ivalue (y  = x  + 200).   Estimate the variance of this total for the samples in parts a and b,

assuming the list is randomly ordered for part b. 
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Lesson 8: Sampling with Unequal Probabilities II

Comments on Sections 6.7 of Sampling: Design and Analysis

Recall that the model called M1 in this section can be rewritten as

ij ij y   =  :    +       *
            

      iA ij =  :    +   ,  + , ,                                                                                                        (S16)

M ij M iA M ij M ij M iA A ij iAwhere  E (* ) =  E (, ) =  E (, ) = 0,  V (, ) = F , V (, ) =  F , and all the ,  and ,  are2 2

uncorrelated regardless of whether i or ij is in the sample.   Using the notation similar to

what have been employing here, the model variance equation on page 211 is can be

rendered 

                                                               N
      ^                                                         

M HT A i i iE [(t  ! t) ] = F {(K /n) ! (2K/n)3 M  + 3 M } + F { 3 K /(n m ) ! K}2 2 2  2 2 2 2  

                                                   i0S      i=1               i0S

                                                                     N          

A i i i                    = K [F {(1/n) ! (2/n) 3 M /K + 3 M /K } + F { 3 1/(n m ) ! 1/K}] 2 2  2 2 2 2  

                                                      i0S         i =1                   i0S      

 i                            N   M                                                                                      N
                                        ̂          ̂     ^ 

ij HT   i i i i i ij i i i k where t = 3    3  y , and t  = 3 t /B , t  =(M /m) 3 y , and B  = nM /K = nM / 3 M .  

i                                                     i=1 j =1                                               j0S               k=1 

Although model-based theory never averages over all potential samples, let’s do just that.

Taking the expectation of the last expression with respect to the design yields: 

  
                                                     N                    N          ^

M HT A i i iE {E [(t  ! t) ]} = K [F {(1/n) ! 3 M /K } + F { 3 M /(nm K ) ! 1/K}].2 2 2  2 2 2  

This information may be useless from the strictly model-based viewpoint, but consider this.

When the design is uninformative, we can reverse the expectation signs to get

          
                                                    N                    N          ^

M HT A i i iE {E[(t  ! t) ]} = K [F {(1/n) ! 3 M /K } + F { 3 M /(nm K ) ! 1/K}].                           (S24)2 2 2  2 2 2  

If our model assumptions are correct the right hand side of  (S24) is what  we expect the
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                                               ^
HTdesign mean squared error of t  to be.  This value is called the “anticipated variance.”   The

model here is a helpful tool  for assessing  the properties  of a design-unbiased two-stage

estimation strategy under idealized conditions.  

It is shown in the text that the model variance is minimized for a particular psu sample, S,

S i iand a fixed ssu sample  size, m = 3 m,  when all the  m   are equal.  If  this is true for the
    
model  variance, then it must also be true for the anticipated variance,  which is the  model
 
variance averaged over all possible samples given the design.    

i 0Now let m = m  in every PSU.   Equation (S24) becomes 

          
                                                   N                      

          ^
M HT A iE {E[(t  ! t) ]} = K [F {(1/n) ! 3 M /K } + F {1/m ! 1/K}]2 2 2  2 2 2

A  i                         = K [(F /n){1 ! n3 M /K } + (F /m){1 ! m/K}], 2 2  2 2 2

                                                                                                    ^ 
0 A HTsince nm  = m.  Thus, if F  > 0,  then the anticipated variance of t  is minimized for a fixed2

ssu sample size, m, when n, the number of sampled psu’s, is maximized; that is, when there

0is only one ssu sampled per psu  )  m  = 1.   Cost, however, is not only a function of over-

0all sample size.    There are cost savings to be realized by keeping n down and letting m

exceed 1. 

iThe term 1! n3 M /K  can be viewed as the model final-population-correction factor forN  2 2

the first stage of sampling,  while 1 ! m/K is that factor for the second stage of sampling.

When both factors are small enough to ignore,

            ^                                                          
M HT A 0 AE {E[(t  ! t) ]} . K (F /n  +  F /m) = (K /m)(m F  + F ).2 2 2 2 2 2 2

0This simplified formula allows us to see the consequence of an m  value greater than 1. 
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Many surveys involve more than two stages of sampling.   For example, a first-stage sample
 
of counties can be followed by subsamples of blocks, then households in those blocks, and

finally individuals in the households.  It is a messy, but straightforward exercise to extend

the component-of variance model to multiple stages. 

The anticipated MSE of an estimation strategy is a useful  analytical tool before  a sample

has been drawn.  After the sample  has been selected,  and  its members  surveyed,  the

model variance,  which conditions on the realized sample, and the design mean squared

error,  which is free of model assumptions,  are more relevant.   The anticipated MSE,  by
    
contrast, both requires a model and averages across all potential samples.      
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Brewer and Maximal Brewer Selection

 
Godambe’s Theorem 

iSuppose the y  are random variables such that the ratio model:  

i i iy  = $x  + , ,                                                                                                                   (S7)

M i i i i i iholds,  where  E (,  | x , Z ) = 0.   In addition,  suppose  the ,   (conditioned on  x , Z )  are 
    

M i i i iuncorrelated, and  E (, | x , Z ) = x F .   Then, given  a fixed sample size of n,  the following2 2 2

U i i i U jestimation strategy for t = 3 y   has a number of desirable  properties:   Set  B  = nx /3 x
                                                                         ^

i U j HT S i i U i  S i i(assuming  max{ nx /3 x  } # 1), and compute t  = 3 y /B  = (3 x)(1/n)3 y /x .     This is

 S i icalled the mean-of-ratios strategy, since (1/n)3 y /x  is a mean of ratios.  
  

i iWhen all x  > 0 and thus all B  > 0, this mean-of-ratios strategy is unbiased under both the

design and the model.   Moreover, among all design-unbiased strategies with sample size

n, it has the smallest possible anticipated variance, which is 

          
          ^                               ̂ 

M HT M HTE {E[(t  ! t) ]}   =  E {E [(t  ! t) ]}    2 2

M U i S i i U i                           =  E {E [(3 x  3 , /[nx ]  ! 3 , ) ]}  2

M U i S i i M U i S i i U i M U i                           =  E {E [(3 x  3 , /[nx ])   ! 2 E (3 x  3 , /[nx ]  3 , ) + E [ (3 , ) ] }2 2

  

U i U i S i U i                           =  E { (3 x) F /n ! 2 3 x  (3 x /n)F  + 3 x F }2 2  2 2 2

U i U i U i                           =  (3 x) F {1/n ! 3 x /(3 x) },                                                      (S25)2 2 2 2 

S i U i i U i U iwhere the E(3 x /n) = 3 xB /n  =  3 x /(3 x) is used to derive the last line.   Observe the 2

isimilarity between the right hand sides of equations (S25) and (S24).  In (S25),  x  plays the
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irole of M, and there is no second stage of sampling.

The  minimum  anticipated-variance  property  of  the  mean-of-ratios  strategy  was  first

i U jestablished by Godambe (1955).  In some practical situations, nx /3 x  will be greater than

1 for one of more population units.   To deal with this, first note that for an integer m and a

i Q j i Q j i Q j i i Q j ia set Q,  mx /3  x  > 1 implies mx  > 3 x , (m !1)x  > 3 x  !x , and  (m !1)x /(3 x  !x) > 1.

A more general version of Godambe’s result replaces the unit selection probabilities with

i i U' j i U' jB  = max{1, (n !c)x3 x}, where U' is U with the c units for which (n !c)x /3  x  > 1 removed.
                                                                                                                ^

HTThe members of U' are usually determined iteratively.   The estimator,  t ,  is no longer a

mean of ratios.   The interested reader  can  confirm that  the  last line of  equation (S25)

                            ̂ 
M HT U' i U' ibecomes  E {E[(t  ! t) ]} = (3 x) F {1/(n !c) ! 3 x }. 2 2 2 2

Brewer Selection  

The problem with Godambe’s Theorem is that although we may be willing to accept  that

ithe y  behave like random variables satisfying the ratio model in equation (7), we are seldom

i iwilling to accept that the ,  are uncorrelated with variances proportional to x .  Sampling:2

Design and Analysis makes an often more unpalatable, but quite common,  assumption that

i ithe variances of the ,  are proportional to x .

                                                                 ^
U i r U i S i i S i iConsider the ratio estimator for t = 3 y :  t  = (3 x)3 (y /B )/3 (x /B ).   For many designs

                           ^
r Pand populations, t  is design consistent with a O (1/¾n) relative error.   Moreover, it is model

iunbiased under the model is equation (S7).   If, in addition,  the ,   are uncorrelated (cond-

i i M i iitioned on the x  and Z ) with E (, ) = F , then 2 2

          ^                            ^  
M r M rE {E[(t  ! t) ]}   =  E {E [(t  ! t) ]}    2 2

M U i S i i S i i U i                         =  E {E [({ 3 x /3 [x /B ]} 3 , /B   ! 3 , ) ]}  2

M S i i U i U i S i i P                         .  E {E [( 3 , /B   ! 3 , ) ]}        assuming  3 x /3 [x /B ] = 1 + O (1/¾n)2

M S i i M S i i U i M U i   =  E {E [(3 , /B )   ! 2 E (3 , /B   3 , ) + E [ (3 , ) ] }2 2
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 S i i S i i U i                        =  E { (3 F /B  ! 2  3 F /B  + 3 F }2 2 2 2

  

U i i                        =   3 F [(1/B ) ! 1)].                                                                           (S26) 2

 

                                                                                 ^
rThe asymptotic anticipated mean squared error of t  expressed in the last line of equation

(S26) does not depend on the joint selection probabilities.  In fact, it does not depend on

the sample size being fixed.  

exp iFor a given expected sample size, say n , the value for the B  that minimizes the asymp-
                                       ^

r i exp i  U j exp i  U jtotic anticipated MSE of  t  is  B  = n F /3 F ,  assuming that  max{n F /3 F } # 1.  The

U i i U i expinterested reader can confirm this by minimizing  3 F [(1/B ) ! 1)]  subject to  3 B  = n2

i exp i j jusing a  Lagrangian multiplier.  When all  B  = n F /3 F  < 1,  the value of the asymptotic

anticipated MSE is

          ^  
M r U i exp U i U i expE {E[(t  ! t) ]}   = (3 F ) /n   ! 3 F  <   (3 F ) /n .                                                  (S27)2 2 2 2

iIn practice,  we rarely know with any certainty  what  F   is.   We can,  however,  make an2

educated guess, which we need do only up to a scalar.   

i iIt is often assumed that F  = kx , where g is a value between ½ and 1.   There is some2 2g

evidence that the unit variances  for many survey  variables increase  at a faster rate than

i ix  but a slower rate than x .  The actual determination for g may depend on the variable.2

iThe following example may shed some light.   Suppose  y   is the number of high-school

iseniors in class i planning to go to college, and  x  is the number of seniors in the class.  The

closer g is to 1  the more the plan-to-college rate is a function of the class.  The closer it is

to ½, the more the rates a function of the individual student. In general, the more the

measurement units of the x-variable behave as a group, the larger the g is.   

In Brewer selection,  we first  hypothesize a value  for g,  choose a  value n',  and then set

i i U j  i U jB  = min{1, n'x 3 x }.   When n'x 3 x  # 1 for every  population unit,  the expected  sampleg g g g

size  under  Brewer selection is n', which we will call the initial sample-size target.   Other-
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wise,  the expected sample size will be less than n'.  Nevertheless, as the interested reader

                                                                              ^
r U i U ican confirm,  the  asymptotic anticipated MSE of  t   is  bounded  by (3 F ) /n' = (3 kx ) /n'2 g 2

under our model assumptions,  paralleling equation (S27).

iWhat assumption we make about the size of F  is usually on less firm ground that the ratio2

model itself.  Moreover, the ratio model can also fail.   Consequently,  after the sample is

                   ^
rdrawn and  t   computed,  it is  prudent  to estimate its  model variance  and design mean

                                                                                                             ^
U   rsquared error with a variant of equation (S11) replacing (x6 / x6)  by (t /t ) .2 2

Maximal Brewer Selection   
 

In practice, there are usually more than one item of interest on  a survey.   For example, a

farm survey may inquire about  the number  of currently  planted acres  dedicated  to corn,

wheat, soy beans, and a multitude of other crops.   Let f = 1, ..., F be a subscript denoting

f U fione of the crops in this situation.   We are interested in estimating t  = 3 y  for each f, where

fi fi fiy  is the planted acres of crop f.  Suppose for each y  we have a control value,  x ,  which

may be, say, the harvested acres for crop f reported on the last Census of Agriculture.    For

each f, we assume the ratio model:  
 

fi f fi fiy  = $ x  + , ,                                                                                                              

M fi fi i fi M fi fi i f iholds, where E (,  | x , Z ) = 0, the ,  are uncorrelated, and E (, | x , Z ) = k x .    2 g(f)

                                                                                        ^  
fr U fi S fi i S fi iAlthough it is possible to use a different ratio estimator, t  = (3 x )3 (y /B )/3 (x /B ),  for

each f, there is only one sample.  What should the selection probabilities be? 
 

Equation (S26) tells us that if we use the ratio estimator for any survey variable, asymptotic

ianticipated MSE can only go down as  each B   goes up,  all other things being equal.  This

suggests  the  following  selection  routine  for our  F  survey  variables.    For each survey
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fi i fivariable  y , (e.g., current corn acres for farm i) determine B  using a control variable,  x(f) 

f(census-year corn acres for i), and  a variable (corn) specific  n '.   Under maximal Brewer

selection, the selection probability for unit i is set at

i f i i 1 fi  U fjB   =  max {B }, where   B  =  min{1, n 'x /3 x }.(f) (f) g(f) g(f)

                                                         ^
frThe asymptotic anticipated MSE for t  under our model assumptions can be no greater than

U f fj f(3 k x ) /n ' for each f.   g(f) 2

exp U i expThe expected sample size under this design is, as always, n  = 3 B .  When n  is not an

iinteger, a systematic pps routine using B  as the measure of size will return a sample with

expa size equal to one of the two integers closest to n .   It is not hard to show that when no

i expunit is selected with certainty  (i.e., all  B   are less than 1),   n   can be  no greater  than

f3 n '.  For many populations, it will be considerably less than that sum. F 

Some Practical Considerations  
                                   

There are several impediments to using Brewer and maximal-Brewer selection is practice.
 

fThe values of k and g  !  k  and g(f) in the multiple-survey-variable case !  need to be hypo-

thesized.  Previous survey information  can provide  only the  roughest of guides.   There

is some empirical evidence that the design mean squared error  of the  ratio estimator  is

not very sensitive to mild misspecification in the choice for g, but k  is another matter.   In

practice,   one  often  has  to  balance  meeting  variance  targets  !  using,  for example,

U f fj f f(3 k x ) /n ' with a liberally chosen k  as a bound for the variance of survey-variable f  !g(f) 2

fand keeping the sample size small.   Moreover, the actual relationship between the n ' and

expn   will often only be revealed by simulation,  that is,  by drawing potential  samples and

looking at their properties.     

i fiA even more troubling problem arises when for some population unit, x  (or x ) is zero.  The

i i i M imodel with F  = kx  does not allow y  to be anything other than zero, since both E (y) and2 g

iF  are zero.   It is precisely this type of model failure that concerns us when we insist that2
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our estimators be design consistent.  In the case of Brewer selection,  however,  the ratio

iestimator will not be design consistent  because B  = 0.  

A related, but more subtle problem can afflict the multivariate case.  Suppose the population

fiis such that x  must be greater than zero for at least one f, but can be zero for a particular

                                     ^
fr fif.   The ratio estimator t  will be design consistent, but may not be very good when x  = 0,

fi iy  > 0, and B  is small.   

i fiOne practical solution is to never let x  (or x ) be zero for a population unit, especially if there

iis any chance for y  to be positive.   In the example above, basing control values on a single

census year was a questionable strategy.  The farmer may not have harvested any of the

crop that year, but the current year is another matter. 

i minAlternatively, one can set a minimum value for  B .   If that value is  B ,  say,  this can be

accomplished by adding an  (F +1)'th !  or, better yet, a 0'th !  control to maximal-Brewer

0i 0 minselection with x  = 1 for all i,  and setting n ' = NB .  This makes sense to do even in the

single target variable case where F = 1.   
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An Example of Brewer and Maximal Brewer Selection

Suppose we want to draw a sample of wholesalers for a monthly survey of fruit and

1ivegetable sales.   We have annual sales for each sites based on a previous survey.  Let x

2iand x  denote the annual sales for site i of fruit and vegetables respectively.   For illustrative

purposes, suppose we only have 12 sites in our frame and desire to chose a sample using

1Brewer or maximal-Brewer selection with g = 3/4 for both fruit and vegetables, n ' = 3 for

2fruit and n ' = 2 for vegetables.  

The following table lays out the frame and the selection probabilities.

i i Site    Fruit   Vegetables                                                     B                  PRN      Sample

1i 2i                 1i 1j 2i 2j i i     i         x            x 3x / 3x    2x / 3x max{B , B }                  Selection3/4 3/4 3/4 3/4   (1) (2)

  1       110         43    0.15408    0.18801      0.18801       0.18766        2
  2       252         30    0.28692    0.14352     0.28692      0.47574
  3       345           0    0.36314    0.00000     0.36314      0.03279        1
  4       121         12    0.16550    0.07219     0.16550      0.52571
  5       221         56    0.26002    0.22921     0.26002      0.31079
  6       183         40    0.22571    0.17809     0.22571      0.43955
  7           0         80    0.00000    0.29950     0.29950      0.75728
  8         12         10    0.02925    0.06296     0.06296      0.37724
  9         78         54    0.11906    0.22304     0.22304      0.21690        2
 10      190         30    0.23215    0.14352     0.23215      0.43887
 11        39       100    0.07080    0.35407     0.35407       0.03803      1, 2
 12    1500         20    1.09339    0.10589     1           0.93453        1

i 1i 1j 1i 1jB  = min{1, 3x & 3x } = 1 for i = 12;  3x  & 3x  otherwise (1) 3/4 3/4 3/4 3/4

i 2i 2j 2i 2jB  = minax{1, 2x & 3x }  = 2x & 3x   for all i   (2) 3/4 3/4 3/4 3/4

The last column contains permanent random numbers for use with Poisson PRN sampling.

Using those PRN’s a Brewer-selected sample for fruit would contain sites 3, 11, and 12

i isince for each site B  exceeds PRN.   Similarly, the Brewer-selected sample for vegetables(1)

would contain sites 1, 9, and 11.  A maximal-Brewer-selected sample for both fruit and

i ivegetables, with B  exceeding PRN, would contain sites 1, 3, 9, 11, and 12.  

2The expected sample size for the vegetable sample is 2 since n ' = 1, and no site is chosen

with certainty for the vegetable sample.   The expected sample size for the fruit sample is
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U i U i(approximately) 2.91 and for the combined sample is 3.66 (3 B  and 3 B  respectively).(1)

     

The disadvantage of using Poisson sampling for maximal-Brewer selection is that the

realized sample size may not be close to what we expect it to be.   For the vegetable

sample, we expected two selections, but got three.  The advantage, as demonstrated in the

example, is that we can decompose a maximal-Brewer-selected sample into its

components, in this case, the fruit and vegetable samples.   This is useful when there are

multiple enumerations (measurements) of a single sample but different survey items are of

interest on different occasions.  For example, if we are are only interested in fruit in odd

numbered months and vegetables in even numbered months, we can restrict our contacts

to the relevant sample in the appropriate months.    

Homework for Lesson 8

  
                                                                           ^      

i i iSuppose we have a single stage sample where t   =  t  =  y .   Rewrite the Horvitz-Thomson
 
and  Sen-Yates Grundy variance estimators  in equations (6.14) and  (6.15) of  Sampling:

Design and Analysis (p. 197), respectively.   Show where in Theorem 6.3 the latter requires

the  sample size to be fixed.  (As a consequence, the SYG  variance estimator  fails  for  the

                                               ^
S i iexpansion estimator, t = 3 y /B , under Poisson sampling, but the HT  variance  estimator

does not.) 

Using the example of maximal-Brewer selection in the table on the previous page, suppose

we increased the selection probability of every site to at least 0.1.   What is the change in

expected sample size?  In actual sample size?  Answer the same two questions with the

the minimum selection probability raised to 1/3.    
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Lesson 9: Complex Samples

Comments on Chapter 7 of Sampling: Design and Analysis

Estimating S2

 
Equation (7.4) can be expressed in a more practical manner as 

 
^                                             ^

S i i U S  iS    =  [N/(N ! 1)]  3  w(y   ! y6 )  / 3 w2 2

                                                           ^
S i i S  i  U      =  [N/(N ! 1)] { 3  wy / 3 w ! y6 } 2 2

 
 
                                      ^

S i i S  i  U       .  3  wy / 3 w ! y62 2

            ^
U S i i  S iwhere y6  = 3 wy /3 w.  

Effective Sample Size

Recall a generalized Wilson confidence interval for  a proportion  under  stratified  simple

random sampling looks like

 
                           ^                          ^         ^

 str "/2 "/2 str str "/2                (½ ! p ) z /n* ± z {p (1 ! p )/n* + z /(4n* )}2 2 2 ½ 

      ^
strp = p  + ))))))))))))))))))))))))))))))))))))))))))))                             (S14)

       
"/2                                                  1 + z /n*2

                                                                                                        

                       ^         ^      ^ ^
str str strwhere n* = p (1 ! p )/V(p ) is the effective size  of the  STSRS sample.   Observe  that

                        ̂         ̂           ^ ^                 ̂  ^
str str str strthat n* = n{p (1 ! p )/n} / V(p )} = n/[deft(p )]  under STSRS.  We can generalized the2

the concept of an effective sample size for any estimation strategy by defining:
                                                                                          n* = n/[deft(estimation strategy)] .  It is common to use the same term, “the effective sample2

                                                   ^size,” to refer to its estimate, n/deft .   2
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After a sample has been drawn, it is more productive  to estimate design variances directly

rather than computing design effects and effective sample sizes.   The notion of an (esti-

mated)  effective sample size  has the most  practical relevance  in a generalized Wilson

confidence interval:  

                        ^                                          ^       ^
      "/2 "/2 "/2          (½ ! p) z (1 ! f)/n* ± z {(1 ! f)p(1 ! p)/n* + z (1 ! f) /(4n* )}2 2 2 2 ½ 

       ^
p = p +  )))))))))))))))))))))))))))))))))))))))))))))))))))))  
          

"/2                                                  1 + z (1 ! f)/n*2

                                                                                                                 ^
S i i  S iwhere S is a potentially stratified and multi-stage sample of elements,  p  =  3 wy /3 w,

                                                           ̂      ^  ^ ^                      

iy  is either 0 or 1, and  n* = (1 ! f) p(1 ! p)&V(p).   
                                

A further useful generalization is to the estimation of a proportion within a domain; that is,
 

d U i i U i i ip  = 3 yu /3 u , where y  is again 0 or 1, while u  = 1 when i is in the domain !labeled d !

dand 0 otherwise.  A generalized Wilson confidence interval for p  is

                           ̂                                          ^         ^
 d "/2 d "/2 d d d "/2 d              (½ ! p ) z (1 ! f)/n * ± z {(1 ! f)p (1 ! p )/n * + z (1 ! f) /(4n * )}2 2 2 2 ½ 

        ^
d dp  = p  +  ))))))))))))))))))))))))))))))))))))))))))))))))))))))))         (S28)

           
"/2 d                                                      1 + z (1 ! f)/n *2

                                                                                                       

               ̂                                                         ^        ^     ^  ^                     
d S i i i  S i i d d d dwhere p  = 3 wuy /3 wu and  n * = (1 ! f) p (1 ! p )/V(p ).   

Even within a generalized Wilson interval, however, the effective domain sample size is no

dmore than an ad hoc  construct.   In actual application,  one can replace  (1 ! f)/n *  in the

                                                                              ̂ ^     ^         ^ 
d d dmany places it appears  in equation (S28) by Var(p )/[p (1 ! p )].                   

The generalized Wilson confidence interval for an estimated proportion as described above

                               ^       ^
dis undefined when p  (or p) is either 0 or 1; that is, every sampled unit has the same value

                                                                                                                  ̂  ^     ^        ^
i d d dfor y .  When that happens, both the numerator and denominator of  Var(p )/[p (1 ! p )] is

zero.   Design-based theory fails us, and we are forced to assume a model.   

iThe simplest model postulates that the  y   are uncorrelated  random variables  with mean 

d dB  .p   when the sampling faction is very small,  which we will assume to be true for conven-

ience.   The  model further stipulates that the design is ignorable.  As a consequence, it is

                                                              ^
deasy to see that the model variance of p  is 
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      ^
M d S i i S i i d d S  i S  i d dV (p ) = [3 (wu ) /(3 wu) ]B (1 ! B ) = [3 w /(3 w) ]B (1 ! B ), 2 2 2 2

    d                 d                                                                  

dwhere  S   is that part of the sample in domain d,  while the model variance of the simple

M S(d) i d d d ddomain sample mean is V (3 y /n ) = (1/n )B (1 ! B ).  Thus, the model-based effective

sample size, which can be plugged into equation (S28), is 

                                                 ^   
d (model) d M S   i d   M d S  i  S  in * = n [V (3 y /n )] / V (p ) =  (3 w) /3 w .  2 2

 d  d                d                                                                                                                                

Homework for Lesson 9

iEstimate S  based on a stratified simple random sample of y  values assuming there are H2

h hstrata, N  population units per stratum, and n  sample units per stratum.   Is this estimator

unbiased?  Under what conditions is it design consistent? 

Look at the data set nybight.dat provided with Sampling: Design and Analysis.   Treat the

data collected in 1975 as a stratified sample, where data is strata 1 and 2 were selected at

a 1 in 100 rate, while data in the other strata were selected at a 1 in 200 rate.  

a. Compute the epmf and empirical distribution functions for the  number  of  species

caught per trawl.

b. Estimate the mean and median  number of species caught  per trawl.   What is the

design effect for the estimated mean?

c. Estimate the  fraction of trawls with  less than 7  species caught?    Provide a 95%

confidence interval for this fraction.  
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Lesson 10: Variance Estimation in Complex Samples

Comments and Extensions on Chapter 9 of Sampling: Design and Analysis

Linearization Without Calculus

Section 9.1 shows how differential calculus can be used to linearize complex statistics.  In

survey  sampling  the  statistics  needing  linearization  often  involve  the  ratio  of  Horvitz-
       
Thompson estimators, the poststratified expansion estimator,  or combinations of ratioing

and poststratification.  More complicated statistics requiring linearization will be discussed

in Lesson 14.

Instead of invoking calculus directly, these notes rely on a variant of equation (S2).  When

Pz is O (1/¾n),  

(1 + z)   =  1 ! z + g  . 1 ! z,  !1

         
                                                                               ^                                 ^   ^   ^

P x x  x P y   x y  xwhere g = O (1/n).   In particular, when(t  ! t )/ t   is O (1/¾n) with B = t / t  and B = t / t , 

Pthe equality can be used (see equation(S6))  to show that, dropping O (1/n) terms, 
 

  ^                       ̂             ^
x y y x xB ! B . (1/t ) [(t  ! t ) ! B(t  ! t )].                                                                                 (S29)

Notation for a Complex Sample

Before proceeding, we need to establish the notation to be used  throughout this discussion.

Suppose we have a stratified multi-stage sample of elements, S.   Let i denote an element,

h hh = 1, ..., H one of the first-stage strata (H may be 1), S  the sample of n   psu’s  selected

hjfrom stratum h, and j one of those psu’s.  Let S  the set of sample elements selected from

hpsu j of stratum h, hereafter called psu hj for convenience.   Analogously, let U  denote the

hjpopulation of psu’s in stratum h,  U   the  population  of elements in psu hj, and U the union
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hj hof the U  across all the psu’s in U  and all the H strata. 
  

Suppose the psu’s  are selected from each stratum using  Goodman-Kish or  Rao-Sampford
 
sampling, both of which are equivalent to simple random sampling when all the psu’s in the

stratum have identical selection probabilities.  The selection of elements from each psu may

hjitself be a stratified multistage sample or, conversely,  U   may contain a single element,

hjwhich is also the sole member of S .  

hj i|hjLet B  be the probability of  selecting  psu  hj,  and  B   the  conditional  probability of sub-

hjsampling element i within selected psu hj.  The selection probability for element  i 0 U  is

i hj i|hjB  = B B .  We are interested in this discussion with a Horvitz-Thompson estimator  of the

         ^                                                              ^
y S i i  y S i i i iform: t  = 3 y /B ,  which can also be written: t  = 3 wy, where  w = 1/B   is the sampling

weight of element i. 

We assume that the population of psu’s in each stratum is such that the following variance

estimator is reasonable:     

   
              H    ^

y h h i i i i hV(t )  =  3  [n /(n  !1)] { 3  (  3   y /B )    ! ( 3      3  y /B ) /n } 2 2

  h hj  h  hj          h=1                    j0S  i0S                j0S  i0S                                                                                                                                                   (S30)
h h i i i i h         =  3  [n /(n  !1)] { 3  (  3   w y )    ! ( 3      3  w y ) /n }.   2 2

There may be an upward bias in equation (S30) from using the with-replacement variance

                                                                                                                 ^
y(hj) S   i i|hjformula (see equation (S23)) for the first stage of sampling.   Recall that  t  = (3  y /B )2 2

hj                                                                                                                                
                                             ^                                      ̂                                                  

y(hj) U  i i|hj y(hj) S   i iis an unbiased estimator of t  =  (3  y /B )  + V(t  ), so that the (3  y /B )  terms  in2 2 2

hj   hj                                                                                                                
equation (S30) carry within them the full contributions to the variance from  the  later stages 

hjof sample selection.  Thus, even when the B  are not ignorably small, equation (S30) will

have only a minuscule bias if the contribution to variance from the first stage of sampling 
is negligible.
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The Ratio Estimator

                                                                                                                           

y  xThe  ratio  estimator  for  B = t / t   under  the  stratified  multi-stage  sampling design  just
                     ^      ^  ^

y  x S i i S i i hdescribed is  B  =  t / t  = 3 (y /B )/3 (x /B ).   Letting n = 3 n , we see from equation (S29)H 

                  ̂
x x x Pthat when (t  ! t )/t  is O (1/¾n),   

 ^                       ̂                  ^
x y y x xB ! B . (1/t ) [(t  ! t )   !   B(t  ! t )].                                                                                 

                       ^       ^
x y x y x         =  (1/t )[(t  ! Bt )  !  (t  ! Bt )]  

                   

x S i i i U i i         =  (1/t )[3 (y ! Bx)/B   ! 3 (y ! Bx)]

x S i i U i          =  (1/t )[3 d /B    !  3 d ], 

                                                                                                    ^                               ^  
i i i d xwhere d  = y  ! Bx .  Consequently, the mean squared error of B is approximately  V(t )/t ,2

           ^
d S i iwhere t  = 3 d /B .  

Observe that it is the number of sampled psu’s, n, not the number of sampled elements that

needs to be arbitrarily large for asymptotic theory to be invoked.  A common rule of thumb

is that n should be at least 20.   For a fuller treatment of  asymptotics in this context, see

Krewski and Rao (1981).   

                                                      ^  
We can estimate the variance of B with 

                    H
   ^  ^          ̂ 

x h h i i i i hV(B) = (1/t ) 3  [n /(n  !1)] { 3  (  3   w e )    ! ( 3      3  w e ) /n },                            (S31)2 2 2

    
h hj  h  hj                   h=1                    j0S  i0S               j0S  i0S   

                       ^
i i i iwhere e  = y  ! Bx  . d .  This estimator has good design-based properties under mild cond-

                                                                                             ^   
itions.  It also serves as a good estimator of the variance of B under the model in  equation

i q(S7) when E(,, ) is bounded for i and q from the same psu and zero otherwise. 

                                                          ^        ^
y yr x xThe combined ratio estimator for t ,  t  = t B, requires that t  be known.  When it is, a good

                                                                                                           ^
yrestimator for the design mean squared error and model variance of t  is 
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                      H
  ^  ̂          ^     

yr x x h h i i i i hV(t ) = (t /t ) 3  [n /(n  !1)] { 3  (  3   w e )    ! ( 3      3  w e ) /n }.                            (S32)2 2 2

 h hj  h  hj                   h=1                    j0S  i0S                j0S  i0S       

Some textbooks (like Sampling: Design and Analysis) advocate estimating the design MSE
 
                                                                   ^

x  xof combined ratio estimator without the (t / t )  factor in equation (32).   There is also some2

debate about which version is truly the linearization variance estimator.   Both have been

                                                                             ^ 
given that name since each relies on linearizing B as we effectively did in equation (S29).

The Poststratified Estimator 

ySuppose our goal is to estimate a total like t  from a stratified multi-stage sample.  Some-

times, the population of elements, U, naturally divides into G mutually exclusive groups, U ,1

g y..., U .  If the population size, M , is known for each group, a postratified estimator for t  isG

                   
                      
            
  S i gi i         G          3 yu /B
 ^

yp g t   =  3   M   ))))))))) ,                                                                                            (S33)

 S gi i         g=1         3 u /B
                      
                  
                      ^

 g g      =  3 M bG  

                                                                                  

                                                                                   ^
gi g g S i gi i   S gi iwhere u  = 1 when element i 0 U , 0 otherwise, and b  = y6  = 3 (yu /B ) /3 (u /B ).  g

For an example of when a poststratified estimator might be used,  suppose we wished to

estimate the number of registered voters in the US who plan to vote in the next Presiden-

tial election.   For simplicity,  assume that  all registered voters  reside in the US, and our

survey has no nonresponse.  We draw  a sample of registered voters by first stratifying by

region  and then drawing a  multi-stage sample of  individuals,  starting  with a sample of

counties, and then subsamples of blocks within counties,  dwelling units within blocks,  and

finally registered voters within dwelling units.   Suppose further that we know the number

of registered voters in these four groups: black males, nonblack males, black females,  and

                                                             ^  
ypnonblack females.   We can then use  t   to estimate the total number of registered voters
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gwho plan to vote.   In this example, M  is the number of registered voters in group g (one

ig iof the four groups),  u  is 1  if sampled individual i is in group g, and y  is 1 if the registered

individual plans to vote.     
 

                               ^
g S gi i gIn equation (S33), M   =  3 u /B  is an unbiased estimator for M .   Depending of how the

                                                                                                         ̂ 
g g g Pgroups are defined, if may or may not be reasonable to assume  (M  ! M )/M  is O (1/¾n)

gi Pfor each g.   At the very least,  there  should be one  or  more positive  u   value in  O (n)
 
sampled psu’s.  Twenty such psu’s is a popular rule of thumb,  although this rule is often

breached in the trenches for practical reasons.     

                                                      ^                                                    ^
g g g P ypSuppose we can assume (M  ! M )/M  is O (1/¾n) for all g so that t  is design consistent.

g i0U i gi U gi y g g y i gi giLetting  b   =  (3 yu / 3 u ), we can express t  as 3 M b  = t .   Treating  yu   and u  inG 

                     ^
g g i ieach b  (and b ) as y  and x  in B, we see that  

 ^                         ^
 yp y g g S gi it  ! t  = 3  (M /M )  3 d /B . G

gi i gi g gi giwhere d  = yu  ! b u .  Since d  is only positive when i 0 U  is in group g, we can reexpressg

the last equation as

    
 ^                 ~          

 yp y S i i S i i t  ! t  = 3 w d   . 3 w d , 

                                                    
                                   ~            ^

i i g i g g iwhere d  = y  ! b  and w = (M /M )(1/B ) when  i 0 S (that part of U  in S).  Notice that withg g

                                                            
                                                      ~    ̂          ~    

i yp S i ithe reweighted sampling weights, w ,  t  = 3 wy.   

Also using the reason  we have been employing throughout this discussion,  a good esti-
                                                                      ^  

ypmator for the design mean squared error of t  has the form: 

                 H                                   
   ^  ̂                                                  ~                          ~   

yp h h i i i i hV(t ) =  3  [n /(n  !1)] { 3  (  3   w e )   ! ( 3      3  w e ) /n },                                   (S34)2 2

               
 h hj  h  hj            h=1                   j0S  i0S               j0S  i0S       
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           ~ 
i i i q0S q q gq q0S q gqwhere w is defined as above, and e  = y  ! (3 w y u / 3 w u ) for i 0 U .    g

                                                                                 ~
i iSome would replace the  w  in equation (S34) with  w .   The interested reader can confirm

                                   ^ ^                                                                           ̂ 
yp ypthat our version of  V(t )  is the superior estimator for  the variance of  t  under the group-

i g i i i qmean model y  = $  + ,  for i 0 U , where the ,  have mean zero,  and  E(,, ) is boundedg

for i and q from the same psu and zero otherwise.  It is a conceptual model like this one that

justifies using poststratification in the first place

                                                                        ^
yrThe model variance/design MSE  formula for t   in equation (S32) can be put in the same

i form as  equation  (S34)  by keeping  the same definition for  e   as in  (S31)  and  setting
                     
  ~            ̂

i x  x iw  =  (t / t )w.   The estimators  in equations  (S32)  and (S34)  are closely related  to the
     
weighted-residual variance estimator in equation (S11).  The “weight” in that name refers

                                                                               ̂                                                        ^
x  x g gto factor adjusting the original sampling weight: (t / t ) in equations (S11) and (S32), (M /M )

in equations (S34).  

Poststratification in an Estimated Ratio

y  xIn practice, we often use poststratification to help estimate a ratio like  B = t / t .  The esti-
 

                                       ^    ^  ^              ^                                           ^
P yp  xp xp ypmator is that case is B  = t / t , where t  is defined analogously to t .  In the planning-to-

vote example, suppose our estimation target is the fraction of registered voters who plan

to vote, and rather than knowledge of the number of registered voters  in each group,  we

know only  the number of US residents in each group (in fact, we may only know the fraction

of US residents in each group).  These numbers come  from  a larger survey, deemed to

gbe virtually accurate for our purposes.   Not only are the  M  changed, but the sample is now

ig iof all US residents,  u  is 1 if resident i is in group g  (0 otherwise), and x  is 1 if resident i

is registered to vote.  

Using the tricks  we  have been  employing repeatedly  in  this discussion,  a good mean-
                                            ^

psquared-error estimator for B  is
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                       H                                      
    ^   ̂           ̂                                          ~                           ~   

P xP h h i i i i hV(B ) = (1/t ) 3  [n /(n  !1)] { 3  (  3   w e )    ! ( 3      3  w e ) /n },                          (S35)2 2 2

   
 h hj h  hj                     h=1                    j0S  i0S                 j0S  i0S    

                         
               ~            ^                              ^                                ^

i g g i i i P i q0S q gq q P q q0S q gqwhere w = (M /M )w, and  e  = (y  ! B x) ! 3 w u (y  ! B x ) / 3 w u  for i 0 S .  g

The Jackknife

Although the MSE estimator  in equation  (S35)  looks very similar to the one  in  equation
   

i(S31), computing the e  is considerably more challenging.   This is one reason why many

would prefer using a jackknife estimator  in this case.   Armed with the jackknife replicate

i(hj)weights, w , defined on page 305 of Sampling: Design and Analysis, one can calculate 

g S i(hj) i gi   S i(hj) gi              3 M 3 (w y u ) /3 (w u ) G 

 ^ 
p(hj)B  =  )))))))))))))))))))))))))))                                                                 

  
g S i(hj) i gi   S i(hj) gi              3 M 3 (w x u ) /3 (w u ) G 

for every sampled psu.  The text’s equation (9.8) becomes in this context

      
      ^   ^                                   ^         ^

JK p h h p(hj) pV (B ) = 3 [(n ! 1)/n ] 3  (B  ! B ) .  H 2

                                      
 h                                     j0S      

The jackknife  can  fail  (usually by being biased upward)  when  the  first-stage  selection
  

hjprobabilities  (the B )  are not all small,  but that  weakness is shared by the  linearization

estimators in equations (S31), (S32), and (S34).  Although the jackknife should not be used

directly to estimate variances for percentiles, it can be used  within Woodruff’s method  for

determining  confidence  intervals around percentiles.  
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Variance Strata and Variance Psu’s
 

                                                                                       ^ 

PSuppose we wanted to use BRR to estimate the MSE of B .   This can easily be done when

h hn  = 2 for all h, but what is that were not the case?   As long as n  is even for all h, we can

hrandomly assign the design psu’s within each S  to one of two equally-sized variance psu’s,

and then treat the two variance  psu’s as h1 and h2 in a BRR scheme.   This procedure is

no more biasing to MSE  estimation than  pretending  the  first stage of  sampling  is  with

replacement.  

In a sample with a large number of design psu’s we can use a similar device with the

jackknife, thereby reducing the otherwise cumbersome number of replicate weights needed

h hfor each element.  When n  is divisible by an integer, say k < n , we can randomly assign

hthe n   sampled design psu’s into k variance psu’s and then treat the variance psu’s as the

psu’s when computing replicate weights and jackknife MSE estimates.   

In many design, there is only one psu sampled per stratum.   As noted in Lesson 7, a pair

of design strata can be treated as a single variance stratum for MSE-estimation purposes.

This pairing must be done before looking at the survey results.   If anything, using variance

strata biases MSE estimation upward. 

Another example of a variance stratum is a self-representing psu (see page 242 of

Sampling: Design and Analysis).   These are psu’s selected  with certainty in the design.

For MSE-estimation purposes, they are variance stratum.   The second-stage sample units

within a self-representing psu (or collections of those ssu’s) become variance psu’s for

MSE-estimation purposes.   
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Confidence Intervals for Percentiles

The text describes Woodruff’s method for determining a confidence interval for a percentile

i(pages 311 and 312).   Let F(.) denote the distribution function of y  values in the population,

qq  is a  target percentile if fractional form,  and  2  the value at the  q’th percentile, so that

qq = F(2 ).  In this context, an asymmetric confidence interval around the estimated percen-

        ^      ^
qtile,  2  = F (q),  is appropriately constructed using a  two-sided Wald  confidence interval-1

around q  rather than a Wilson interval, because q is not an estimate.  The picture on page

312 shows how a symmetric confidence interval around q on the y-axis  is converted into

                                                  ^
qan asymmetric interval around 2  on the x-axis.       
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                                      The Delete-a-Group Jackknife

Many surveys of establishments (businesses, farms, schools) are single-stage element

sample where the element is the psu.  Consequently, these surveys have hundreds, if not

thousands, of design psu’s selected from within a smaller, but still often large, number of

hvariance strata.  When all the first-stage selection probabilities are small and n  > 6 for all

h, Kott (2001) proposes the following delete-a-group (DAG)  jackknife routine for MSE

estimation purposes.

1.  Sort the psu’s by stratum, and then systematically assign them to R  mutually

exclusive groups.

    

2.  Call the complement of each of group r, the r’th jackknife replicate.

3.  For element i within a psu in stratum h, define

i h h hr             w n /(n  ! n ) when i is in the r’th jackknife replicate
i(r)w   =                                                                                                                (S36)

                        0      otherwise (when i is in the r’th group),

hrwhere n  is the number of psu’s in stratum h and group r.  

                                                                            ^ 
i4. When a estimator of a smooth statistic,  2, is computed with the  w,  and each of the

                                           ^            
(r) i(r) replicate estimators, 2 , is computed with its own set of w ,  the delete-a-group MSE

                                 ^estimator for 2 is
           

              ̂       ^                            ̂   ^ 

DAGJK (r)V (2) = [(R!1)/R] 3 (2 ! 2 ) .                                                                     (S37)R 2

  

An MSE estimator like that in equation (S37)  is often called  “a grouped jackknife.”    Kott

showed that when the  jackknife replicate weights are computed as in equation (S36),  this

MSE estimator  is close to  unbiased  under  the conditions  described  above.    Kott  also

hproposes an extended DAG jackknife for samples with some smaller n  values.
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The National Agricultural Statistics Service uses the DAG jackknife with 15 replicates (i.e.,

R = 15).  They recommend computing confidence intervals using a Student’s t distribution

with 14 degrees of freedom.  That is  good  advice  for both  the  DAG jackknife  and  the

random-groups method:  confidence intervals  should be  computed using a  t  with  R!1
   
degrees of freedom.  

NASS uses the DAG jackknife with Poisson sampling.   Kott (2004a)  describes when that

approach is appropriate. 

Homework for Lesson 10

iDo Exercises 9a (treating finalwt as w)(starting on p. 317) of Section 9.7 in Sampling:

Design and Analysis.  (When age of the youth is missing, treat it as being over 14.)

Using the data in the first three strata of syc.data, repeat  Exercise 9a estimating the

variance with a linear variance estimator, with  jackknife, and with a DAG jackknife based

on 10 groups.  Compute a 95% confidence interval for the proportion using the DAG result.
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Lesson 11: Two-Phase Sampling

Comments on Section 12.1 of Sampling: Design and Analysis

Some may wonder why this course has jumped ahead to a section in Chapter 12 before

tackling the important topic of nonresponse, which Professor Lohr treats in Chapter 8.   The

reason is simple: one of the principal ways of handling nonresponse is to treat the

mechanism that results in responses for only a subset of the sample as an additional phase

of sampling.   Note the word “phase” rather than “stage.”  Two-stage sampling is an very

special case of the much broader concept of two-phase sampling.  

Two-Stage Sampling

In two stage sampling, one begins by grouping the elements of interest into clusters and

then selecting these clusters, called “primary sampling units” or “psu’s,” at random.  The

actually sampling mechanism may be stratified.  In addition, different psu’s may have

different selection probabilities.   After this first phase of sampling, a random subsample of

elements are selected from each sampled psu.   Again, the actual sampling mechanism

may be stratified with different elements having different selection probabilities.  What

makes a two-stage sampling procedure special is the second phase of sampling has the

following properties: 

Independence – The selection of an element in one sampled psu is independent of the

selection of an elements from another sampled psu. 

Invariance – The probability of selecting an element from a sampled psu does not depend

on which of the other psu’s were sampled in the first phase. 

The independence  property of  two- (or more)  stage  sampling is  what  makes  variance
 
estimation so simple when the first stage of selection is conducted with replacement.  When

                                           ^       ^
j gj and g are sampled psu’s,  t  and t   where each is an unbiased estimator  based  on a sub-

  
sample of elements, are independent. 

Invariance is more subtle.  This property allows one to easily estimate the overall selection
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iprobability of each sampled element i, B , as the product of the selection probability of the

j+psu j containing it, B , and the selection probability of i at the second stage of sampling

i|j i j+ i|j i|jgiven that psu j was chosen in the first stage, B ; that is, B  = B B .  Without invariance, B

not be well defined, because it depends on which psu’s are selected in the first phase of

sampling.  

An Example

One of the simplest examples of a two-phase sample without either the independence or

invariance properties is the following.  Suppose we had a list of 10,000 potential business

addresses.   We sampled 1,000 addresses, and mailed each a simple questionnaire.

Based on the responses, we determined that 800 addresses could still be valid.  The others

were returned by the post office as undeliverable or the addressee responded  that it was

not a  business.   A simple random subsample of 200 of the 800 addresses was then drawn,

with each to be given a lengthy questionnaire by personal interview. 

The psu’s and ssu’s in this example are both elements.  Neither are clusters of elements.

Effectively, the first-phase sample was divided into two strata.   Stratum 1 contained those

addresses that could still be associated with businesses.  Stratum 2 contained the rest.

Since we are interested in estimating totals from stratum 1, we plan to interview the

subsample drawn from that stratum.  In principal, we treat each element in stratum 2 as if

it were selected for the second-phase sample and assigned values of 0 for every survey

variable.   

Consider two elements selected in the first phase of sampling and assigned to stratum 1.

The probability of subsampling each of these distinct first-phase units (psu’s) is 200/800.

The probability of subsampling both is (200/800)(199/799).  They are not independent.

What is the probability of one of those addresses being selected in the two-phase process?

It is tempting to compute that value in the following manner.  The probability of selecting it

in the first phase of selection is 1,000/10,000 or 0.1.   The probability of selecting it in the

second phase is 200/800 or 0.25.   That makes the address’s overall selection probability

0.1 x 0.25 or 0.025.  Wrong!  The actual probability depends on how many of the 10,000

potential business addresses would have been assigned to stratum 1 had they been

sampled.  Suppose that number, which in practice we are unlikely to know, is 7,500.   This
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means that of the 10,000 addresses, 7,800 would have been assigned to stratum 1.  If we

had subsampled 200 addresses no matter how many first-phase addresses were assigned

to stratum 1, then the overall selection probability for such an address would be 200/7,500

or approximately 0.0267.  

We are ignoring here the small possibility that there may not have been 200 addresses in

stratum 1 after the first phase of sampling.  Defining exactly what a two-phase sampling

process is when there is no invariance property can be a tricky business.   In principal, there

should be firm rules governing how the second phase sample is to be drawn even though

the actual design can vary depending on the first-phase sample.   In the above example,

we always draw 200 elements from stratum 1 (and, conceptually, all elements from stratum

2), no matter how many first-phase elements fall into that stratum.   For completeness, we

can add that if fewer than 200 first-phase elements were to be assigned to stratum 1, then

we subsample them all. 

The Double Expansion Estimator

iWithout an invariance property, the text correctly conditions D  on the vector  Z  although

there is no actual vector algebra in Professor Lohr’s treatment.  Those uncomfortable with

vector notation can replace Z with S , as we do in the following note.(1)

                       ^
yThe estimator t  in equation (12.1) of the text is not a Horvitz-Thompson estimator when(2)

iw  for i 0 S  varies depending on which other elements are in S .  In that circumstance(2) (1) (1)

^
 yt  is a double expansion estimator. (2)
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                  The Double and Reweighted Expansion Estimators

The Setup

Suppose S  is drawn using a stratified random sample of elements.   Unlike the text, we(1)

hwill use H to denote the number of first-phase strata.  H can be 1.  Let F  denote the set of

h hN  elements in first-phase stratum h elements before sampling, of which n  are selected for

S .   (1)

After the first-phase sample has been drawn and surveyed, it is divided into G groups for

1 2 Gsubsampling, S , S , ..., S .  As a practical matter, the number of groups (G) cannot be too

large, because we will be building an asymptotic framework around  the subsample within

g geach group. We let M  denote the number of first-phase-sample elements in S .   (This is

gdifferent from previous lessons, where M  was the number of population elements in group

g.)

We will investigate two subsampling schemes: simple random sampling within groups and

analogous Bernoulli sampling.   We start by designating a putative sample size per group,

g g g gm , which is large (say, at least 20).   When m  > M , all of all of S  is selected for the

gsubsample under either scheme.   Otherwise, under STSRS, m  elements are subsampled

gfrom S  using simple random sampling.  Under the stratified Bernoulli scheme (STBRN),

i g g i q g g gP(D |S ) = m /M  and P(D D  |S ) = (m /M )  for i and q distinct members of S .  The(1) (1) 2

groups under Bernoulli sampling are not technically quasi-design strata since elements are

subsampled independently within them.     

Let us assume that the population and first-phase design is such that a reasonable variance

                      ^ 
yestimator for, t , the exists-only-conceptually single-phase expansion estimator is (1)

                                        H
   ^  ̂        ^

y i i h h i i i i h V(t ) = V( 3   w y)  =  3  [n /(n  !1)]{  3  (w y)  ! ( 3  w y) /n  };                          (1) (1) (1) 2 (1) 2

   h h                  i0S            h=1                   i0F                 i0F(1) 

that is, the with-replacement variance estimator.  Under stratified Bernoulli subsampling, if

ythe variance estimator above is reasonable for  V(t ),  then  the following  is reasonable(1)

for the variance of the double expansion estimator:  
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                                              H 
            ^          ̂     ^             ^                                         ^                   ^

STBRN y i i h h i i i i h V (t ) = V(  3   w y)  =  3  [n /(n  !1)]{  3  (w y)  ! ( 3  w y) /n  },                   (S38)(2) (1) (1) 2 (1) 2

    h h                          i0S           h=1                  i0F                 i0F(1)

            ^                                               ^ 
i 2 i i iwhere y  = w Dy.  This is because the y  are independent under Bernoulli subsampling, just(i)

                                                                                                                ^  
ias in two-stage sampling.  Invariance has been lost ! the definition of y  depends on the 

gsize of M , but not independence.   

                                                                                 
gAs the m  grow asymptotically large, it turns out that the expected value of the right-hand

side of equation (S38) is  the same for the STSRS  and  STBRN  subsampling  schemes.

                  ^ 
i iThat E[(w y) | S ] is identical under both is not hard to show.   Proving the near equality(1) 2 (1)

                ^
F i iof (3  w y) | S ] under the two schemes is a tedious exercise we leave for the hardiest(1) 2 (1)

h         
students.  Among other things, one must  consider different  asymptotic assumptions about
 

hthe n . 

                                                  ^  ̂
yAlthough the  expectations of V(t ) as expressed by the right-hand side of equation (S38)(2)

are  the same  under the  two schemes,  the actual variance will be smaller  under STSRS

gsubsampling  when all the  m   are large.   To see why,  observe  that the  second-phase

                      ^                         ̂                                 ^
y y yvariance of t  (which treats t  as an estimator for t  given the first-phase sample) is (2) (2) (1)

 
           ^

STSRS y g g g g i i i i g g V (t |S ) =  3     (1 ! m /M )(M /m ) 3 (w y    ! 3  w y /M ) /(M !1)  (2)  (1) 2 (1) (1) 2

                         
   g   gg g                       g:m #M                                 i0S            i0S

 

g g g g i i i i g                          .  3     (1 ! m /M )(M /m ) { 3 (w y)    ! ( 3 w y ) /M }  (1) 2 (1) 2

 
  g g                                                                    i0S                  i0S  

 

i i i g g i i g                          =  3     {  3 ( w  ! 1) (w y)    ! (1 ! m /M ) ( 3 w y ) /m } (2) (1) 2 (1) 2

 
g  g                                       i0S                                                     i0S 

                                                                                           ^ 
i i i STBRN y                        #   3     {  3 ( w  ! 1) (w y)    =  V (t |S ),                            (S39)(2) (1) 2 (2)  (1)

g                                       i0S 

 

g g g gwhere g: m  # M  restricts the summation to those groups where m  is no greater than M

( most, if not all, groups in practice), since the other groups do not contribute to the second-

i iphase variance.  The final inequality in (S39) is strict when the mean of the  w y   values(1)

g g gis positive within at least one S  with M  > m .  
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Equation (39) suggests the following variance estimator with STSRS subsampling: 

                                           
         ^        ̂        ̂     ^                                                                                   

STSRS y STBRN y g g i i i gV (t ) = V (t ) ! 3 (1 ! m /M )( 3  w w y) /m ,                            (S40)(2) (2) G actual (1) (2) 2 actual

                                                              
 g                                                                      i0s

           
gwhere  m   is the actual  subsample size in  group g.   The last summation is over theactual

gsecond-phase  sample  in g, which is denoted s .  Equation (S40) ignores the impact from

i i i gthe second-phase  variance of ( 3 w w y) /m , because it is either ignorably small when(1) (2) 2

g g g gm  is large or irrelevant when m  = M  < m .  actual actual

              ^       ^                                        ̂       ̂              
STBRN y STSRS yBoth V (t ) in equation (38) and V (t ) in equation (S40) can easily extended to(2) (2)

include design where the “first phase” of sampling is more complex.   NASS draws a strat-

ified, multi-stage cluster sample of farms for its  major June survey of  crops  and  stocks.
 
Farms not on NASS’s  list  frame are  then  restratified  based on  their June responses  and

a subsample  of  them  is  drawn  for  enumeration in  NASS’s  December  survey.   NASS

computes a double expansion estimator based on this subsample, but employs an exten-

             ̂       ^
STBRN ytion of V (t )  to estimate its variance.   That  variance-estimating  strategy is biased(2)

upward in this context. 

The Reweighted Expansion Estimator

A popular  alternative  to  the double expansion  estimator  is  the  reweighted  expansion

estimator:

i i i                                  3 w w y(1) (2)

g^          G                  i0s  
yrw it  =  3     3  w  )))))))))))(2) (1)   

 g i i          g=1  i0S            3 w w(1) (2)

 g                                  i0s

i i                                  3 w y(1)

g            G                  i0s  
i        =  3     3  w  ))))))))    .                                                                               (S41)(1)   

 g i          g=1  i0S            3 w (1)

g                                   i0s



79

This estimator need not be unbiased, but it is design consistent under mild conditions when

g geach of the m  is either large or no less than  M .   We will assume the needed mild condi-
  
tions always exist in the remainder of this note.  

                     ^
y s i i i i iWe can write t   =  3 wy, where s is the entire second phase sample,  and  w = w w .(2) (1) (2)

                             ^                ~ 

yrw s i iIn a similar vein,   t   =  3 wy, where(2)

 ~
i i q q q i  q qw = w[  3  w / 3 (w w )] = w  (  3  w / 3 w )(1) (1) (2) (1) (1) (1)

                                                                           
g g  g g           q0S       q0s                           q0S       q0s

  

gfor  i 0 s , hence the name “reweighted expansion estimator.”   

qWhen the first-phase  sample is self-weighting  (all the  w   are equal),   the  reweighted(1)

estimator collapses into the double expansion estimator.  It will be convenient later to define

   ~                                                                ~          ~      
i  q s q g i i iSw  = (  3  w / 3  w ) for i 0 S , so that w = w w .(2) (1) (1) (1) (2)

g                    g                  

g  q q S q i i g g i g iSLet y6  = 3  w y /3  w , and d  = y  ! y6  for i 0 S .  This lets us rewrite y  as y6  + d , and(1) (1)

            g                        g                                                        
 
and the reweighted expansion estimator as                   

^              G                               
                             ~                 ~  

 yrw   i g s i it   = [  3    3   w  y6  ]  +  3  wd(2)

g              g=1  i0s

                                                                                                           
                                                                              ~

i  q q g s  i i         = [  3     3   w  (  3  w / 3  w )y6  ] +  3 wd (1) (1) (1)

                        
g  g           g                      i0s          i0S i0s

                                                   ~
i g s  i i         = [  3     3   w  y6  ]  +  3 wd (1)

                        
    g                               i0S

                                                  ~ 
i i s  i i         = [  3     3   w  y  ]  +  3 wd (1)

                        
    g                               i0S

                 ^                ~
yrw s  i i         =    t   +  3 wd.(1)
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                                                                                                         ^  
 yrwFrom this we see that the  second-phase  mean squared error of  t   is  approximately(2)

                                                                                     ~ 

s i i i iV(  3 wd | S ) (since w . w ).  Under the STSRS subsampling scheme, that is the same(1)

i ias  the  variance  in  equation  (S39),  only  with  d  replacing  y .   Here,  however,  since

S  i i3 w d = 0  for all g,  the  same  approximate MSE  applies for both STSRS and STBRN(1)

  g   

 subsampling.

                                                                 ^
yrwTo estimate the mean squared of error of t  under either subsampling scheme, one can(2)

use the right-hand side of equation (S38) with 

 ^      ^         ~          ^      
i g i i i gy  =  y6  + Dw (y  ! y6 )                                                                                                   (S42)(2)

                      ~                   ^                                            ̂                                                    
i i i i g i i g g i g   =  y   + (Dw  ! 1)(y  ! y6 ) . y  + (D [M /m ] ! 1)(y  ! y6 ),(2)

 
 

                             ^                                                     ^
g g s  i i  s  i i i g ifor i 0 S ,  where y6   =  3 w y /3 w , and e  = y  !y6  is used in place of the unknown d .(1) (1)

   g g                                                    
                                                                                                                 ^

i i g g iThe last inequality closely parallels the double expansion case where  y   =  D [M /m ]y  =

i i g g iy  + (D [M /m ] ! 1)y .  
                                                                                                                   

                                   ~                                                                               ̂
i i g g iSome would replace w  with the asymptotically identical w  = M /m , in y .  Our approach(2) (2)

has better model-based properties, but we will not show that here (a related point is argued

in the following lesson).                    
 

An alternative approach to MSE estimation for the reweighted expansion estimator under

either subsampling scheme is to use the jackknife:

      
           ^                                      ̂           ^

JK yrw h h yrw(q) yrwV (t ) = 3 [(n ! 1)/n ] 3  (t  ! t ) ,  (2) H (2) (2) 2

                                      
 h                                       q0F      

             ^  
yrw(q) i i(q)where  t  is  computed using equation  (S41) with the  w   replaced by  w  = 0  when(2) (1)

h h i hi = q, and by [n /(n  ! 1)]w  otherwise for  i 0 F .   See Kott and Stukel (1997).  (1)

The MSE estimators described above can remain nearly unbiased under appropriate more-

than-two-phase samples.  The National Agricultural Statistics Service uses a delete-a-group

jackknife with its surveys having multi-phase sampling designs.   The theory can  also be

extended to designs where there is a stratified multi-stage sample of elements the  “first”
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phase.    

The Reweighted and Poststratified Ratio Estimators

iIf a value x  is known for every element in the first-phase sample, then a mild extension of

the reweighted expansion estimator in equation (S41) is the reweighted ratio estimator: 

i i i                                       3 w w y(1) (2)

 g^           G                      i0s  
yrwr i it  =  3     3  w x    )))))))))))(2) (1)

 g i i i           g=1  i0S               3 w w x(1) (2)

g                                       i0s

i i                                     3 w y(1)

g            G                      i0s  
 i i        =  3     3  w x  ))))))))    .                                                                               (S43)(1)    

g i i           g=1  i0S              3 w x  (1)    

g                                     i0s

iThe source of these x  can be a survey of the first-phase sampled units or it can be a

combination of information gathered from such a survey and previously held data.  For

example, a first-phase sample of potential businesses may be surveyed for total annual

sales, while a second-phase subsample collects more detailed information, like annual

expenditures on electricity.   Alternatively, a proxy for annual sales may be available before

sampling.  The first-phase sample is surveyed merely to determine whether a  potential

businesses is still in operation, and if so, whether or not it has employees.   That information

is used to break up the first-phase sample into groups for the second phase of sampling.

Following reasoning analogous to that for the reweighted expansion estimator, the

reweighted ratio estimator can be shown to be design consistent under mild conditions.

Moreover, its MSE can be estimated with a jackknife or by using a (first-stage) with-

replacement variance estimator, like the right-hand side of equation (S38), with 

   ^        ̂        ~           ^ 
i i g i i i i gy  = xb  + Dw (y  ! xb ),                                                                                              (S44)(2)

                                                                                          

                                               ^
i i g g i i g   . y  + (D [M /m ] ! 1)(y  ! xb ),
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                           ^
g g s  i i  s  i i i g gfor i 0 S ,  where b   =  3 w y /3 w x.   Again, some would replace w  with M /m , as(1) (1) (2)

 g     g                                                                                 

in the last near equality. 

A useful way of conceptualizing the reweighted ratio estimator is as

^                 ̂    ^
 yrwr xg gt  =  3 t b ,    (2) G (1)

          ^  
xg i i iSwhere t  =  3   w x .   When all the x  = 1, we have the reweighted expansion estimator(1) (1)

  g                         
                        ̂      ^   ^                      ^

g i g g g xgwith  b  =  xb   =  y6  for i 0 S , and  t  being an estimate of the size of the set of elements(1)

in the original population meeting the definition of group g.  Call that set  U , and its size,g

(U)g g gM  to distinguish it from M  (the first-phase sample size of S ).  

xg U iNow suppose t   =  3  x  was known for each g from an outside source.  One could then
  g                                   

compute a  poststratified ratio estimator,

                      ^                   ^  

 yprx xg gt  =  3 t b ,                                                                                                              (S45)(2) G 

                                                    ^                                                                               ^       
 yrwr xgwhich is design consistent when t  is and usually has a smaller MSE because the t  do(2)

not have to be estimated using the first-phase sample.

                                       ^
yprxTo estimate the MSE of t  under either STSRS or STBRN subsampling, one can use a(2)

jackknife or a (first-stage) with-replacement variance estimator, like  the right-hand side of

equation (S38), with

   ^          ~            ^ 
i i i i i gy   =  Dw (y  ! x b )                                                                                                     (S46)(2)

                                   
 i i g g i    . e  + (D [M /m ] ! 1)e ,

                            ^
i i i gwhere e  = (y  ! xb ).

iThe most common postratified ratio estimator in practice is the special case where all x  =1.

In this context,  the poststratified ratio estimator is the poststratifed estimator,  which was
                                                                                                           
expressed  in  equations  (S33)  with  different  notation  and  without  a  second phase  of

                                       ^                    ^  
 yp (U)g gsampling.   Here, it is t  =  3 M y6 .  (2) G 
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Homework for Lesson 11

Using the data from the first three strata of syc.dat in Sampling: Design and Analysis (p.

445) as the first-phase sample.  Draw three simple random subsamples containing 20

whites, 20 blacks, and 20 of all other races (including those not responding to the race

iquestion), respectively.  From this subsample, using finalwt as w , estimate the total(1)

number of youths in the population who lived with their mother only (treating

nonrespondents to that question as if they did NOT live with their mother only) using a

double expansion estimator and then a reweighted expansion estimator.   Estimate the

variances of your answers using a jackknife for the reweighted expansion estimator.  
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Lesson 12: Nonresponse

Comments on Chapter 8 of Sampling: Design and Analysis

Response Homogeneity Groups

Treating the subsample of elements that respond to a survey as if it was selected using a

probability sampling mechanism can be  called  quasi-randomization, quasi-random

modeling, or response modeling.  This additional phase of sampling is assumed  to be

Poisson, where an element’s probability of responding may be a function of its attributes,

but is independent of whether or not other particular elements respond.   

It is important to remember that although quasi-random modeling has the same form  as

randomization-based theory, it depends on a model, which, like all models, can fail.    An

unbiased estimator  under  the quasi-random model  will be said to be quasi-design  (or

quasi-randomization) unbiased and to have a quasi-design mean squared error.     

The most common quasi-random model  assumes  that  the  population  is naturally  divided

into mutually exclusive response homogeneity groups (Särndal et al., 1992), the weighting

classes of the text,  where  each  element of a group  is assumed equally  likely  to respond

to the survey.   The  survey respondents,  then,  are a STBRN  subsample of the original

sample,  where  the groups  are the  “strata.”   Moreover,  given  the  realized number  of

respondents in each group, the Bernoulli subsample in each group is conditionally a simple

random sample.  

It is not unusual to treat the design strata themselves as the response homogenity groups,

especially with a stratified simple random original sample.  Since a (conditional) simple

random subsample of a simple random sample is itself a simple random sample, one

effectively still has a STSRS sample under the quasi-random model,  given the respondent

sample size within each stratum,

Given a possibly stratified multi-stage sample with response homogeneity groups that may

(or may not) cut across strata, and borrowing notation from the last lesson, the reweighted

expansion estimator in equation (S41), 
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i i i                                  3 w w y(1) (2)

g^          G                   i0s  
yrw it  =  3     3  w  )))))))))))(2) (1)   

 g i i          g=1  i0S            3 w w(1) (2)

  g                                  i0s

i i                                  3 w y(1)

g            G                  i0s   

i        =  3     3  w  ))))))))    .                                                                               (S41)(1)   

g i          g=1   i0S           3 w (1)

 g                                  i0s

                G                 ^ 
i g        =  3   (  3  w ) y6 . (1) 

  g          g=1   i0S       
                                 

g g iapplies.   Here  S   is the sample of M  elements in response homogenity group g,  w   is(1)

ithe inverse  of  the  probability of selecting  element i  for the original sample,  and  w  =(2)

i g g1/P(R = 1) = 1/N   is a constant for all i 0 S .  Observe that we do not need to know what

gN  is to compute equation  (S41).  

gAlthough N  is the  (unconditional)  probability  an element  in  group g  responds,  given a

g i g g grealized  subsample  size,  m ,  P(R  = 1|m )  =  m /M    is  the  conditional  probability  of

g g g gresponse for element  i 0 S .   Either probability (N  or m /M )  can be used for  computing

iw   and  the result is the reweighted expansion estimator in equation (S41).   The quasi-(2)

                         ^
yrwdesign MSE of  t  can be estimated using methods described in the last lesson for  its(2)

g gdesign-MSE estimation long as each m  is large  (or equal to M )  and the  variance in the

absence of nonresponse could reasonably be estimated using the (first-stage) with-replace-

ment variance estimator.

gMost survey organization require m  to be at least 20, although some have accepted group

subsample sizes as small as six (see Kott, 1994a; there is anecdotal evidence that this was

gAustralian Bureau of Statistics policy as well).  When some m  are too small, a common

practice is collapse initially contemplated response homogeneity groups into a smaller set

of groups with larger subsample sizes within each. 

(U)g gSometimes the  population size,  M ,  of the set (U )  of  elements  meeting the  definition

of  response homogenity group  g  is known for all groups, and we can do better than the
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reweighted expansion estimator.   Consider, for example, a survey of US residents 15 years

or older.  Suppose it is reasonable to assume the following response homogeneity groups:

black men, black women, non-black men, and non-black women.   Population numbers for

these groups are available from another source.  Although those number may themselves

be estimates,  for the purposes of our much-smaller survey,  they can be treated as close

                                                                                                               ^                      ^
 ypr (U)g genough to truth to be treated as such.   The poststratified estimator, t  =  3 M  y6 , a(2) G 

special case of the poststratified ratio estimator in equation (S45) (see also (S33)), can be

computed and its variance estimated using methods described in the previous lesson. 

The post-stratified estimator can also be used to adjust for undercoverage of the population

when the sample (or frame) population is smaller than the target population.  For example,

the target population may be all non-institutionalized residents of the citizens 15 year or

older,  but the  sample population  only  includes  that part of the  population residing in

U(g)households with telephones.    By breaking target population into groups with known M

sizes and assuming a quasi-random model in which each individual in a group is equally

likely to be in the sample, we can apply our theory of quasi-random response to quasi-

irandom coverage.  Implicit in this model, is the assumption that D , a random variable

equaling 1 when i is in the sample population and zero otherwise, is independent of the

i i i gsampling mechanism and the survey values.  Formally, (D |y , Z ) = N  when i is in group g.

i iSince Z  and D are independent, it doesn’t matter than undercoverage occurs before

sampling and nonresponse after.   The same theory applies.     

                                             

Reweighting Versus Cell-Mean Imputation   

In practice, reweighting is an effective way of dealing with unit nonresponse.  It is less

attractive for handling item nonresponse because the technique requires the creation of a

different set of weights for  every item  with a unique  collection of respondents.   Imputation

is a more popular approach for handling item nonresponse.    

Such practical considerations serve to obscure the theoretical differences and similarities

between the two approach.   To clarify the issues, let us investigate  the single-variable

(item) framework usually addressed in textbooks on survey sampling.   Suppose we have

a sample of size M, but only m units respond with y-values.   Values for the rest need to be

imputed.  Suppose  further  we  have  exactly  the  same  set up as in our  discussion of
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reweighting.  Now, however, instead of the original sample (and population) being divided

into G mutually exclusive response homogeneity groups, it is divided into G mutually

exclusive imputation cells.   The group-mean prediction model is deemed to be reasonable:

i g iy  = :  + , , 

i i i i q i q i qfor i 0 U , where E(, | Z , R) = E(,, | Z , Z , R, R ) = 0 for i and q distinct, so that both theg

sampling  and  response  mechanisms  are ignorable.  It makes some sense to impute  a
                                                         ^ 

q g q g qa missing y , where q 0 S , by y * =  y6 .   It is  actually more efficient  to impute with  y *  =

s  i g M q g i i3  y /m , but both are unbiased under the model in the sense that E (y  !  y6 | Z , R) = 0.
 g    

                                                                             ^                                         ^ 
q y S  i i q g gImputing each missing y  in  t  = 3 3 w y with y * =  y6  when q 0 S  yields (1) G  (1) 

  g                                                                

                 G                                              G                                            G               

 ^                                                 ^                         ^                      ^                       ̂     ̂   

yI   i i            i g   i g i g   i g yrwt  = 3 {  3 w y   + 3  w  y6 } = 3 {( 3 w )y6  + 3       w  y6 } = 3  3 w y6  = t .(1)  (1)  (1)     (1)   (1)    (1) (2)

g                g g  g                 g g     g         i0s           i0 S !s                     i0s    i0 S !s               i0S

 
The estimators are the same, but the model assumptions justifying reweighting and

gimputation are different.   For the former, one assumes that every element in S  is equally

likely to respond.  For the later, one assume that every element in the groups has the same

expected y-value  whether or not it responds.  On the one hand, the quasi-random model

applies to all possible y-variables, while the prediction model may be true for some variables

and not true for others.  On the other, the quasi-random denies the real possibility that some

sampled elements will refuse to participate in a survey no matter how ordinary ! and

predictable ! their survey values. 

                                                                                                                        ̂
yIUnder the prediction model, we are concerned with the  combined bias of  t   and  esti-(1)

                                                                     ^                                   ^
M yI y M yI ymating its  combined MSE;  that is,  E {E ( t  ! t )},  and  E {E [(t  ! t ) ]},  where  the(1) (1) 2

first “E” refers to expectation with respect to the original sampling design.  As in the previous
                                                                                                    ^                                  ~                                                                                                   ~  

i i  q s q g yI s i i s iSlesson, let us define w = w  3  w / 3  w  for q 0 S  so that t  = 3 wy  and  3  w  =(1) (1) (1) (1)

g                     g     g                                                                                                                         

S q3  w .    Under the group-mean prediction model: (1)

  g   
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                          G                            G   

   ^                            ~
yI y  i i   i  t  ! t    =   3   3 wy         !       3   3  y       (1)

             
g                                             g                           i0s  i0U

 

                      G                               G
                                ~

i g i g i                 =   3   3 w(:  + , )   !    3   3  (:  + , )  
g                                              g                           i0s i0U

                      G                                                                                                               ~ 
i (U)g g  i i i                 =   3 ( 3 w  ! M ) :  +    ( 3 w,  ! 3 , )(1)

g                             i0S                                i0s        i0U  
                           

                 =                 A                 +               B.

                              ^
M yI y M M MTherefore,  E {E ( t  ! t )} = E {E ( A + B)}  =   E{E (A)} + E{E (B)} = E(A), since A is a(1)

iconstant term from the model-based point of view; that is, given the sample.  Define z   to

                                           ^ 

g g z i i    i iS Sequal  :   for i 0 U .   Then  t   = 3 w z =   3 3 w z is a  design unbiased estimator(1) (1) G  (1) 

  g                                                                                                               
   

                                                                                                     ^                              ^
U i (U)g g z z z yrwfor 3   3   z   =  3 M :  = t ,  which  means  that  E(A)  =  E(t  ! t ) = 0.  Thus,  t  G G (1) (2)

g                

combined unbiased, and so its combined MSE is equal to its combined variance

                            ^
M yI y M MSimilarly, E {E [( t  ! t ) ]} = E {E [(A + B) ]} = E(A ) + E{E (B )},  again because A is a(1) 2 2 2 2

i i s i i U iconstant  under the  model.   Letting V(, ) = F ,  and assuming 3 w F  >> 3 F ,  the (first-2 2 2 2

stage) with-replacement variance estimator with 
 

                                        

       ^               ̂        ~  ^
i i i g i i i gw y  =  w  y6   + Dw(y  ! y6 )                                                                                             (1) (1)

                                  ~ 
i i i i i           .  w  z   +  Dw ,  (1)

 

i ireplacing  w y   can  be  shown  to  estimate  the  combined variance of the  reweighted(1) 

expansion estimator in a nearly unbiased fashion.   This is precisely what we would use to
                                                                                                                
estimate the design mean squared error under the quasi-random model.  We now can see

                 ~
i i g gthat using w, as opposed to w (M /m ), better captures the model variance component of(1)

the combined variance.

                                                           ^
yITo estimate the combined variance of t   with a jackknife,  one can use the same jackknife(1)

one would compute for the analogous reweighted expansion estimator.  This turns out to

be identical to computing 
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^
 yI(r) s  q(r) q   ! s  q(r) q(r)St  = 3 3 w y   + 3 3 w y *    (1) G   (1) G  (1) 

g                                            g     g                        

i(r) s  q(r) q s  q(r)for the r’th replicate, where y * = 3 w y /3 w .   (1) (1)

g                           g                                                         

Ratio Imputation

Usually imputation is used when a survey respondent reports  some  item  values but not

others.   We consider only one of the simplest of such situations here, so we can get to the

to the heart of the matter without changing our notation very much.   

Suppose there is a variable, x, that is reported by every element i in the sample, and a

related one, y, that is not.   To borrow as much as possible from our previous results, we

let S denote the full sample, and s the subsample with y-values.   Moreover, we assume the

sample , and implicitly the population, can be divided into G mutually exclusive groups, such

that the following prediction model is sensible: 

i g i iy  = $ x  + , , 

g i i i i i q i q i q i qfor i 0 S  (the part of S in group g), where  E(, |x  Z , R) = E(,, |x , x , Z , Z , R , R ) = 0.

One  can  easily  show  using  arguments  like  those used  with  cell-mean  imputation  that
                                                                                                                                     ^

q q q g q s i i s i i yIrimputing a missing  y  with  y * =  x b   =  x (3 wy /3  wx)  produces an estimator,   t ,(1)

                                                               ^  

yrwridentical to the reweighted ratio estimator, t , in equation (S43).  Moreover, the combined(2)

 
variance of this estimator can be computed in precisely the  same manner  as the  design

MSE of the reweighted  ratio estimator  in the previous lesson.   There is also an obvious

analogue for the jackknife. 

                                                                                   ^ 

yIrInterestingly, even if the prediction model above fails, t  can be justified as long as every(1)

                                                                                                                          ^        ^
yIr yrwrsampled element in group g is equally likely to provide a y-variable.   Because t  = t ,(1) (2)

estimator is in some sense  (nearly) unbiased  if either the prediction model holds  or  the
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quasi-random model holds.  It does not require both to hold.  Of course, both may fail, and

 ^        ^
 yIr yrwrt  = t  not be nearly unbiased in any sense.  (1) (2)

In practice, we often have both unit and item nonresponse.  It is a simple, if mathematically

cumbersome, to combine the two.   In the above ratio example, the “original” sample may

ihave already included weight adjustment (captured within the  w   for unit nonresponse.(1)

The response homogeneity groups used for  reweighting  may or may  have not  coincided

with the  groups formed to impute for missing y-values. 

Homework for Lesson 12

Do Exercises 2a, 2d, 2e, 8b, and 10  in section 8.9 (starting on p. 283) of Sampling: Design

and Analysis.   Example 7.4 is on page 235. 
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Lesson 13: Other Topics in Sampling

The note beginning on the next page,  “Multiple-Frame Establishment Surveys”  is a

shortened and  slightly modified version of Chapter 11 of Business Survey Methods (1995)

by Cox et al.  It contains its own set of equations (denoted V1, V2, etc.) and references. 

Comments on Sections 12.2 to 12.4 of Sampling: Design and Analysis

[Read the note on multiple-frame surveys first.]  

The Census of Agriculture

Prior to the 1997 publication, the US Census of Agriculture was conducted by the Census

Bureau.  The Bureau used a dual-system approach (pp 391, 392) to estimate the

undercoverage of its list of farms, treating the list as the first frame.   The “sample design”

from this frame was ideally a complete census, although in practice the Bureau had to

adjust for nonreponse.  The National Agriculture Statistics Service’s area sample provided

the estimates from the second frame.  

The official Census numbers were derived from the Bureau’s list of potential farms and

adjusted for nonresponse.  Dual-system estimates capturing farms missing from the list

were published in an appendix.  

When NASS took over the Census of Agriculture in 1997, it abandoned dual-system

estimation and treated the area frame as if it were complete.  The agency believed that the

“double counting” of area-sample farms with undetected matches on the list frame offset

the small number of farms missing from the area frame.  

NASS observed a related matching problem with farms not originally on the 1997 Census

mailing list but added later.  These “late adds” were matched to area-sample tracts,

weighted, and then subtracted from the nonoverlap estimate.  Unfortunately,  the number

of farms subtracted from the grand total was only about half of the number of farms added

to the list  Ideally, the list-based and area-based estimates of the number of late adds

should have been identical ! give or take sampling error.   It is unlikely that the NASS area

frame was missing half the 1997 late adds.  A more plausible explanation is that there were

many late adds that should have been matched with area-frame tracts but were not.  A
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homework problem describes the method NASS used in 2002 to try to fix this late-add

problem.     

Composite Estimators 

The estimator in equation (V3) of the supplemental note on multiple frames is a composite

estimator like that described in a small-domain context on page 399 of Sampling: Design

1 2and Analysis.  When combining two unbiased estimators, t  and t , of the same quantity, t,

8 1 2any composite estimator, t  = 8t  + (1!8)t , is unbiased.  When the two estimator are

2   1 2independent, the optimal value for 8 is V(t ) / [V(t ) + V(t )].  See equation (V7).  

As pointed out in the text, the synthetic estimator for a domain has a large bias but a small

variance.   It seems, therefore, a poor candidate for a component of composite estimation.

From a model-based point of view, however, the bias of the synthetic estimator can be

modeled as a variance component.  This bias tends to persist as the sample underpinning

the direct estimator gets larger and larger.   Hence, a composite estimator combining a

direct and synthetic estimator for a domain can be design consistent if the contribution of

dthe direct estimator ("  in the text) tends to 1 as its sample size grows arbitrarily large.

Ghosh and Rao (1994) provides an excellent summary of the methods for estimating small-

domains, especially those involving components-of-variance modeling. 

Benchmarking  

There is another way to combining synthetic domain estimators with a direct estimator.  Let

                                                                                                                                        ^
(dir)us confine our attention to estimators of a total.  Suppose we have a direct estimator, t

dfor t = 3 t ,  the sum of the totals across the domains, with little or no bias and an accep-D 

                                                                                  ^
d(dir)tably small MSE.  The MSE’s for its components, the t , by contrast, are disturbingly high.

We would like to replace each of these domain-level estimated totals with a more reason-
                                           ^

d(biased)able, but biased,  estimator, t .  These replacements can synthetic, composite, ad hoc,

or the result of some combination of techniques.    A reasonable strategy is  to  benchmark

the  biased domain estimators  to the (virtually) unbiased estimator  of the  grand total;  that

                          ^            ^        ^            ^
d(bench) d(bias)  (dir) *(bias)is,  to compute t  =  t [ t / 3  t ]  for each d.   It is easy to see that the sum of D  

*=1                                                          
                                                                                    ^

(dir).these still-biased estimators across the D domains is t  
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MULTIPLE FRAME ESTABLISHMENT SURVEYS

Frederic A. Vogel
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1  INTRODUCTION

Sample surveys of economic establishments are usually designed to provide
estimates of characteristics such as total sales, expenditures, number of workers, and
inventories for a population of interest.  Basic principles from finite population sampling
theory apply regardless of the specific sampling design used.  A population of elements
must be defined (not always a trivial task when business entities have complex internal
structures), and a sampling frame must be constructed from which a sample of elements
can ultimately be drawn.  Every element in the population must have a known probability
of selection.  Ideally, the frame should also be complete; that is, the selection probability of
every element in the population should be positive.   In many establishment surveys, but
certainly not all (see Subsection 3.1), the population of elements is identical to the
population of establishments of interest. 

Populations of establishments, whether of farms, retail stores, factories, buildings,
schools, or governments often possess common characteristics that impact on the choice
of sampling frame and overall sample design.  Among these characteristics are skewed
distributions, diversity of variables of interest, and changing population membership.

Sample designs for the establishment surveys are often based on list frames
incorporating known or projected measures of size for each element in the.  Unfortunately,
when the variables of interest are diverse and weakly correlated, a single list frame with one
measure of size may not suffice.  Moreover, the changing nature of the population causes
any list frame or combination of list frames to become outdated quickly and therefore
incomplete in terms of coverage of the population.

One way to assure the completeness of the frame is to use an area frame covering
the entire population of interest so that all the elements in the population and all potential
future elements will be located somewhere within the area frame.  Whereas a list frame is
a list of the elements in the population, an area frame is a collection of geographical units
or area segments.  In list-frame designs for establishment surveys, the sampling units are
usually the establishments themselves, and stratified single stage sample designs are
commonly used to select establishments directly from the list.  In area-frame designs, area
segments are the sampling units, and these units are often selected using stratified
multistage designs.  Correspondence rules are needed to link the establishment in the
population to the area segments in the frame in a unique manner.  

Although area frames ensure complete coverage, they do not generally lead to
efficient sampling designs because area segments are essentially clusters of elements.
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Segment sizes (in terms of numbers of constituent elements) are usually unequal and
unknown at the time of the sample design.  In fact, there is no guarantee that an area
segment contains any establishments at all.  Large area sample sizes will be needed to
overcome problems with populations containing rare items (variables) and with skewed
distributions.

Area frames are most useful for general purpose surveys covering a wide spectrum
of items that are fairly evenly distributed geographically or when the sizes (as defined
above) of the area segments are available or can be estimated reasonably well.  That is
why they are used so often in demographic surveys where population censuses provide
adequate measures of the size of an area segment.  It should also be noted that an area
frame has a long life span.  It only needs to be updated when geographic features have
changed to the point that it becomes difficult to associate population elements with sampled
area segments or when the availability of more up-to-date information allows for the
development of improved sampling designs.  This occurs often in agricultural surveys with
the use of recent aerial photographs and/or satellite data.

Area-frame establishment surveys are generally more expensive than list-frame
surveys of comparable sample size.  This is because area frames are usually much more
costly to develop.  In addition, sampled establishments from an area frame often have to
be personally enumerated, while sampled elements from a list frame can be enumerated
by telephone or electronically. 

A multiple-frame survey uses a combination of frames.  The primary reason for using
multiple-frame sampling for establishment surveys is to utilize the strengths of one frame
to offset the weaknesses of the other.  In principle, the theory of multiple-frame sampling
can be applied to the use of more than one list frame (see, for example, Bankier 1986).
The main focus here, however, will be on combining the use of list and area sampling
frames.  Area-frame sampling assures completeness, while list-frame sampling can be
designed efficiently for large and rare items.

Section 2 outlines the theory of sampling from multiple frames.  Section 3 discusses
the most common use of multiple-frame sampling in which there is a single list and a single
area frame.  Section 4 addresses subsampling from an area frame.  Section 5 reviews
some practical problems with overlapping frames.  Section 6 briefly discusses future
directions in multiple-frame methodology.

2  FUNDAMENTALS OF MULTIPLE FRAME SAMPLING

This section develops some theory for sampling and estimation from multiple frames.
Each frame consists of a set of mutually exclusive primary sampling units, and there exists
a one-to-one or many-to-one mapping from the elements in the population of interest to the
primary sampling units in a particular frame.  The mapping need not be complete for each
frame (i.e., some population elements may not be associated with any sampling unit for a
particular frame).  For simplicity, we will speak of an element belonging to a frame when it
maps onto a sampling unit in the frame (sometimes these elements are referred to as the
ultimate sampling units of the sampling frame).  After one or more stages or phases of
random sampling, a sample of elements is drawn independently from each frame.
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Two important assumptions are made in this section.  They are

Completeness - Every element in the population of interest must belong to at least
one frame; and  

Identifiability - It should be possible to determine whether or not a sampled element
from one frame belongs to any other frame and hence could also have been
sampled from it.  

 
The completeness assumption is satisfied whenever an area sampling frame

covering the entire population of interest is one of the multiple frames.  The identifiability
assumption, while simple in theory, poses most of the operational difficulties in
implementing a multiple-frame survey.  This is because it is not always a trivial matter to
ascertain whether an element sampled from one frame is also contained in another frame
(see Section 5).  

The basic theory of multiple-frame sampling was developed by Hartley (1962) and
extended by Cochran (1965).  Hartley divided the population into mutually exclusive
domains defined by the sampling frames and their intersections.  For example, if there are
two sampling frames, A and B, there are three possible domains:

Domain (a) containing elements belonging only to Frame A;
Domain (b) containing elements belonging only to Frame B; and
Domain (ab) containing elements belonging to both Frames A and B.
With k frames, there will be 2  - 1 domains (recall the completeness assumption precludesk

the existence of a domain without any members from at least one frame).
Let us focus attention on the two-frame example introduced above to clarify some

of the issues involved in estimation using multiple frames.  Suppose we are interested in

U iestimating a population total t = 3 y .  It is possible to decompose t as 

a b ab t = t  + t  + t ,                                                                                                               (V1)

dwhere T  is the population total in domain d (d = a, b, or ab).  Attention in this note will be
principally focused on estimating population totals. 

d  When  d = a or b, one  can estimate t with  the  Horvitz-Thompson  or  expansion
estimator,

^            
 d i i  t  = 3  wy ,                                                                                                                   (V2)

d      i0S

d iwhere S  is the set of  sampled elements in  domain d, and w is the sampling  weight  for  
delement i  (with  respect  to the  design under which  S   was selected).   A  continuum of

abunbiased composite estimators for t  is given by
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    ^                                                            ^                  ̂ 
 ab(8)       i i     i i ab   ab   t  = 8 3  wy  + (1 ! 8) 3   wy    =   8t   + (1! 8)t ,                                            (V3)A  B 

          
ab ab            i0S                 i0S        A    B

 

abwhere 0 # 8 # 1, S  is the set of elements in domain ab sampled from frame G (G = A orG

              ̂
ab abB), and t  is the Horvitz-Thompson estimator for t  based on the frame-G sample.  TheG

                                    ^
ab(8) ilimits on 8 assure that t  will be nonnegative whenever the y  are nonnegative.  

We now have a continuum of unbiased estimators for t: 

    ^     ^    ^    ^
 (8) a b ab(8)   t  = t  + t  + t ,                                                                                                         (V4)

where 0 # 8 # 1.  The sampling design is independent across frames but not necessarily
                                                                             ^

(8)across domains.  Consequently, The variance of t  is     

      ^               ̂        ^                 ^   ^  
(8) a b a abV(t )   =   V(t ) + V(t ) + 28Cov(t , t )A

                                        ^  ^
  b ab                 + 2(1! 8)Cov(t , t ) B

                                                                                                                                      (V5)

                            ^                       ^
ab  ab                 + 8 V(t ) + (1 ! 8) V(t ).                      2 A 2 B

                                                                                 

                                                                              ^  

(8)It is reasonable to choose 8 so that the variance of t  is minimized.  Some Calculus reveals
that the optimal  (i.e., variance!minimizing) 8 is 

                         
                                 ^                ^  ^                ^   ^

ab a ab b ab                           V(t ) ! Cov(t , t ) + Cov(t , t )B A B

opt 8  =      )))))))))))))))))))))))))))))))))))))) .                                         (V6)
                                             ^             ̂                                    

ab ab                                         V(t ) + V(t )B A

optIf the two covariance terms in equation (V6) were zero (or equal to each other),  8  would
take on the form:

                                 ^
ab                              V(t ) B

opt    8   =        ))))))))))))))))) ,                                                                                (V7)
                          ^            ^       

 ab ab                     V(t ) + V(t )B A

which always lies between zero and one.   As one would expect, the size of  8  is directly
                                            ^                              ̂

ab abrelated to the precision of t  relative to that of t .  The more relatively precise  the FrameA B

                                                                                                                                        ^ 
abA sample is in estimating domain ab (i.e., the smaller the variance), the more weight  t A

 
abis given in the estimation of t .

iThe sampling weights, w, in the above expressions can be either unconditional or
conditional.  That is to say, they may reflect either the original probabilities of selection or
the recomputed selection probabilities within the domains.  For example, if the sample
design in Frame A were simple random sampling without replacement, then the

A Aunconditional sampling weight for every sampled element from the frame would be N /n ,

A Awhere N  and n  are the respective sizes of the population and sample in Frame A, while
the conditional sampling weight for the sampled elements in the intersection of domain d
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A(d) A(d) A(d) A(d)and Frame A would be N /n , where N  and n  are the respective sizes of the
population and sample in this intersection.  

There are theoretical reasons for preferring estimation with conditional rather than
unconditional sampling weights  (see Rao 1985).  In many applications, however, especially
those involving an area frame (where population sizes are often unknown), conditional
selection probabilities will be either impossible to calculate or impractical.  Consequently,
unconditional inference will have to suffice.  

Although  one  can,  in  principle,  choose  8  so  that the  variance  (conditional  or
unconditional)  is minimized,  this  is  usually  impossible  to do  in practice  because  the 
component variance and covariance terms in equation (V5) are unknown.  They could be
estimated from the sample,  but then the choice of 8 would not really minimize the actual

                    ̂                                               ^
(8) (8)variance of t  but the estimated variance of t .  As a consequence, this estimated variance

would be biased downward.  
Even if the distinction between the variance-minimizing 8 and the estimated variance-

minimizing 8 could be ignored, the following inconvenience remains: the optimal 8 can vary
from survey item to survey item.  This point is demonstrated by Armstrong (1979) with
Canadian farm data.   

A popular alternative is to eschew issues of optimality or near optimality and fix the
value of 8 in advance,  most commonly at  zero.  One can then estimate  the components
on the right hand side of equation  (V5) in  an unbiased fashion  and create an  unbiased

                                             ^ 
(8)estimator for the variance of t .  This approach would be slightly biased if 8 were estimated

                                                                                                                         ^
(8)from current data instead of being fixed, because the estimated variance of  t  is no longer

a linear combination of unbiased estimators.
It is possible to develop a more direct Horvitz-Thompson estimator for t in equation

(V1) by treating the samples from the two frames as a single sample and then computing
the probability of selection for each sampled element (the sum of its probability of selection
from each frame  minus the product of these two terms).   There is no reason  to believe,
                                                                                                        ^

(8)however, that the resultant estimator will have less variance than t  when a near optimal
8 is used.  Moreover, estimating the variance of this alternative will often be quite difficult.
                                                                               ^

(8)Finally,  one  can sometimes improve on  t   by using  auxiliary information.   The
interested reader is directed to Fuller and Burnmeister (1972), Bosecker and Ford (1976),
Bankier (1986), Skinner (1991), and Rao and Skinner (1993).
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3  THE DOMINANT SPECIAL CASE: ONE LIST FRAME, ONE AREA FRAME

The U.S. Census Bureau's 1949 Sample Survey of Retail Stores (Hansen et al.
1953) was one of the first establishment surveys that used a multiple-frame technique.  It
employed a single list frame and a single area frame.   Nevertheless, it is fair to say that the
approach currently finds its widest use in surveys of agriculture. See Vogel (1975) and
Julien and Maranda (1990) for respective discussions of U.S. and Canadian multiple-frame
agricultural surveys.

3.1  Area Sampling 

The basic concepts of area-frame sampling are simple.  The total area to be
surveyed is first stratified by geography or other known characteristics that are related to
the variables of interest (population density is one such characteristic for a retail survey,
farm density is one for an agriculture survey).  A sample of segments -- usually compact
blocks of land -- is then selected within each stratum, perhaps using a multistage sampling
design.  

Gallego and Delincé (1993) discuss sampling designs where points are randomly
selected within sampled area segments.  In this section, however, we focus on designs for
which the last stage of sampling is the selections of area segments.  When employing such
designs, rules need to be developed to uniquely link (map) the elements in the population
with the sampled segments.  The area-frame sampling weight for each element is simply
the inverse of the selection probability of the segment with which it is linked. 

Although the basic concepts are simple, the successful application of area-frame
sampling can become very complex, especially if used in a multiple-frame environment.
The theory and application of area-frame sampling are well documented and include Jessen
(1942), King and Jessen (1945), Houseman (1975), Nealon and Cotter (1987), and Bush
and House (1993).  Fecso et al. (1986) contains a good list of references covering area-
frame sample design issues.

The link between population elements and sampled segments is complicated in
those area-frame surveys (e.g., agricultural surveys) where the physical location of
establishments (farms) may cross segment boundaries.  There are three approaches to
redefining the elements of an area frame frequently used in this situation.   
  In the closed (or tract) approach, an element is defined as the intersection of an
establishment and an area segment (i.e., the portion of the establishment that lies within
the area segment). Response errors occur when the reporting unit, usually the
establishment, is not able to measure and report on that portion of its business that lies
within the selected segment's boundaries.

The closed approach is statistically robust and relatively efficient for items that are
generally distributed evenly over wide areas, such as crop acreages.  Outliers can be
controlled by the size of the segment for many of these items.  For example, if the segment
size is 600 acres, the maximum acres for any crop in the segment is 600 acres even though
a single establishment located in the segment may account for many times that number of
crop acres in its entire operation.  
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In the open approach, an element is defined to be an establishment and is linked
only with that segment containing its headquarters.  This can lead to difficulties with large
establishments with complicated corporate or partnership structures.  For example, many
medical practices involve several doctors with offices in more than one location and
identifying the "headquarters" may not be simple.  Complex counting rules must be devised
that ensure such establishments do not have a chance of being linked with more than a
single area segment.  

A sampled segment will likely contain fewer elements with larger item values when
using the open approach to defining elements as opposed to a closed approach.  As a
result, the former is often less statistically efficient than the alternative.  A potential
advantage of the open approach, however, is that once the establishment has been
defined, it may be easier for the respondent to report values for the entire establishment
rather than for that portion of the establishment located within an area segment.  Segment
boundaries will have little intrinsic meaning to many respondents.

In theory, the definition of the element in the weighted approach is the same as in
the closed approach: the portion of an establishment that lies within an area segment.  The
difference is in the data values attributed to the element.  Data values for an establishment
that is the "parent" of several elements (each in a different area segment) are prorated
using fixed weights defined so that they sum to unity.  For agricultural surveys, it is common
to use the fraction of the establishment's (farm's) land within a sampled segment as the
weight for the element in that segment. 

The weighted approach leads to less sampling variability than the open approach
because large operations are spread across many segments.  One major problem with this
approach, especially when it is applied to agricultural surveys, is that the weights
themselves are prone to measurement errors (see Nealon 1984, p. 19).  In principle, the
weights for all the elements with the same parent establishment should sum to unity.  In
practice, since only one of these elements is likely to be selected in an area sample, pains
must be taken to assure that the weight used to prorate establishment values to sampled
elements are not systematically larger or smaller than they should be. 

Nealon (1984) provides a theoretical and empirical examination of these three
approaches for area-frame and multiple-frame surveys conducted by the U.S's National
Agricultural Statistics Service (NASS).  The results favor the weighted approach.
Houseman (1975) contains a more in depth discussion of the three approaches.
Faulkenberry and Garoui (1991) explore additional approaches.
  
3.2  Estimation 

Suppose two frames are to be used, one list and one area frame,  and a total is to
be estimated.  Using the notation of Section 2, let A denote the area frame and B the list
frame.  Observe that domain b is empty because all elements  should be  located  some-
                                                                        ^    

b bwhere on the area frame.  Consequently, t  = t  = 0.

In almost all applications of the two frame design, 8 in equations (V3) and (V4) is set
                                            ^    ^      ^  

a abequal  to zero,  rendering  t  =  t   +  t .   This value for  8,  besides being convenient  forB
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variance estimation purposes, is often close to optimal (depending on the efficiency of the
list-frame stratification) because the variance of the list-frame estimator of domain ab (i.e.,
^
 abt ) is almost always considerably smaller than the variance of the area-frame estimatorB

                        ^  
abof this domain (t ) (recall Section 1).  Consequently, equation (V7) suggests that pshouldA

                                                                                                    ̂  ̂   
a abbe very small.  Depending on the content of the list frame, Cov(t , t ) in equation (V6) mayA

                                              ^          ̂       
a abactually be positive  because t  and t  are based on the same sampled segments.  ThisA

                                                                                 ^   ^                      
b abwould make the optimal 8 even smaller  (note: Cov(t , t ) in (V6) must be zero  becauseB

^
 bt  is always zero).                                                                                      

                                                                                    ^    ^        ^
L ab(0) abA little renaming to simplify the notation: let  t  = t  = t ,  since  it is the  Horvitz-B

Thompson  estimator  from  the  list  frame  of  domain ab  (the  overlap  domain);  and  let
 ^      ^ 

 N at   =  t ,  since it is the area-frame estimator for the nonoverlap domain  (using either  the
closed, open, or weighted approach to element definition).

                                                       ^   ^    ^    

L N  The estimator for the total,  t = t  + t ,  is called  the  screening multiple-frame esti-
 mator because elements in the area sample are  "screened"  and only those  in the  non-
overlap domain are enumerated.   Its variance has the obvious form:

      ^          ^          ^ 
L N  V(t)  =  V(t )  +  V(t ).                                                                                                    (V8)

                         ^                                                                               ^ 
L LEstimating  V(t )  is straightforward when,  as is usually the case,  t  is based on a  single

                                                                    ^
Nstage stratified list sample.   Estimating  V(t ), however, can be a bit more complicated.  

Recall that a sample of segments was selected from the area frame.  In many cases
the design used is roughly equivalent to stratified simple random sampling (see Kott 1989).
In practice, sampling fractions are so low within strata that the distinction between with and

hwithout replacement sampling can be ignored. Suppose there are H strata and n  sampled

hj+segments within stratum h.  Let Y  be the sum of the sample-weighted values of all non-

 i ioverlap elements in segment j of stratum h (i.e., 3wy, where summation is over all  non-
overlap elements in segment j).  Then 

      h  h              H                  n             n
    ^  ̂   
  N h h  hj+ hj+ h    V(t )  =  3 n /(n ! 1) { 3  Y  ! [ 3 Y ] /n }                                                                (V9)2 2

                     h=1              j=1           j=1 

 

                                                  ̂
Nis an unbiased estimator for V(t ) whenever finite population correction can be ignored.  

 
hj+Although equation (V9) appears straightforward, one needs to be aware that Y  will

be zero for many sampled segments either because there are no elements linked with the
segment or because the elements linked with the segment are also on the list frame.
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4  PROBLEMS IN SURVEYS WITH OVERLAPPING FRAMES

As noted in previous sections, an area frame provides complete coverage of the
population, but it can lead to inefficient estimation when the population of interest has a
skewed distribution.  A list frame, by contrast, can provide the means for more efficient
estimation, but is often incomplete.

When a list of establishments is used along with an area frame in a multiple-frame
environment, the list need not be complete.  It should, however, contain those large and
rare establishments which are the bane of area-frame surveys.
  
4.1  List-Frame Issues

All establishments on a list frame must be completely identified by name, address,
etc.  Operations that are large, have complex management structures, and/or are scattered
over different locations must be so identified.  This is the identifiability assumption described
in Section 2.  In a two frame (list and area) sampling design one must be able to determine
whether an establishment (or portion of an establishment) sampled from the area frame
could also have been selected from the list frame; otherwise, intractable nonsampling errors
will result.  It must be realized, however, that the identifiability requirement can greatly
increase the cost of list development. 

When developing a list frame of establishments, more than one source of
establishment names are often available.  The survey designer must decide whether to use
each list as a separate frame in a multiple-frame survey or to combine the lists prior to
sampling and create a single list frame for sampling purposes. 
Suppose the former approach is chosen with two list frames and a single area frame.  The
population can then be divided into four mutually exclusive domains: (1) establishment on
neither list frame, (2) establishments on the first list frame but not the second, (3)
establishments on the second list frame but not the first, and (4) establishments on both list
frames.  

One can see that the need to identify all domains when there are two or more list
frames greatly complicates the survey and estimation process.  Many statistical agencies
have therefore decided that it is usually more practical to combine all lists and remove
duplication prior to sampling.  This can still be a significant undertaking requiring the use of
record linkage methodologies that may be prone to errors. 
  
4.2  Overlap Detection Issues

The reliance upon matching names on the list frame to sampled elements from the
area frame to determine overlap complicates the survey process.  Whether an
establishment is surveyed via the list or area frame, it is necessary to determine the primary
business name, other business names, and the names of individuals who are also
associated with the business.  Rules of association of individuals' names with
establishments must be defined.  For example, an area frame unit may contain the
residence of Dr. X associated with the medical practice of Drs. X, Y, and Z.  Should the
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association of the establishment with an area-frame element be based on the residence of
each name or on the location of the business itself?  This will depend upon the counting
rules used to determine the overlap between the frames.  This example becomes more
complicated if there is a Dr. T involved in the practice, but the list frame only identifies the
practice involving Drs. X, Y, and Z.  If counting rules are used that would allow Dr. T to
report for the entire practice of Drs. X, Y, and Z, then it must be possible to identify the
practice as overlap with the list frame.  This situation occurs often in agriculture where an
individual associated with a partnership can report for the entire partnership, but the name
matching process fails to properly link it with a name on the list frame, resulting in an
upward bias.  A more detailed discussion of these problems appear in Vogel (1975).  The
survey instrument for both frames must be carefully designed to identify and link names with
establishments so that the overlap domain can be properly determined.

Resources need to be available to re-interview "questionable links" so that the
domain determination is correct.  The domain determination has been shown by several
studies to be the single largest source of non-sampling errors in multiple frame surveys
(Nealon 1984).

4.3  Estimation Difficulties

A two-frame (list and area) sampling design will generally yield more efficient and
robust estimators than an area-frame design by itself.  Nevertheless, outliers can still occur
when the list frame is not constructed carefully or is not up to date.  An establishment
missing from the list frame that is sampled in the nonoverlap domain of the area frame can
have a much larger sampling weight than it would have had as a list sample (since the costs
associated with an area frame are larger, its sampling fractions are usually smaller).  Five
such establishments in a 1992 U.S. Department of Agriculture survey accounted for six
percent of the national estimate.  

Although the desire to eliminate potential outliers provides a powerful argument for
including as many establishment names as possible on the list frame, there is an equally
compelling reason for limiting the list frame to only larger establishments.  The smaller the
list, the easier it is to check overlap.  Moreover, the incremental costs of adding enumerated
elements to the nonoverlap domain are relatively small since, a, the fixed cost of developing
an area frame has already been expended, and, b, each element linked to a sampled area
segment must be contacted to determine its overlap status whether or not it eventually
needs to be enumerated.  

The use of a multiple-frame design can make it more difficult to measure change
over time.  Ratio estimators are usually an efficient means of estimating change when a
portion of the sample in the reference (denominator) time period remains in the sample in
the comparison (numerator) period.  Since establishments may move between the overlap
and nonoverlap domains as their structures change or as the list frame is updated, the
efficiency of ratio estimators of change in multiple-frame surveys is reduced.    Extreme
caution must also be exercised in multiple-frame designs to ensure that establishments
found through the area-frame sample are not added to the list frame during the duration of
the design since that can bias estimation (by effectively changing selection probabilities).
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Such additions to the list frame should only be allowed when an entirely new sample is
selected from both frames.  The independence of sample selection between the area and
list frames must be maintained for the area frame to properly estimate for the
incompleteness of the list frame (see Vogel and Rockwell 1977).  

5  THE FUTURE OF MULTIPLE-FRAME SURVEYS

Because of the cost of maintaining an area frame, Canada models the
incompleteness of its list frame of retail and wholesale establishments rather than measure
list undercoverage with an area sample (Sande 1986).  The U.S. Census Bureau may soon
follow suit and abandon the area sample component of its Monthly Retail Trade Survey
(Konschnik et al. 1991).  

This pattern could be reversed in Italy, however, where lists of business
establishments are viewed as unreliable.  Petrucci and Pratesi (1993) discuss the possibility
of introducing multiple-frame business surveys in that country.   Moreover, the future use
of area frames both by themselves and in a multiple-frame environment is more secure for
surveys of agriculture and construction. 
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Homework for Lesson 13

L NNASS first estimated values for t  and t  for the 2002 Census of Agriculture using a list of

L Nfarms  (which produced the estimate for t )  and an area-frame survey  (with which t  was

estimated).   When a collection of potential farms were later added to the Census list, this

                                                                                                                                 ^        ^
L L N N L  Neffectively increased t  to t ' while decreasing t  to t ' by an identical amount.  Let t  and t

A Ldenote  NASS’s  original  estimates and t   denote the  number of late-added farms  to t .
    
Potential late adds that  failed to respond to the census were treated as if they were never

contacted in the first place.  NASS computed 

L L At ' = t  + t , and 

  
N N At ' = t  ! t .

 
                                                                                               ̂       ̂                               ̂       

L N La.   Relate the variances of the NASS estimators,  t ' and t ', to the variances of t  and

            ^                                                                                      ^             ^ 

N L N           t , assuming the latter two are known quantities, say, V(t ) and V(t ).

                               ^
Nb. Explain how t ' can be negative with NASS’s methodology.

c. NASS used this approach in each state.  Can you think of a modification that would

Nnot allow negative estimates for t ' at the state-level but still (most likely) be unbiased

at the US level?
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Lesson 14:   Multiple Regression and Calibration Weighting

Matrix Preliminaries

This lesson will be nearly impossible to follow without previous exposure to matrices and

linear algebra.   Let us briefly review the notation we will use and the properties we will need

in this lesson. 

fgLet  A  be a  F x G  matrix, and  a   denote the value in the f’th row and g’th column of A.

fgA = {a } is another way of writing A.  

A 1 x G matrix is called a row vector.  A H x 1 matric is called a column vector.   Vectors are

usually lower case, while other matrices are upper case.  All matrices are written in bold

face.   Conventionally, most vectors are column vector.   We will break that convention later

in these notes and allow one key set of vectors be row vectors.   

Matrix algebra is conducted with the following rules: 

fgcA = {ca } when c is a scalar (real number).
 H              
h=1 fh hg hgAB = {3 a b }, where A is F x H and B = {b } is H x G. 

K fg fgI  = {d }, where d  is 1 when f = g and 0 otherwise, is the is the K X K the identity matrix.

K KCI  = C when C is F x K;  I D = D when D is K x G.

K KIf C and D are K x K and CD = I , then DC = I , and C can be denoted D  (D inverse).-1

fg gfIf A = {a } is F x G, then A' (A transposed) = {a } is G x F.

(AB)' = B'A'; (AB)  = B A  if A and B are invertible (i.e, A  and B  exist).   -1 -1 -1 -1 -1

KThe subscript K is often dropped from I  for convenience.  When working something out

Kyourself, however, it is often helpful only to keep the subscript on I , but to write the

dimensions below each matrix.   When an F x G, A, matrix is multiplied by a  G x H matrix,

B, the product, AB,  is an F x H matrix.  Moreover, AB only exists because the number of

columns in A equals the number of rows in B (both are G).

We will also need to develop asymptotic properties of matrices.  In this discussion when a

quantity h is O(n ),  we will use the shortcut h = O(n ).   Thus, when X is O(n ) and a > 0,-a -a -a

we can write X = O(n ), and (1 + X)  = 1 ! 2X + O(n ) =  1 + O(n ) (see equation (S2)).-a -2 -2a -a
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FxG fgWe say the matrix A is O (n ) when a  = O(n ) for all FG components of A (usually the-a -a

subscript on “O” denoting its dimensions is suppressed, but we will not do that here).  For

FxG, P fg Pprobability limits, we write A is O (n ) when a  = O (n ) for all FG components of A. -a -a

Suppose A and B are F x G, and F and G are bounded as n grows arbitrarily large.  When

fg fg F FxF G OgxGb  = a [1 + O(n )] for all f and g,  B = [I  + O (n )]A = A [I  + (n )].  -a -a -a

KxKWhen D = O (n ) and K is bounded, -a

K K KxK(I  + D)  = I  ! D + O (n ).  -1 -2a

If x is a random column vector with mean :, then V(x) = E(,,') where , = x ! :.  Moreover,

A A A Awhen E(x|A) = : , E(Ax|A) = AE(x|A) = A: , and  V(Ax|A) = AV(x|A)A' = AE(,  , '|A) where

A A,  = x ! : .

The Linear Model

We will be interested in the following variant of the linear model: 

i i iy  = x $ + , ,                                                                                                                  (S47)

iwhere i 0 U, x  is a row vector with G components,  $ is an unknown column vector also with

iG components, and U contains N members.  Furthermore, ,  is a random variable such that

i 1 N 1 N i q 1 N 1 NE(, |x ,..., x ; Z , ..., Z ) = E(,, |x ,..., x ; Z , ..., Z ) = 0,   and

                                                                                                                                    (S48)

i 1 N 1 N iE(, |x ,..., x ; Z , ..., Z ) = F  < 42 2

i ifor all i, q, 0 U,   i � q.   Recall Z = 1 when is in the sample, 0 otherwise.   Observe that F 2

ican be a function of x .

The model in equation (S47) is sometimes called the multiple regression model.   A

idegenerate special case is the ratio model in equation (S7) where G=1 and x  collapses to

ia scalar, x .  It is often helpful to think of this special case even when working in the more
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general environment. 

 

Most treatments of the (multivariate) linear model begin with a sample of n elements and

express equation (S47) in matrix form as

y = X$ + ,,  

iwhere y is an n-component column vector with y  in the i’th position, , is defined

ianalogously, and X is a matrix with x  in the i’th row.   In a survey sampling context, there

iare practical reasons to prefer the formulation in (S47), but having x  expressed as a row

vector is a nod to the conventional notation.   

A linear (model) unbiased estimator for $ based on all the elements in the population is:

c U i i i U i i ib  = (3 cx 'x ) 3 cx 'y                                                                                                 (S49)-1 

i i 1 Nwhere c = {c } is any arbitrary vector of  non-negative  values   such that   E(, |c , ..., c ) =

i i U i i i c0.   The c  and x  must be such that the inverse (3 cx 'x )  exists.  To see that b  is-1

unbiased, observe that   

c 1 N 1 N U i i i U i i i iE(b |x ,..., x ; c , ..., c )  =  E{(3 cx 'x ) 3 cx '[x $ + , ]}-1 

U i i i U i i i U i i i U i i i                                       =  E{(3 cx 'x ) 3 cx 'x $ + (3 cx 'x ) 3 cx ', }-1 -1 

U i i i U i i i                                       =  E($)  +  (3 cx 'x ) 3 cx 'E(, )  =  $. -1 

On the right-hand side of the above derivation we have dropped the list of conditioning

i i ivariables.  This is a common practice.  In fact, the x , c , and later the Z , are commonly

treated as constants with respect to the expectation operator.  We adapt the practice of

dropping the conditioning variables for the remainder of the lesson for convenience.     

The Gauss-Markov theorem tells us the best linear unbiased estimator for $ (best in the

c i isense of having the smallest possible variance) is the version of b  with c  % 1/F .  When all2

ithe ,  are identically distributed, the full-population ordinary-least-squares estimator for $,

OLS U i i U i ib  = (3 x 'x ) (3 x 'y ) is the best linear unbiased for $.  Let us assume that is the case-1
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U i ifor now.   This presupposes, of course, that 3 x ’x  is invertible.  For the remainder of this

lesson, we assume for convenience that all the matrices that need to be are invertible.  

Suppose we have single-phase random sample, S, of n elements where each  element  i

ihas selection probability, B .  Under mild conditions we assume to hold, one can show that

^
B S i i i S i i i U i i i i U i i i ib  = (3 [1/B ]x 'x ) 3 [1/B ]x 'y  =  (3 [Z /B ]x 'x )  3 [Z /B ]x 'y-1 -1

                                                                             ̂                                                ^                

OLS B OLS Gx1,P B is a design-consistent estimator for  b   with  (b  ! b ) =  O (1/¾n).    Although  b  is
  
model unbiased, another model-unbiased estimator for $ based on the sample, 

^
OLS S i i S i ib  = (3  x 'x ) 3 x 'y .-1 

OLShas less variance, even if it is not necessarily a design-consistent estimator for b .  

                                            ^                                                    ̂
B OLSThe design consistency of b  and smaller model variance of b , however, are irrelevant

OLS y U iif our goal is to estimate neither b  nor $, but t  = 3 y .  This is a goal we turn toward now.

The Generalized Regression Estimator

 

c i Suppose we knew the value b  for some set of c -values.  With that knowledge, we could

ycompute the following generalized difference estimator for t  : 

                                                        ^           ̂               ^               ^ 
 ygdiff yHT U i c S i i c yHT x xHT ct  =  t  + ( 3 xb  ! 3 (1/B )xb )  =  t  + (t  ! t )b ,   

               ^                                           ^                                                 ^ 

yHT S i i x U i xHT S i i x xHTwhere   t  = 3 (1/B )y , t  = 3 x  and t  = 3 (1/B )x .  Note that t  and t  are row vectors.

                       ^
ygdiffThe estimator t  is a generalization of the difference estimator on page 77 of Sampling:

iDesign and Analysis.  The scalar auxiliary variable x  in Sampling is replaced by the scalar

i cproduct of two vectors, xb .  In addition, the sampling design is not necessarily SRS.  This

cgeneralized  difference  estimator is  design unbiased  because  b   is  a  constant  under

randomization inference.  The estimator is also model unbiased:
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        ^                     ^              ^ 
M ygdiff y M yHT x xHT c yE (t  ! t ) = E [t  + (t  ! t )b  ! t ]

                                                                     ̂
M S i i i x xHT c U i i                    = E [3 (1/B )(x $ + , )  +  (t  ! t )b  ! 3 (x $ + , )]

     
                                          ̂                           ^ 

xHT x xHT x                    =                  t $       +      (t  ! t )$  !     t $   =   0.

cUnfortunately, b  is rarely ever known in practice.  It can, however, be estimated from the

sample.   This leads us to the generalized regression estimator (GREG):  

   ^         ^              ^     ^
 yrgreg yHT x XHT ct  = t  + (t  ! t )b ,                                                                                                 (S50)

where 

^
c S i i i i S i i i ib  = (3 [1/B ]cx 'x ) (3 [1/B ]cx 'y ).                                                                              -1

                                                                                                                                         ^
S i i i i cBecause (3 [1/B ]cx 'x )  is a random variable from the randomization viewpoint, neither b-1

        ^
yrnor  t   is  design unbiased.   To get at  their  asymptotic properties,  we assume that the

U i population and sample design are such that 3 y /N  converges to a finite positive constant,

4 U i i i U i i iy6 , as n and N grow arbitrarily large.  Similarly, N 3 cx 'y  and [N (3 cx 'x )]  converge to-1 -1 -1

a vector and matrix with all finite members.   Furthermore, 

U i i i S i i i i GxG,PN (3 cx 'x  ! 3 [1/B ]cx 'x ) = O (1/¾n),  and -1

                                                                                                                                        
                                                                                                                                         

U i i i S i i i i Gx1,PN (3 cx 'y  ! 3 [1/B ]cx 'y ) = O (1/¾n).  -1

As a result, if G is bounded as n (and N) grows arbitrarily large, then 

S i i i i G GxG,P U i i iN 3 [1/B ]cx 'x   =  [I  + O (1/¾n)]N 3 cx 'x ,  and-1 -1 

S i i i i G GxG,P U i i iN 3 [1/B ]cx 'y   =  [I  + O (1/¾n)]N 3 cx 'y .-1 -1 
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We can now see that 

^
c S i i i i S i i i ib  = (N 3 [1/B ]cx 'x ) (N 3 [1/B ]cx 'y )-1 -1 -1 

G GxG,P U i i i G GxG,P U i i i    = ([I  + O (1/¾n)]N 3 cx 'x ) ([I  + O (1/¾n)]N 3 cx 'y )-1 -1 -1 

      

U i i i G GxG,P U i i i    = (N 3 cx 'x ) [I  + O (1/¾n)]  N 3 cx 'y-1 -1 2 -1 

 U i i i G GxG,P U i i i   = (3 cx 'x ) [I  + O (1/¾n)]3 cx 'y  -1

G GxG,P c c P    = [I  + O (1/¾n)] b  = b [1 + O (1/¾n)].

                                                                                                                                       ̂
cAll this heavy lifting allows us to conclude that under our large-sample assumptions, b  is

                                               

ca design-consistent estimator for b .  It is also a model-unbiased estimator for $ since it has

c i i i iit has the same form as b  in equation (S49)  with  cZ /B  replacing c . 

As for the GREG estimator itself, 

     ^        ^              ^    ^
 ygreg yHT x xHT ct  = t  + (t  ! t )b  

                ^           ^                      ^      ^ 
yHT x xHT c  x xHT c c           = t  + (t  ! t )b  + (t  ! t )(b  ! b )                   

                   ^                    ̂     ^ 
ygdiff x xHT c c       =        t  +     (t  ! t )(b  ! b ).                                                                             (S51)

y y 4Subtracting t  from both sides and then dividing by t  = N y6  yields:  

   ^                      ̂                                    ^     ^
 ygreg y y ygdiff y y 4 x xHT c c( t  ! t )/t  = (t  ! t )/t  + y6 N (t  ! t )(b  ! b ).  -1 -1

PUnder our assumptions the generalized difference estimator has a relative error of O (1/¾n).

                                            ^      ^      
4 x xHT c c 1xG,P Gx1,P PThat dominates y6 N (t  ! t )(b  ! b ), which is O (1/¾n)O (1/¾n) = O (1/n).  From-1 -1

this we can see that the GREG estimator has a relative bias of O(1/n) and a relative error

Pof  O (1/¾n).  



114

                                                                                               ^
y_GREG S k kThe GREG estimator in equation (S50) can be rewritten as t  = 3 w y , where

i i U q S q q S q q q q i i iw =   1/B  + ( 3 x  !3 [1/B ]x )( 3 [1/B ]c x 'x ) [1/B ]cx '  -1 

i U q S q q S q q q q i i     =  1/B  {1 + ( 3 x  !3 [1/B ]x )( 3 [1/B ]c x 'x ) cx '}.                                              (S52) -1 

                   

i i iWe depart in this lesson from the practice of setting w = 1/B .  Here w is used in place of

                 ~
iwhat was w in previous lessons.  

kStrictly speaking, the w  in equation (S52) are functions of the realized sample, S, and the

i kc , but we suppress that in the notation for convenience.   Observe that the  w  satisfy the

S k k U kcalibration  equation: 3 w x  = 3 x , a term first used in this context by Deville and  Särndal

(1992).   We will return to calibration later.

Some Examples of GREG Estimators

The most common example of the GREG  estimator in equation (S50) is the ratio: 

^
 yr x S i i   S i it  = t [3 (y /B ) /3 (x /B )], 

i i i iHere x  is a scalar, x , and c  = 1/x , so that 

   
  ^                                                                                               ^       ^        ̂ 

c S j j j j i i i i S j j S i i xHT yHT Bb  = ( 3 [1/B ]cx 'x ) [1/B ]cx 'y  =  ( 3 [1/B ]x )  3 [1/B ]y    = (t ) t = b , and -1  -1 -1 

     ^         ^             ^   ^     ^
 ygreg yHT x xHT B yrt  = t  + (t  !t )b  = t . 

Another example is the poststratified ratio estimator.  In that estimator,  the population is

idivided into G mutually-exclusive model groups, and the components of the G-vector x  for

ii 0 U  are all zero, except for the g’th component which equals x .    One effectively has ag

i i g idifferent ratio model, y  = x$  + , , in each group g.  
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i iAgain, c  = 1/x .   As a result, 

x x1 x2 xG xg i t  = (t , t , ..., t ),   where t  = 3  x ,    
                               

                                                  i0U  g

   
S j j j j    i j j3 [1/B ]cx 'x  is a diagonal matrix with  3 [Z /B ]x  in the g’ th diagonal, and  

                                                             i0Ug

S j j j j  i j j3 [1/B ]cx 'y  is a vector with  3  [Z /B ]y  in the g’ th position.   
                                              i0Ug

So that 

^                                                     ^        ^                 ^
c S j j j j i i i i 1 G g  i j j    i j jb  = ( 3 [1/B ]cx 'x ) [1/B ]cx 'y  = (b , ..., b )', where b  = 3   [Z /B ]y / 3 [Z /B ]x  , and -1 

                                                                                          i0U            i0Ug g

 
       ^         ^              ^  ^                 ̂     ^

 ygreg yHT x xHT c xg g yprt  = t  + (t  !t )b  =   3 t b  =  t . G 

This is the same as the poststratified ratio estimator in equation (S45) without the second

g g iphase of sampling (i.e., when m  = M  for all g).   When all the x  are 1, then poststratified

ratio estimator collapses into the poststratified estimator.  

                               ^        ^
ypr x c i iOne can also write t  = t b .  In general, when all c  = 1/(xh) for some vector h (in this case

                                                                                              ^           ^
ygreg x ca column of 1's), the GREG can be put in projection form:  t  = t b .  

It is possible to have separate multiple regression models in each model group f (f = 1, ...F):

k (f)k f k (f)k f ky  = x $  + , , where k0U  and x  has G  components.   In this context  x  in the GREGf

1 F festimator  has G = G  + ... + G  components, all of which are zero except for the G  that

(f)khave the values of x . 

k k k k k kAt the other extreme, a popular x  in practice is x  = (1, x ).   When c  = 1 and  x  = (1, x ),

k kwe have the simple regression estimator.    Some use this term only when x  = (1, x ) and

the sample design is SRS.  
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The Anticipated MSE of the GREG

Equation  (S51)  tells  us  that  the  mean  squared  error  is  asymptotically identical  to  the
                                                                             ^

ydiff cvariance of the generalized difference estimator, t , defined with b :       

         ^              ^                    
ygreg ydiff i,q0U i i q q iq i qMSE(t ) . V(t )   = 3  (d /B )(d /B )(B   ! BB ) 

                           

U i i i i,q0U i i q q iq i q                                 = 3 (d /B )( 1 ! B ) + 3  (d /B )(d /B )(B   ! BB ),2

i�q                                                                     

i i i cwhere d  =         y        !    xb   

i i i U q q q U q q q q              =  (x $ + , )  !    x (3 c x 'x ) 3 c x '(x $ + , ) -1 

            
i i U q q q U q q q              =            ,    !     x (3 c x 'x ) 3 c x ', .   -1 

M i q M i q PUnder mild conditions we assume to hold  E (dd ) = E (,, )  + O (1/n).   In this context, 

i and q can be equal, although they need not be.   

As a result of this and the model assumptions in equation (S48), the asymptotic anticipated

             ^
ygreg MSE of t is 

               ^
M ygreg U i i iE [MSE(t )]  .  3  (F /B )(1 ! B )                                                                              (S53)2

i,q0U iq i q  i qfor  many  sampling designs  (e.g.,  those  for  which  3  (B   ! BB ) /(N BB )  is  O(1/n)2

so that the right-hand side of equation (S53) dominates the excluded terms), including most

of the designs we have studied in the class,  even those with multiple  stage and  phases.

The most common  exceptions are sampling designs  with  systematic  sampling  from  a

predetermined list in the first phase of sample selection. 
    

Although the lesson until this point has restricted its attention to single-phase samples of

fixed size.  It is a trivial matter to expand the analysis  to  include single-phase designs with

random sample sizes, like Poisson sampling.  It is also possible  (but not as trivial)  to

extend the  asymptotic framework  to  multi-stage  designs, where  n  refers  to the  number

yof  sampled  psu’s  rather  than elements.   A GREG estimator  for t  is not only unbiased

under the model in equation (S47),  it is design consistent  with  a  relative  randomization
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expmean  squared error  of  O(1/n )  under  mild conditions we assume to hold. 

                  

Returning to a single-phase elements sample where the model assumptions  in equation

(S47) and (S48) apply, the right-hand side of equation (S53) does not depend on the choice

i cfor the  c   in  b   in equation  (S49).   There  is  no  advantage,  in  terms of reducing  the

i i i(asymptotic) anticipated  MSE  of  the  GREG,  in setting  c  % 1/F .   Many require  c   be2

iproportional to  1/F   in their definition of the GREG estimator.  In light of what  we have just2

seen,  that seems  inappropriate.   Others have argued that for model-based reasons the

                   ̂                                             ^                                   
c OLS ichoice for b  in equation (S50) should be b   when the  F   are all  identical.  There is little2

yjustication for that either.   If the regression estimator for  t  is forced to be design-consistent

to protect against possible model failure, one model-unbiased estimator  for  $  in  equation

(S50)  seems as good as any other ! as long as it converges to a finite vector. 

iAlthough  there is no  asymptotically optimal choice for  the  c   in the GREG,  there is an

optimal choice for the selection probabilities given a fixed sample size (or a fixed expected

i isample size) under the model.  It is B  % F .  This is Brewer allocation discussed in Lesson

8 for the special case of the ratio model in equation (S7) with uncorrelated errors.
 

Prediction Theory

 Richard Royall (1970, 1976)  and others have argued that inference should be conditioned

on the realized sample exclusively using  a model or  family of models.   The goal of  esti-

mation in their view is to predict the y-values for the elements not in the sample.  Faced with

the model in  equation (S47) and  error structure in  equation  (S48),  they would use the

prediction-theory estimator (or, more precisely, the predictor):

^
 ypred S i R i S k k k S k k kt  =    3 y   +  3 x  ( 3 x 'x /F )  3 x 'y /F ,                                                       (S54)2 -1 2

            

where R is the set of elements in the population, but not in the sample (the remainder set).

i iObserve that E(, ) = F  only has the be known ! or hypothesized ! up to a constant.   Each2 2
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i i BLU BLU S k k k S k k ky  0 R  is predicted by  xb ,  where b   =  ( 3 x 'x /F )  3 x 'y /F    is the best linear2 -1 2

unbiased estimator for $ under the model in equation (S47). 

                                                         ^                                                           
i i i i ypredWhen x  is a scalar, x , and F  % x ,  t  collapses into what looks like the  ratio estimator2

                                                            ^
yr x S i S iunder a self-weighted sampling plan,  t  = t  ( 3 y / 3 x).   Although it looks like a GREG

estimator, it is need not be.  In fact, it is not hard to show that the most efficient sampling

plan  for  a fixed sample size  given  the model in equation (S7) purposefully chooses the

elements with the largest x-values.       

Prediction theory recognizes the possibly that the model used to determine the estimator

imay be wrong.   In particular, the specification of the F  may be erroneous.   Fortunately,2

                                                                                                       ^ 
i ypredgetting the F  wrong does not affect the model unbiasedness of  t ,  however.   Conse-2

                                                                                        ^ 
ypred iquently, it is prudent to estimate the model variance of t  without specifying the F .  2

A more troublesome case of specification error occurs when auxiliary variables are missing

from the model.   To deal with such a  possibility,  suppose a  working model  like   that  in

equation (S7) has been used to determine the estimator, in this case the simple ratio.   A

more general model can then  be employed to choose the sample.   Royall  and  Herson
 

S i U i (1973) showed that by choosing the sample  so that  3 x /n = 3 x /N,  which they called

being balanced on x, the simple ratio estimator becomes unbiased under the more general

i i imodel:  y  = " + $x  + , .   This  can be seen  by noticing  that balancing  the sample on  x

                                                                                                  ^
y S irenders the ratio estimator equal to the expansion estimator:  t  = (N/n) 3 y .   Royall and

 
Herson  point out that a statistician  can choose a sample  that is balanced on  additional

variables suggested by a more general model.   They focus particularly on integer powers

of x.

A practical way to find samples that are balanced or nearly balanced on particular variables

is to use simple random sampling and examine the results.   For simple random sampling

S i U i P3  z /n !3 z /N = O (1/¾n) under mild conditions for any z-variable.  Thus, this sampling

plan  returns  asymptotically  balanced samples  for almost  every  conceivable  auxiliary
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variable.  It may nonetheless be ineffective for particular variables and particular samples.
 
Kott (1986) showed that the asymptotics can often be speeded up for all powers of  x  by

drawing a systematic sample from a list ordered by the x-values.  Recall, however, that such

a sampling plan does not allow design-consistent estimation.

A Purely Randomization-Based Approach

Let us now take the opposite tack and concentrate fully on randomization mse.  Consider

yConsider an estimator for  t   with the same form  as the  generalized-difference  estimator

  ^           ̂            ^
 ygdiff yHT x xHTt  =  t  + (t  !t )b, but where the vector  b  is chosen to minimize the randomization

variance of the estimator.   It is not hard to show that this variance-minimizing value is 

           ^                 ^      ^ 
xHT xHT yHTb = [V(t )] Cov( t ,  t ), where -1 

      ^                                                                   ^      ̂
xHT i,q0U i q iq i q i q xHT yHT i,q0U i q iq i q i qV(t ) = 3 x 'x [(B  !BB )/(BB )], and Cov( t , t ) =  3 x 'y [(B  !BB )/(BB )].

                                                                         ^                                         ^      ^
xHT xHT yHTSometimes it will be possible to calculate  V(t ),  but calculating  Cov( t ,  t )  usually

requires knowledge of all the y-values in the population.    This matrix can be estimated in

                                                        ̂  ^      ^
xHT yHT i,q0S i q iq i q   i q iqa design-unbiased fashion  by  Cov( t ,  t )  =  3 x 'y [(B  !BB ) / (BB B )],  which is

                                                                             ̂   ^                            ^     ̂    ^
xHT yHT xHT yHTthe Horvitz-Thompson formula applied to Cov( t , t ).  Computing Cov( t , t ) requires

  

iqthat all the B  be known and positive. 

The following asymptotically optimal randomization-based estimator can be calculated in

practice: 

     ^         ^              ^       ^ ^            ^  ^       ̂ 
 yrand yHT x xHT xHT xHT yHTt  = t  + (t  !t ) [V(t )] Cov( t ,  t ),                                                                 (S55)-1 

            ^ ^ 
xHTwhere V(t ) is defined in the obvious way.  This estimator is also model-unbiased.  Under

iq i qPoisson sampling, things simplify considerably because B  = BB  for i � q.  One can easily
             ^

yrand i i isee that t  is the GREG estimator in equation (S50) with c  = (1 !B )/B . 
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Calibration Estimators

yDeville and Särndal (1992) introduced the idea of a calibration estimator for  t .   Such an

                                       ^
ycal S i i kestimator is of the form,  t  = 3 wy,  with a set of calibration weights,  {w },  that minimize

S i i U isome loss function yet satisfy the calibration equation,  3 wx  = 3 x .   The loss function

is chosen to assure that the calibration weights are close to the original sampling weights,

ithe 1/B . 

                                                 ^ 
ycalAny estimator with the form of  t  having weights that satisfy  the calibration equation  is

  
unbiased under the model in equation (S47).   The prediction estimator in equation (S53)

i R k S q q q i qcan be put in calibration form with w = 1 + 3 x (  3 x 'x /F )  x '/F ,  yet these weights2 -1 2

have no reason to be close to the original sampling weights and surely are not selected to

i iminimize any loss function relating the w to the 1/B .  Chambers (1996) called the prediction-

estimator weights, “case-based weights.”    

The definition of a calibration estimator we will use here expands on the form but not the

                                                                           ^ 
ycal iintent of Deville and Särndal.  We will say that  t   is a calibration estimator if the  w  as

i i expa group satisfy the  calibration equation, and  each  w  =  (1/B )[1 + O(1/¾n )]  under mild

conditions which are assumed to hold. 

We have seen that the GREG estimator in equation (S50) can be put in the form of a

icalibration estimator.   Brewer (1994) showed that by choosing the c  for each i 0 S so that

i i ic  = (1 !B )/(xh) for some vector h, the GREG estimator can be put in prediction form: 

^
 ygreg S i R i ct  = 3 y  + 3 xb , 

cwhere b  retains its definition in equation (S50).   For the ratio model, 

^
 yBrew S i R k S i i i   S i i it  = 3 y  + 3 x {3 (y [1!B ]/B ) /3 (x [1!B ]/B )}
 

 S R k S k k k  i i i        = 3 {1 + ( 3 x / 3 (x [1!B ]/B )} ([1!B ]/B )y

i iBrewer called  the process of  computing the w by using his c   cosmetic calibration.   He

argued GREG estimators that could be put in prediction form were less likely to have any
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weights less than unity than GREG estimators in projection form.  Brewer noted  that when

every calibration weight is at least 1,  each element can be thought to at least represents

              ̂                                 ^
ycal yBrew i R k S k k  kitself in t .  In the case of the t  above, all w  = 1 + ( 3 x / 3 (x [1!B ] /B ) are at least

i k k1 as long as all the x are nonnegative and one x  with B  < 1 is positive. 

                                                                                                                                     ^
yrandBankier (2002) made a similar claim about the purely randomization-based estimator, t ,

in equation (S54).   One major reason both of these  approaches reduce the potential for

i ia calibration weights to be less than unity is that when B  = 1, c  = 0 under each.  As a result,

iw is forced to equal unity, rather than being allowed to fall beneath that value.

Deville and Särndal (1992) focus on calibration weights of the form:  

i i i i w =  (1/B )f(cx 8),                                                                                                         (S56)

where f is a monotonic, twice-differentiable function with  f(0) = f'(0) = 1, and  8  is chosen

so that the calibration equation holds.    When f(z) = 1 + z, 

U j S j j S j j j j8'  = ( 3 x  !3 [1/B ]x )( 3 [1/B ]cx 'x ) ,  -1

and Deville and Särndal’s calibration estimator is the GREG (see equation (52) and observe

i i that  8'x ' = x 8).  For nonlinear f, Deville and Särnal propose a iterative search method for

determining 8.   See also, Singh and Mohl  (1996) for more details on computation. 

Brewer (1994) and others have proposed iterative routines to recompute calibration weights

i i i originally in linear form when any w = (1/B )(1 + x 8) is less than unity.  An appealing

c i i calternative builds constraints, often of the form L  # wB  # B , into the f(.) function.  Both

Deville and Sarndal (1992) and  Folsom and Singh (2000) discuss this approach. 

Folsom and Singh and Kott (2004b) discuss using a non-linear calibration in equation (S56)

i to handle sample nonresponse and population undercoverage.  Briefly, 1/f(x 8) serves as

an estimate of the quasi-random probability of response (or of coverage).   In this context,

f(0) and f'(0) need not be zero.    
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Raking was discussed in Sampling: Design and Analysis (pp. 169-171) as a means of

adjusting for nonresponse.  It turns out that raking is  identical to finding a set of  calibration

i i i iweights  (and a  8)  such  that w = (1/B )exp(x 8)  for an appropriately defined x .  The value

ifor each component of x  in raking is limited to be either 0 or a 1.  This limitation may be true

i for raking, but it is not the case for nonlinear calibration in general, even when f(x 8) =

i exp(x 8).     

Variance Estimation 

Särndal et al. (1989) proposed this model-variance/design-mean-squared-error estimator

for the GREG in equation (S50):

SSW iq i q iq i i q qv  =    3    3   [(B  !BB )/B ](wr )(w r ),                                                                 

             i0S  q0S   

i i i S q q q q S q q q qwhere r  = y  ! x (3 w c x 'x ) 3 w c x 'y  . This estimator have desirable properties for-1 

many element samples designs under certain conditions.  Deville and Sarndal argued that

the same variance/MSE estimator can be used for any calibration estimator,  based on

weights satisfying equation (S56) (with f(0) = f'(0) = 1).   This turns out not to be true when

calibration is used to adjust for nonresponse or undercoverage (because neither f(0) or f'(0)

need be zero), but that is beyond the scope of this course.   Demanti and Rao (2004) and

the discussion by Kott that follows have more on this.  

Under a multi-stage sample, it may no longer be reasonable for elements from the same

psu to have uncorrelated errors.  Assuming elements from different psu’s have uncorrelated

errors and the first-stage selection probabilites are ignorably small, the following generalized

of equation (S32) should have both good model-based and randomization-based properties:

                     H
      ^     ^         

WR ycal h h i i  i i h V (t )   =   3   (n /[n  !1]){  3   (  3   w r )  ! ( 3      3   w r ) /n },                              (S57)2 2 

        
 h hj  h hj                   h=1                    j0S   i0S             j0S   i0S  

hwhere h denotes a first-stage stratum of psu’s, n  the number of sampled psu in stratum h,

h hjS  the set of sampled psu’s in h,  and  S   the set of subsampled elements  from  psu  j  of

stratum h (there can be many stages of sampling involved).   Recall that in equation (S32),
                                                                                     ^
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i i i x  x iw = 1/B .  The w in equation (S57) is equivalent to (t / t )w in (S32). 

U iFrom a model-based point of view, when 3 ,  . 0, the model variance of a calibration esti-

mator is approximately 

M S i i U i M S i i U iE [(3 w y  ! 3 y) ] = E [(3 w ,   ! 3 , ) ] 2 2

M S i i                                 . E [(3 w , ) ] 2

M i i                                 = 3  3    E ( 3  w, ) .                                                                  (S58)H 2

  
h hj                                        j0S       i0S

                                  ^    ^
WR ycalIt is easy to see that V (t ) in equation (S57)  is a model unbiased estimator for the  right-

hand side of equation (S58). 

Means and Ratios

y U iThis lesson has focused on estimating the finite population total, t  = 3 y .  Often, we are

interested in other finite-population statistics.  In this section, we consider the estimation of

y z z U i ka population ratio, R = t / t , where t   =  3 z .   A special case occurs when  z  = 1  for all

ki 0 U, so that R is the mean of the y  in the population U.   For simplicity’s sake, subscripts

denoting the variables involved have not been placed on R.  The same simplification will be

made with the estimators for R. 

                                                                                       ^     ^   ^
HT yHT  zHTIt is not hard to show that under mild conditions, R  = t / t   is a design-consistent esti-

mator for R.  Its randomization bias and mean squared error are  both of asymptotic order

exp1/n , so that randomization bias is an asymptotically insignificant fraction of mean squared

error.    

                                                                                                  ^
cal S k k S k kThese properties are shared by the calibrated estimator for R, R  =  3 w y /3  w z , where
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k k k P expthe  w   belong to a set of calibration weights of the form  w  =  (1/B )[1 + O (1/¾n )] that

S i i U isatisfy the calibration equation, 3 wx  = 3 x .  Rao et al. (2002) have noted in a somewhat
                                  ^             ^

ycal zcal different context that  t  and  t  can have smaller MSE’s  than their Horvitz-Thompson

                                 ^                                                  ^
cal HTanalogues without  R   having a smaller MSE than  R .   It is possible that the  y- and  z-

                                                                                                                                        ^
calvalues tightly correlated and that the calibration of both the numerator of denominator in R

adds mostly unwanted noise to the ratio-estimation process. 

Other Extensions

Extending jackknife and BRR variance/MSE estimation routines to GREG estimators follows

closely the treatment of the ratio estimators in Lesson 11.  As Deville and Sarndal argued,

what applies to the GREG estimator applies to the analogous nonlinear calibration

estimation. 

Extensions to GREG and calibration principles to two- (and multi-) phase sampling can be

very messy, since the set of auxiliaries can be different at different phases.   Estevao and

Särndal (2002) have a clear  treatment of this complex topic.

There has been much recent work on applying local-polynomial-regression and spline-fitting

techniques to sample-survey data.   Two papers in this area are Breidt and Opsomer (2000)

and Zheng and Little (2003).   

 

One open question in using multiple-regression techniques within a randomization-based

survey-sampling context is when the sample is large enough to justify the asymptotic theory.

Kott (1994b) and Bell and McCaffrey (2002) describe using models to uncover and correct

small-sample problems in some of the methods described in this lesson and throughout this

course.   
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Homework for Lesson 14

i i i iShow that with a self-weighting sample, x  equal to a scalar, x , and c  = 1/x , Brewer’s

ycosmetic calibration estimator for t  collapses the usual ratio estimator.

Look at the regression estimator under SRS on page 74 of Sampling Design and Analysis.

i iIt is a GREG estimator.  What is c?  What is x?  What does this estimator look like in

projection form?   Why did we claim that the model-variance/design-mean squared-error

estimator for this estimator is equation (S13) on page 27?

.
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