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1.  Introduction 

 

Suppose we have a population containing N units separated into H strata.  Let ph be the 

proportion of units in stratum h with a particular property.   Formally, we can write yi = 1 when 

unit i has the property and yi = 0 otherwise, so that / ,h i hp y N= ∑ where the summation is over 

the Nh units in stratum h.   

Our goal is to estimate the overall proportion of the population with the property; that is, 

,h hp W p= ∑ where / ,h hW N N=  and the summations across the H strata.  Given a stratified 

simple random sample, an unbiased estimator for p is ˆ ˆ ,h hp W p= ∑ where ˆ
hp is the proportion of 

the nh sampled units in stratum h with the property.  The overall sample size is denoted .hn n= ∑  

For analyzing the statistical properties of ˆ ,p  we can use either model-free randomization-

based inference or assume a general model in which each unit in the population is independent 

with probability ph of having the property depending on its stratum membership.  The latter 

approach allows us to ignore finite population correction, which we will do from now on.  

Although based on a model this approach is completely analogous to randomization-based 

inference under stratified simple random sampling with replacement.    

We will also consider an alternative model-based framework in which each unit is 

independent and identically distributed.  Under this iid model, the ph are assumed to be equal (at 

least) for variance-estimation and coverage-interval construction purposes.  Note, however, that 

the estimator ˆ ˆ
h hp W p= ∑  is computed as if there is a possibility that the ph might not be equal.  

In other words, p̂ is (or, more correctly, can be) a weighted averages of the sampled yi.   

A one-sided α-percent Wald coverage interval for p has the form   
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where ˆ( )v p  is an estimator for 2ˆ( ) (1 ) / ,h h h hV p W p p n= −∑  the variance of ˆ ,p  and Φ (.) is the 

cumulative distribution function (cdf) of a standard normal distribution.  One can show that if the 

sample size is large enough, then both inequalities will hold for roughly α-percent of the samples 

that could be drawn using a fixed set of nh.   

In practice, the sample size is often not nearly large enough for a one-sided Wald 

intervals to contain (“cover”) p with the frequency suggested by theory when either p or 1−p is 

small.  As a consequence of this, a host of alternative coverage intervals for p have been 

proposed in the literature.  Most focus on simple random samples from an iid population, but a 

few treat samples from more complex designs.  See Lui and Kott (2007) for descriptions and 

empirical evaluations of many of them.  The emphasis there, as here, is on one-sided coverage 

intervals.  Some techniques known to produce reasonably effective two-sided intervals, such as 

Wilson’s score method, can fail when one-sided-interval construction is the goal.  See Cai 

(2004).  

When all 3,hn ≥ we will propose the following pair of one-sided α-percent coverage 

intervals for p in a stratified population under the general model:  
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and   z = 1( ).−Φ α   At first, Φ (.) will (again) be  the cdf of a standard normal distribution.  Later, 

we suggest replacing it by the cdf of a Student’s t distribution with specified degrees of freedom. 

  

An alternative pair of one-sided intervals can be developed for p when the iid model 

holds.  They have the same form as in equation (1), but equation (2) is replaced with 
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In practical application, when 1 2
ˆ ˆ ˆ ˆ... 0,Hp p p p= = = = =  we are effectively forced to assume 

the iid model and use equation (3) instead of equation (2).   Equation (3) can also be used when 

not every stratum has at least three sampled units.  It must be remembered, however, that its 

theoretical appropriateness depends on what can be a dubious the iid assumption.  
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 Like their Wald counterparts, the coverage intervals in equation (1) depend on the sample 

being “sufficiently large.”  The insertion into equation (1) of a non-zero value for the δ, whether 

defined in equation (2.2) or (3.2), effectively speeds up the asymptotics.  The observant reader 

will note that when collapsed into the single-stratum environment where H = 1, equations (2) and 

(3) do not quite coincide: 1
ˆ( )v p  and 2

ˆ( )v p differ by an OP(1/n
2
) term as do δ1 and δ2.  These 

differences are deemed asymptotically ignorable here.   

Equation (1) modifies and generalizes coverage intervals introduced by Hall (1982) for a 

proportion of an unstratified iid population.  In Hall’s original formulation there is no δ2
 under 

the radical.  Our variation, which otherwise like Hall’s drops OP(1/n
3/2

) terms, assures that the 

lower-tail interval 2 2ˆ ˆ( )p p z v p≥ + δ − + δ   contains zero when p̂ = 0 (and the upper-tail 

interval contains one when p̂ = 1).   

Section 2 begins the derivation of our proposed coverage intervals by introducing an 

Edgeworth expansion for p̂ .  Section 3 completes the derivation under the general model, while 

Section 4 treats the iid model.  A generally favorable empirical evaluation of a particular 

stratified sampling design in Section 5 prompts a discussion of the limitations of our proposals, 

especially when constructing a lower-bound for p when p̂  = 0 and an upper bound when p̂  = 1.   

Finally, we briefly discuss two-sided coverage intervals and potential extensions of our 

methodology in Section 6. 
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2.  The Edgeworth Expansion 

 

The derivation to follow parallels Cai (2004) more closely than Hall.  Unlike Cai, 

however, we will be satisfied dropping OP(1/n
2
) trems.  To do otherwise seems to us an 

impossible task under the general model in a stratified setting because the variance of p̂ cannot 

be expressed as an explicit function of p and the nh.  

We begin with an Edgeworth expansion for ˆ :p   
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where ( )zϕ is the probability density function (pdf) of the standard normal distribution, and  
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under mild conditions on the Wh and ph we assume to hold.  Sufficient conditions are that all the 

nWh/nn are bound from above by a finite U, while all the ph (1 − ph) are bound from below by a 

positive L.  

Strictly speaking, Edgeworth expansions only apply for continuous distributions, while 

p̂  has a discrete distribution since the number of population units in each stratum having the 

property of interest must be a whole number.  Like Hall and Cai, we are ignoring the “oscillatory 

terms” of the cdf.   As a result, one of our α-percent intervals will (at best) cover p in α-percent 
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of all possible samples on average across small ranges of potential values for p rather than 

covering p at in at least α-percent of all possible samples for each p.  This is why we use the 

term “coverage interval” to describe the intervals in equation (1) rather than the more common 

“confidence interval.”  The latter suggests to us a very conservative requirement that coverage is 

at least as good as advertised no matter the true p.   See Brown et al. (2001) and subsequent 

comments for a debate on this issue in the context of two-sided intervals for an unstratified iid 

population.  

Letting 

[ ]
2 1/ 23

3 / 2
(1/ 6)(1 ) (1/ )

ˆ( )

M
a z O n

V p
= − = ,  

and employing the Taylor-series expansion, ( ) ( ) ( ) (1/ ),z a z a z O nΦ − = Φ − ϕ + we can replace z 

in equation (4) with z − a and write:  
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This implies 
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To use this last equation in constructing coverage intervals, we will need (among other 

things) to estimate the unknown ˆ( )V p .  In the unstratified framework explored by Hall and Cai, 

ˆ( )V p  is a known function of p.  That need not be the case here.  As a consequence, we follow 

Andersson and Nerman (2000) and replace ˆ( )V p , not with ˆ( )v p  as one might expect, but with 

the much more efficient idealized variance estimator: 

 

( )ˆ ˆ ˆ* ( ) ( ) ,v p v p B p p= − −                                                                                    (5) 

where 

 
( )ˆ ˆ( ),

.
ˆ( )

Cov v p p
B

V p
=  

 

Unfortunately, ˆ* ( )v p , although having the minimum variance of an estimator for ˆ( )V p in the 

form ( )ˆ ˆ( )v p p p− λ − , can still possess an error of probability order 1/n
3/2

.   

Using ˆ* ( )v p  in equation (5) ultimately requires an estimator for B.  At this point, we 

leave vague both how to compute that estimator and what to use for ˆ( )v p (whether 1
ˆ( )v p from 

equation (2.1) or 2
ˆ( )v p  from (3.1)). 
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Substituting 2 ˆ( )z V p  by 2 ˆ* ( )z v p (in fact, 2 ˆ* ( )z v p  + OP (1/n
3/2

 ) ) and rearranging 

brings us to  
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 3. The General Model 

  

  Under the general model, both 3
ˆ/ ( )M V p  and B in equation (6) can be replaced with the 

same expression:  
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(see, for example, Kott et al. 2001).  This estimator is OP(1/n) and has an error of Op(1/n
3/2

), 

which is asymptotically dominated by other terms when plugged, along with 1
ˆ( )v p , into 

equation (6).   By dropping the unspecified OP(1/n
3/2

) term, equations (1) and (2) are the result.    

 Observe that the sum,   

2
2 31

6
(1 )

ˆ( ) 2

M z
z B

V p
∆ = − + ,                                                                                  (8) 

in equation (6) has a simple estimator, 2
1 1(1/ 6 / 3)z bδ = + .  Strikingly, the two components of ∆ 

have opposite signs when z
2
> 0.  The first component captures the direct impact of the skewness 

of p̂ on the Edgeworth expansion, but it is the second component, the result of replacing V( p̂ ) 

by 1 1
ˆ ˆ ˆ* ( ) ( ) ( )v p v p B p p= − −  rather than v1( p̂ ), that dominates.  

Unfortunately, it is not wholly legitimate to drop the OP(1/n
3/2

) term under the radical in 

equation (6) because it has the same asymptotic impact as other terms not dropped.  (A 

discussion on keeping the O(1/n
2
) term ∆2  

under the radical is deferred to Section 6.)  Note that 

the source of the dropped OP(1/n
3/2

) term is the variance of 1
ˆ* ( )v p .  An ad hoc way of treating 

the instability of this idealized variance estimator is to estimate its effective degrees of freedom.       
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Consider the mean, ,x of  iid normal variates, x1, …, xn.  The pivotal statistic 

( ) / ( )x v x− µ , although asymptotically normal, has a Student t distribution with n−1 degrees of 

freedom.  This degrees-of-freedom value is equal to 2 divided by the relative variance of the chi-

squared random variable ( ),v x  the estimator for the variance of .x     

In an analogous fashion, we can replace standard normal distribution used to relate α to z 

in equation (1) (through z = 1( ))−Φ α  with a Student t distribution having effective degrees of 

freedom equal to 2 divided by the relative variance of 1
ˆ* ( )v p =  

( )1
ˆ ˆ( )v p B p p− − .  The appendix shows this value to be 
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When all nh ≥  4, d in equation (9) can be consistently estimated by 
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is an unbiased estimator for 2(1 )(1 2 )h h hp p p− − . 

Equation (11) assumes the overall sample size is large, but allows the individual stratum 

sample sizes, the nh, to be small.  An alternative, slightly simpler, estimator for d is consistent 

when all the nh are large, say at least 10 (formally, 1/nh= O(1/n) for all h): 
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When the ph are roughly equal, an inconsistent, but more stable, estimator for d in 

equation (10) is    
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The last summation in the denominator of equation (13) can be viewed as a penalty for 

stratification.   When all the nh are large, it can be ignored, and  
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ˆ .

ˆ(1 2 )
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h
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h
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Hh h h

h h

W
p p

n
d

W

nW
p

n W

n

=

=

=

=

 
−∑ 

  =
  
 ∑ 
    

− −∑ 
 ∑ 
  

                                                             (14) 

 

becomes a useful effective-degrees-of-freedom estimator.  

Observe that when there is only one stratum, equation (12) collapses into equation (14) 

and the right-hand sides of both are infinite so long as ˆ ˆ(1 )p p− > 0.  When there are more than 

one strata, all the nh are large, and the ph are roughly equal, we can see from equation (14) that 

the effectively degrees of freedom are close to infinity for proportional allocation (Wh = nh/n), 

and decrease as the variability of the stratum sampling fractions, the nh /Nh, increases.  The 

effective degrees of freedom also decrease and as ˆ ˆ(1 )p p−  get closer to 0.  

Finally, when there is proportional allocation, the ph are roughly equal, and the nh are not 

all large, equation (11) collapses into  
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1

ˆ .
1

( 1)

B
H

h

h h

n
d

n

n n=

=

∑
−

 

If all nh ≥ 3, which is necessary to compute δ in equation (2.1), then ˆ 2 .Bd n≥    

 Recalling that we need n to be large (say ≥  30) to use our coverage intervals in the first 

place, the observations above suggest that estimating the effective degrees of freedom will be 

most fruitful (that is to say, the estimated d will be small enough to matter) when there is 

nonproportional allocation or widely divergent ph, and p is near either 0 or 1. 

 

4.  The iid model 

 

  One can avoid estimating the effective degrees of freedom entirely by assuming the iid 

model, as is natural in the single-stratum case.  This is because the variance p̂  can be written as 

( )2ˆ( ) / (1 ),h hV p W n p p= −∑ which in turn can be estimated by 2
ˆ( )v p =  

( )2 ˆ ˆ/ (1 )h hW n p p−∑  instead of 1
ˆ( ).v p    An analogous alternative estimator for the third mean 

moment of p̂  is ( )3 2
3(2)

ˆ ˆ ˆ/ (1 )(1 2 )h hm W n p p p= − −∑ .  In addition, since  

                    

2 2

2

ˆ ˆ ˆ ˆ(1 ) (1 ) ( ) ( )

ˆ ˆ ˆ( ) ( )( )

ˆ ˆ( )(1 )

ˆ ˆ( )(1 2 ) ( ) ,

p p p p p p p p

p p p p p p

p p p p

p p p p p

− − − = − − −

= − − − +

= − − −

= − − − −

 

 and p̂ p− = OP(1/n
1/2

),  ( ) ( )2 5/ 2
2

ˆ ˆ ˆ( ), / ( )(1 2 ) ( ).h h PCov v p p W n V p p O n= − +∑    
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As a result, B  = B2 = ( )2
ˆ ˆ ˆ( ), / ( )Cov v p p V p  (which is no longer the same as B  = B1 = 

( )1
ˆ ˆ ˆ( ), / ( )Cov v p p V p ) can be estimated with  ( )2

2
ˆ/ (1 2 ).h hb W n p= −∑    

When all the alternative estimators under the iid model given above are plugged into 

equation (6) with the unspecified OP(1/n
3/2

) terms dropped, equations (1) and (3) result.  This 

version of the coverage intervals is better then the one using equation (2) − assuming the iid 

model is correct −  because the OP(1/n
3/2

) term under the radical in  equation (6) is, in fact, only 

OP(1/n
2
).  To see why this is so, observe that  

 

2
ˆ ˆ ˆ* ( ) ( )v p V p− = ( )2 2

ˆ ˆ ˆ( ) ( )v p b p p V p− − −  

 = ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ/ (1 ) / (1 2 )h h h hW n p p W n p p p− − − − −∑ ∑    

                                                                                                          ( )2 / (1 )h hW n p p−∑    

            ( )( )
22 ˆ/h hW n p p= −∑  

=  OP(1/n
2
).     

 

 Recall that Cai shows how to keep OP(1/n
2
)  terms in one-sided-interval construction for 

an unstratified iid population.  The key is that ˆ( )V p is expressible as a function of p.  Although 

we could extend Cai’s method for a stratified population under an iid model, we do not.  We 

view the iid model as a convenient fiction useful when there are too few sampled units in a 

stratum or when p̂ is very close to zero. Consequently, intervals based on the iid model are only 

rough approximations that we resist making too fine.     
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5.  An Example   

 

To see how our methods would work with a real stratified simple random sampling design, 

we divided a population of 6,000 units into three equal strata, and set the stratum sample sizes at 

n1 = 10, n2 = 20, and n3 = 30.  We let the overall proportion p take on the values 0.001, 0.002, 

0.003, ..., 0.998, 0.999 with  p1 = p − p(1−p), p2 = p, and p3 = p + p(1−p). 

We generated a finite population of  2,000  unit values  in each stratum h and assigned values 

xhi = 1, 2, ….., 2,000.  We then drew 1,000 stratified random samples for each stratum sample 

size allocation.  For each stratum proportion ph, we let 

 

 
1, if 2,000

0, otherwise

hi h

hi

x p
y

<
= 


.   

  

The weighted estimate for the proportion of  y = 1 was calculated for each value of  p and for 

each sample.  Then simulated coverage probabilities were determined from the 1,000 samples for 

each p.   

 Figure 1 plots the coverages of one-sided 95% intervals computed using the general and 

iid models in equation (1) though (3) with Φ(.) in equation (1) denoting the cdf of a normal 

distribution for both methods.  Since the “general” method is undefined when p̂  is either 0 or 1, 

the “iid” method was used in its place in those circumstances.   

Not surprisingly, given that the ph were not equal in this example, the general method 

provides coverages consistently closer to the nominal than the iid.  The coverages using the 

general method are reasonably close to the nominal – between 92 and 98% − as long a p is 
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greater than 0.05  and less than 0.995 for the upper bound  (i.e., the interval where 

2 2ˆ ˆ( )p p z v p≤ + δ + + δ ) and greater than .005 and less than 0.90 for lower bound.    

Observe that using either approach, when p is very small (large) the coverage of the 

upper bound (lower-bound) is 100%.  The reason for this is fairly obvious.  From equation (1), it 

is clear the upper bound for p is never less below 2δ, while the lower bound for p is never less 

above 1 −2δ.  Consequently, any p value less than 2δ (greater than 1 −2δ) is in every upper-

bound (lower-bound) coverage interval. 

In fact, if all the ph were equal to p, and p was less than or equal to 0.0485, or 

equivalently,  60(1 )p− ≥  0.05, then p̂ would have at least a 5% probability of being zero.  Thus, 

no matter how small p̂  was, any value of p less than or equal to 0.0485 would have to be in the 

upper-bound interval to assure at least 95% coverage.  Similarly, any value of p greater than or 

equal to 0.9513 would have to be in every lower-bound interval to assure at least 95% coverage.   

As a consequence, finding an upper bound providing close to nominal 95% coverage when p < 

0.0485 or a lower bound when  

p > 0.9513 is a quixotic task.  We have marked the beginnings of those regions in the plots with 

vertical “reference” lines. 

We had hoped that changing Φ(.) in equation (1) into a Student’s t distribution with 

degrees of freedom set conservatively at the lesser of ˆ
Ad  and ˆ

Cd  in equations (12) and (14), 

respectively, would reduce the downward spikes in the coverages produced by the general 

method using the Normal distribution.  As Figure 2 shows, mild downward spikes for some 

small p values were removed from the plots of both the upper and lower bounds, but at the cost 

of over-coverages elsewhere.  The deep downward spike in the lower-bound plot at 0.958 to the 
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right reference line remained.  At 0.951, the last evaluated p value left of the reference line, the 

coverage using the t-distribution was only slightly closer to nominal than using the Normal 

distribution (86.8% vs. 86.1%).  A second downward spike at 0.932, however, showed marked 

improvement (93.3% vs. 85.8%).  

Comparisons of the methods proposed here with alternatives in the literature can be 

found in Liu and Kott (2007).   The results there are generally encouraging, but, as here, the 

improvements realized from using a t-distribution rather than a Normal are modest.  

 

 6.   Discussion  

 

As noted in the introduction, one big difference between the coverage intervals proposed 

by Hall (1982) and the ones introduced in equation (1) is that the δ2
 under the radical are missing 

from Hall’s version.  The reason for this is that the impact of the δ2
    is asymptotically ignorable.  

They estimate ∆2
 (see equation (8)), which is smaller than a term under the radical dropped in 

Section 3.  Why, then, didn’t we drop the δ2
 as well?   Theoretically, we didn’t have to because 

they don’t matter.  Practically, their inclusion in equation (1) forces our coverage intervals to 

include 0 when p̂ = 0 and 1 when p̂ =1, which Hall’s does not.  The empirical advantage of this 

is demonstrated in Liu and Kott (2007).   

The problem with the asymptotics is that the positive floor put under the ph (1−ph) to 

justify the Edgeworth expansion in equation (4) may not be reasonable.   An alternative set of 

assumptions forcing τ to be o  (1) but perhaps not as small as O(1/n) could be developed to 

justify keeping the δ2
.  That task is left to the interested reader.  One thing to note, however, is 

that when 1/{n[p(1−p)] } and thus τ are uncomfortably large, the fruit from using the Edgeworth 
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expansion can be of dubious quality.  That may be why the coverages of the upper (lower) bound 

for very small (large) p, as displayed in the graphs from the previous section and in Liu and Kott, 

are not as close to nominal as elsewhere.     

It is a simple matter to construct a two-sided α-percent interval analogous to equation (1):  

 

2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ,p z v p p p z v p+ δ − + δ ≤ ≤ + δ + + δ  

 

where z = 1(1/ 2 / 2)−Φ + α  (note that 1/2 + α/2 = 1 − (1−α)/2). When combined with equation (2) 

under the general model, the result is a coverage interval very similar to one proposed in Kott et 

al. (2001).  The major difference is that δ is 2
1(1/ 6 / 3)z b+  in equation (2.2), while it is 

effectively 2
1( / 2)z b  in Kott et al.  

Under simple random sampling, the two-sided interval proposed in Kott et al. is 

asymptotically identical to the Wilson interval.  Brown et al. (2001) provides empirical support 

for the Wilson or score methodology, but Cai (2004) shows it is less well suited for constructing 

one-sided intervals.  It over-covers when the Wald under-covers and under-covers when the 

Wald over-covers, both to a lesser degree. 

 Kott et. al. describes how to estimate b1 − and thus for our purposes δ1 − under a stratified 

multi-stage design.  Complications arise when the effective degrees of freedom for the idealized 

variance estimator, ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ* ( ) ( ) ( ), / ( )v p v p Cov v p p V p p p= − −   , are not large and need to be 

estimated from the sample.  Usually, the fewer the number of primary sampling units, the smaller 

the effective degrees of freedom.  Estimating the effective degrees of freedom is especially 

difficult under a stratified multi-stage design because the population proportion can vary not only 

among the strata, but among and within the primary sampling units.  Moreover, when there are 
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adjustments for, say, nonresponse the probability that yi = 1 can conceivably be related to the 

unit’s weight.   

To get a handle on these difficulties, one will very likely need to assume a working 

model for the yi values.  The simplest is that they are independent and identically distributed, 

which, if true, would allow the use of the iid method developed in text (equations (1) and (3)) 

without further adjustment.   Unfortunately, this will rarely be an effective strategy except when 

p is very small or very large.   Much empirical research is needed in this area.    

Finally, it is a relatively simple matter to extend the one-sided-coverage-interval-

methodology in equations (1) and (2) to a more general estimator than p̂ .   Replacing p̂  in 

equation (1) by a consistent estimator t̂  for a population or model parameter t, we could likewise 

replace v( p̂ ) in equation (2.1) by a consistent estimator for the variance of  t̂ , v( t̂ ), and  

( )( )

3

1

2

1

ˆ ˆ ˆ(1 )(1 2 )
1 2

ˆ ˆ(1 )
1

H
h

h h h
h h h

H
h

h h
h h

W
p p p

n n

W
p p

n

=

=

− −∑
− −

−∑
−

  

 

in equation (2.2) by a consistent estimator for both 

 

{ }

3

2

ˆ ˆˆ ( ( ), )[( ) ]
and ,

ˆ( )ˆ[( ) ]

Cov v t tE t t

V tE t t

−

−
  

if such an estimator exists.  Luckily, not only will both these terms be equal in many situations, 

they will often be very close to zero, so that the Wald methodology can be used.  On the other 

hand, estimating the effective degrees of freedom of  ˆ* ( )v t =  

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ), / ( ) ( )v t Cov v t t V t t t v t − − ≈  may remain a difficult exercise.  See Kott (1994).   
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Appendix:  Estimating the Effective Degrees of Freedom  

for the Idealized Variance Estimator  

 

Suppose, as in the text, a set of independent Bernoulli random variables  yi with a 

common mean within each of H strata.  Let ph be the (super)population mean of the yi in stratum 

h, and ˆ
hp  is  the sample mean within stratum h.   Now p̂  = ∑ 

Wh ˆ
hp   is an unbiased estimator for 

p = ∑Whph where Wh = Nh /N, and Nh is the finite population size of stratum h.  In what follows, 

we assume nh ≥ 4 in every stratum. 

The variance of p̂  under the model described above, V = ∑ 
Wh

 2
 ph(1−ph)/nh (denoted 

ˆ( )V p  in the text), can be estimated in an unbiased fashion by v =  

∑ 
Wh

 2 ˆ
hp (1− ˆ

hp )/( nh−1) (denoted v1( p̂ ) in the text).  Moreover,   

 

E[( p̂ −p)v] = Cov( p̂ , v) =  ∑ 
Wh

3
ph(1−ph)( 1−2ph)/nh

2
                                    (A.1)                                         

 

is likewise unbiasedly estimated by  

 

e[( p̂ −p)v] = ∑ 
Wh

3 ˆ
hp (1− ˆ

hp )( 1−2 ˆ
hp ) / [(nh −1)(nh −2)].                               (A.2) 

 

 Now some work shows that the variance of v is  

 

Var(v)  =  ∑ 
Wh

4
E{ [ ˆ

hp (1− ˆ
hp )/( nh −1) − ph(1−ph)/nh]

2
} 

  =  ∑ 
Wh

4
E{ [ (ph + dh)( 1−ph − dh)/( nh −1) −  ph(1−ph)/nh ]

2
} 
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  =  ∑ 
Wh

4
E{ [(1−2ph)dh /( nh −1)  − dh

2 
/( nh −1) +  ph(1−ph)/(nh[nh−1]) ]

2
} 

  =  ∑ 
Wh

4
{ (1−2ph)

2
ph(1−ph)/[nh(nh −1)

2
] −2(1−2ph)

2
ph(1−ph)/[nh

2
(nh −1)

2
] 

                          + {(1−2ph)
2
ph(1−ph)/[nh

3
(nh −1)

2
] + 2[ph(1−ph)]

2
/[nh

3
(nh −1)]} 

             = ∑ 
Wh

4
{ (1−2ph)

2
ph(1−ph)/nh

3
 + 2[ph(1−ph)]

2
/[nh

3
(nh −1)]}                 (A.3)                   

 

where dh = ˆ
hp −ph, E(dh

2
) = ph(1−ph)/nh , E(dh

3
) = (1−2ph) ph(1−ph)/nh

2
,  

E(dh
4
)  = ph(1−ph)( 1−3ph + 3ph

2
)/nh

3
  + 3[ph(1−ph)]

2 
(nh −1)/nh

3
, and so 

E(dh
4
) − [ph(1−ph)/nh]

2 
= (1−2ph)

2
ph(1−ph)/nh

3
 + 2 [ph(1−ph)]

2 
(nh −1)/nh

3
. 

These come from the independence of the yi − ph across all i and the moments:   

E(yi − ph) = 0,  E(yi −ph)
2
 = ph(1−ph), E(yi −ph)

3
 = ph(1−ph)

2
 + (1−ph) ph

2
 = 

ph(1−ph) (1−2ph), E(yi −ph)
4
 = ph(1−ph)

3
 + (1−ph) ph

3
 = ph(1−ph)( 1−3ph + 3ph

2
). 

for i in stratum h.  

  For estimation purposes, it is helpful to rewrite Var(v) as 

 

  Var(v)  = ∑ 
Wh

4
[ph(1−ph)/nh

3
] {(1−2ph)

2
 + 2ph(1−ph)/(nh −1)} 

             =  ∑ 
Wh

4
[ph(1−ph)/nh

3
] {(1−2ph)

2
 + [1−(1−2ph)

2
]/[2(nh −1)]} 

             =  ∑ 
Wh

4
[ph(1−ph)/nh

3
] {(1−2ph)

2
(2nh −3)/(2nh −2)]  + 1/(2nh −2)} 

             =  ∑ 
(Wh

4
/nh

3
){ [ph(1−ph)( 1−2ph)

2
(2nh −3)/(2nh −2)]]  + ph(1−ph)/(2nh −2)} 

 

             =  ∑ 
(Wh

4
/nh

3
){ Gh(2nh−3)/(2nh −2)  + ph(1−ph)/(2nh −2)},                   (A.4)   

                           

where Gh = ph(1−ph)( 1−2ph)
2
.  
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  An estimator for ph(1−ph) is nh ˆ
hp (1− ˆ

hp )/(nh −1).  An unbiased estimator for Gh  is  gh = 

{nh
3 ˆ

hp (1− ˆ
hp )( 1−2 ˆ

hp )
2
/[(nh −1)(nh−2)(nh−3)]} − nh ˆ

hp (1− ˆ
hp )/[(nh −1)(nh −3)].   

To see why, first note that Gh = −4ph
4
 + 8ph

3
 −5ph

2
 + ph, and  

gh = nh
3
{(−4 ˆ

hp
4
 + 8 ˆ

hp
3
 −5 ˆ

hp
2
 + ˆ

hp )/[(nh −1)(nh−2)(nh−3)]} −nh( ˆ
hp − ˆ

hp
2
)/[(nh−1)(nh−3)] 

Observe 

 E( ˆ
hp

4
)  =  E{(ph + dh)

4
}  

   =  ph
4
 + 4ph

3
E(dh) + 6ph

2
E(dh

2
) + 4phE(dh

3
) + E(dh

4
) 

            =  ph
4
 + 6ph

3
(1−ph)/nh  + 4ph

2
(1−ph)( 1−2ph)/nh

2 
  +  

            ph(1−ph)( 1−3ph + 3ph
2
)/nh

3
  + 3(nh −1)[ ph(1−ph)]

2
/nh

3 

         =  ph
4
{1−6/nh + 8/nh

2
 −3/nh

3
 + 3/nh

2
 −3/nh

3
} + 

                      ph
3
{6/nh − 12/nh

2
 + 6/nh

3
 − 6/nh

2
 + 6/nh

3
} + 

                                 ph
2
{4/nh

2
 − 4/nh

3
 + 3/nh

2
 − 3/nh

3
} +  ph/nh

3
  

         =  nh
-3

{ ph
4
(nh −1)( nh −2)( nh −3) + 6ph

3
(nh −1)(nh −2) + 7ph

2
(nh −1) + ph},  

 

 E( ˆ
hp

3
)  =  E{(ph + dh)

3
}  

       =  ph
3
 + 3ph

2
(1−ph)/nh  + ph(1−ph)(1−2ph)/nh 

2 
     

   =  ph
3
{1−3/nh  + 2 /nh 

2
}+ ph

2
{3/nh − 3/nh

2
} + ph /nh

2
    

         =  nh
-2

{ph
3
(nh −1)( nh −2) + 3ph

2
(nh −1) + ph},   

 E( ˆ
hp

2
)  =  E{(ph + dh)

2
}  

            =  ph
2
 + ph(1−ph)/nh 

          =  nh
-1

{ph
2
(nh −1) + ph},  

and  E( ˆ
hp )  = ph.    
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The proof that E(gh) = Gh is now straightforward.  

 An unbiased estimator for Var(v) in equation (A.4) is then 

 

    var(v)  =  ∑ 
Wh

4
{

 
gh(2nh −3)/[nh

3
(2nh −2)]  + ˆ

hp (1− ˆ
hp )/[nh

2
(nh −1)(2nh −2)]}.    (A.5) 

 

 Let v* = v − ( p̂ −p)E[v( p̂ −p)]/V
 
 be the idealized variance estimator for p̂ proposed by 

Anderson and Nerman.   It effective degrees of freedom (2 divided by its relative variance) is   

d = 
{ }

2

2

2
,

ˆ[ , ( )]
( )

v

E v p p
Var v

v

−
−

 

where equations (A.1) and (A.4)  (or (A.1) and (A.3)) provide values for ˆ[ , ( )]E v p p−  

and ( )Var v respectively.      

A consistent estimator for d under mild conditions we assume to hold is   

 

d̂ = 
{ }

2

2

2
,

ˆ[ , ( )]
( )

v

e v p p
var v

v

−
−

 

where equations (A.2) and (A.5) provide values for ˆ[ , ( )]e v p p−  and ( )var v respectively.  
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Figure 1.  Simulated Coverages for One-Sided 95% Bounds: 

     Methods Based on the General and  iid Models  

     Using the Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

Figure 2.   Simulated Coverages for One-Sided 95% Bounds: 

                  Methods Based on the General Model  

                  Using the Normal and Student t  Distributions 
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Evaluating Alternative One-Sided Coverage Intervals for a Binomial Proportion  

 

 

Yan K. Liu
1
 and Phillip S. Kott

2 

 

The construction of coverage intervals for a binomial proportion is difficult, especially when the 

proportion is very small or very large.  Most of the methods treated in the literature implicitly 

assume simple random sampling.  These interval-construction methods are not immediately 

applicable to data derived from a complex sample design.  Some recent papers have addressed 

this problem, proposing modifications for complex samples.  Matters are further complicated 

when a one-sided coverage interval is desired.  This paper provides an extensive review of 

existing methods for constructing binomial-proportion coverage intervals under both simple 

random and complex sample designs.  It also evaluates the empirical performances of different 

one-sided coverage intervals under both a simple random and a stratified random sample design.  
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1. Introduction 

 

Because of the poor performance of the standard Wald method for constructing coverage 

(confidence) intervals around a binomial proportion, the literature contains a series of 

modifications, alternative methods, and comparisons for a two-sided coverage interval under a 

simple random sample design (Brown et al. 2001, Agresti and Coull 1998, Vollset 1993, Clopper 

and Pearson 1934).   Some recent papers have addressed this problem under more complex 

sample designs (Feng 2006, Sukasih and Jang 2006, Kott et al. 2001, Korn and Graubard 1998).   

Constructing empirically effective one-sided coverage intervals can be an even more 

difficult task.  Cai (2004) and Hall (1981) use an Edgeworth expansion to develop one-sided 

coverage intervals under a simple a random sample.  Kott and Liu (2007) modifies the Hall 

method and extends it to handle data from a complex sample design with a particular emphasis 

on stratified (simple) random sampling.    

We are particularly interested here in constructing one-sided coverage intervals for 

proportions that are either very small (less than 20%) or very large (more than 80%).  Section 2 

provides an extensive list of coverage-interval methods under simple random sampling and then 

compares them.  Section 3 looks at interval methods modified to handle complex sample data 

and evaluates their performances under stratified random sampling.  Section 4 contains a 

summary and discussion or our results.       
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2. Interval Construction Under a Simple Random Sample 

 

Let X follow a binomial distribution with parameters n and p.  The parameter p is called the 

“binomial proportion.”  In the survey sampling setting, n is the sample size of a simple random 

sample.  Let k a sampled element and xk  be either 0 or 1. Assuming that xk follows the Bernoulli 

distribution with parameter p, the estimator for p from the sample is ˆ ,p x n= where .n
kx x= ∑  

 This section contains a summary of many of the interval-construction methods under simple 

random sampling that have appeared in the literature. All the methods assume that the population 

size is large enough to ignore finite population correction.  The symbol z is used to denote the z-

score of a standard normal distribution associated with one-sided (1−α)% coverage intervals.  

For 95% coverage intervals, α = 0.05, and the z-score is 1.645. 

 

2.1 The Methods 

 

 Standard Wald interval 

This is the best known and most commonly used interval.  It is based on the limiting distribution 

(as n grows arbitrarily large): ˆ ˆ( ) ( ) (0,1)p p v p N− → ,  where  ˆ( )v p = ˆ ˆ(1 ) ( 1)p p n− − .  The 

lower and upper bounds are  

 

( ) ( )ˆ ˆ ˆ1 1SL p z p p n= − − − ,   and 

                                                                                                                                                       (1) 

( ) ( )ˆ ˆ ˆ1 1SU p z p p n= + − − .                                   

 

That is to say, the two one-sided Wald intervals for  p are  p ≥ LS, and  p ≤ US. 
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Wilson (Score) Interval 

Instead of using the variance estimator for p̂ , this interval employs the true variance 

ˆ( ) (1 )V p p p n= − .  It is based on the limit: ˆ ˆ( ) ( ) (0,1)p p V p N− → .  The lower and upper 

bounds are 
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Logit Interval                                

A logistic transformation, ( )ˆ ˆ ˆlog 1p pλ = −    stabilizes the variance of p̂ .  The logit interval is 

based on the limit: ˆ ˆ( ) / ( ) (0,1)v Nλ − λ λ → , where   ˆ( )v λ = [ ]ˆ ˆ1/ (1 )np p− .  The lower and upper 

bounds are 
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Arcsine(root)  Interval 

Another transformation-stabilizing variance is the arcsine(root) transformation, arcsin( )pδ = . 

The interval for δ  is based on the limit: ˆ ˆ( ) / ( ) (0,1)v Nδ − δ δ → , where ˆ ˆarcsin( )pδ =  and 

ˆ( ) 1 (4 )v nδ = .  This results in these lower and upper bounds for p: 

 

2 2 ˆsin ( ) sin arcsin( ) (2 )A LL z n = δ = δ −  ,  and  

                                                                                                                                                      (4) 
2 2 ˆsin ( ) sin arcsin( ) (2 )A LU z n = δ = δ +  .              

  

Jeffrey Interval                                                            

The Bayesian Posterior interval under a Jeffrey’s prior of the Beta distribution (1/ 2, 1/ 2)Beta is 

 

( ; 1/ 2, 1/ 2)JL Beta x n x= α + − + , and 

                                                                                                                                                      (5) 

( ; 1/ 2, 1/ 2)JU Beta x n x= α + − + .                    

 

Clopper-Pearson Exact Interval 

This interval is based on inverting the equal-tailed binomial tests of the null hypothesis 

0 0:H p p=  against the alternative hypothesis 1 0:H p p≠ .  The lower and upper bounds can be 

obtained by solving the polynomial equations: 
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They can be expressed in terms of Beta distribution as 

 

Beta( ; , 1)CPL x n x= α − + , and 

                                                                                                                                                    (6) 

Beta( ; 1, )CPU x n x= α + − .                                  

 

Mid-P Clopper-Pearson Interval 

One way to reduce the perceived over-conservativeness of the Clopper-Pearson method obtains 

by solving the polynomial equations: 
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The interval can be expressed in terms of Beta distribution as 

 

( ) ( ){ }
1

Beta ; , 1 Beta ; 1,
2

MPL x n x x n x= α − + + α + − , and 

                                                                                                                                                  (7) 

( ){ ( )}
1

Beta 1 ; , 1 Beta 1 ; 1,
2

MPU x n x x n x= − α − + + − α + − .                     

 

Note its similarity to the Jeffrey interval in equation (5).  

Brown et al. (2001) evaluates the properties of these seven methods for constructing two-

sided intervals (replacing α by α/2 and z by the z-score of 1−α/2).  Unfortunately, an effective 

two-sided-interval method may not work as well in constructing a one-sided interval.  This is 

because a two-sided interval can have compensating one-sided errors due to p̂  being 
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asymmetric.  The following methods are based on an Edgeworth expansion that explicitly adjusts 

for the skewness in p̂ .   

 

Hall Interval  

The bounds for this interval translate the Wald bounds in equation (1) towards ½.  They are  

 

ˆ ˆ( )HL p z v p= + δ − , and 

                                                                                                                                                       (8) 

ˆ ˆ( )HU p z v p= + δ + ,                                             

 

 

where  
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The translation term, δ, is OP(1/n).  Terms of smaller asymptotic order have been dropped.  Hall 

(1982) has n in the denominator of ˆ( )v p  rather than n −1.  This difference has no practical 

consequence when n ≥ 30.   

 

Cai Interval 

Cai (2004) goes further than Hall in correcting for the skewness in p̂  by keeping OP(1/n
2
) terms 

producing the bounds:  

1 2
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where  

 

 

ˆ /
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p n
p
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Kott-Liu Interval 

Under simple random sampling, Kott and Liu (2007) proposes a slight modification of the Hall 

interval that better handles samples with small ˆ ˆ(1 )p p−  values: 

 

2 2ˆ ˆ( )KLL p z v p= + δ − + δ , and 

                                                                                                                                                     (10) 

2 2ˆ ˆ( )KLU p z v p= + δ + + δ ,                                   

                             

where ˆ( )v p and δ are unchanged.  Notice that the lower bound attains its minimum value, 0, 

when p̂ = 0, and the upper bound attains its maximum value, 1, when p̂ =1.   This method will 

be described further in the following section.  

 

Other Intervals 

There are also various continuity-correction approaches (Vollset 1993) that are not included in 

this paper.  Two other methods not treated here are the Wilson-logit and likelihood-ratio interval 

(Feng 2006). These methods employ an iteration algorithm to obtain the interval end-points.  

Finally, when n is large and p is close to 0, the binomial distribution Bin(n, p) can be 

approximated by Poisson distribution ( ) !xP X x e x−λ= = λ , where npλ = (Newcombe 1998, 

Feng 2006).  The lower and upper bounds for p are 
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2
2 , (2 )P xL nα= χ , and 

                                                                                                                                                        
2
2( 1),1 (2 )P xU n+ −α= χ .                                              

  

This method has to be redefined for p near 1 to be effective and is not useful when p is not very 

near either 0 or 1.  

 

2.2 Comparison of One-Sided Intervals Under Simple Random Sampling 

 

 In this subsection, the methods defined in equations (1) through (10) are used to construct 

one-sided 95% coverage intervals.  They are then compared in terms of their coverage 

probabilities and the average distances from their endpoints to the true value of p.   

The coverage probability for the given p and n is defined as the probability of p falling 

within the coverage interval CI, that is, 

0
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The average distance for the given p and n is defined here as the mean of the absolute 

distance of lower or upper bound from the true value of  p, that is, 

0

( ) ( )
n

x

AD D x P x
=

= ∑ ,                                           

where 

( ) , for the lower bound

( )

( ) ,   for the upper bound

L x p

D x

U x p

 −


= 
 −

. 

 

We are interested in a setting where the sample size n is relatively small but large enough 

for the asymptotic theory supporting some of the methods to be effective.  Therefore, we 

evaluate a sample of size 30.   Coverages perform differently for different sample sizes and 

different values of p (Brown et al., 2001 and 2002, discuss this at length for two-sided intervals).  

Thus, we evaluate one-sided coverages over the entire range of potential p values.    

We make a few sensible modifications of the methods when x = 0 or 1.   We force the  

lower  bound to be 0 at  x = 0 and the upper bound to be 1 at x = 1.  In addition, when a bound is 

not defined at x = 0 or 1 for a method (the Wald, Logit and Mid-P), we take a conservative tact 

and replace it with the Clopper-Pearson.   

The coverage probabilities and average distances for all the methods are symmetric or 

very nearly so in the range 0 ≤ p ≤ 1.  Consequently, conclusions drawn about lower bounds for, 

say,  p < 0.2  also apply to upper bounds for  p > 0.8,  and  conclusions  about  lower  bounds  for  

p > 0.8 apply to upper bounds for p < 0.2.  Because of this, we only calculate coverage 

probabilities and average distances for lower bounds.  These values are calculated at p = 0.001, 

0.002, 0.003, …, 0.998, 0.999.   
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The plots of coverage probabilities are displayed in Figure 1.  The vertical lines at p = 0.905 

represents the p-value where p
30

 = 0.05.  This mean when p ≥ 0.905, p̂ has at least a 5% 

probability of being 1.   

The following conclusions can be drawn from the plots in Figure 1:  

  

• The Wald and Arcsine methods are systematically biased, sometimes in one direction 

sometimes in the other. 

• The Clopper-Pearson method always has at least the nominal coverage (95%), but often over-

covers.  It has 100% coverage when p ≥  0.905.   

• The Wilson and Logit methods are systematically biased in the opposite direction of the 

Wald but to a lesser degree.  They tend to under-cover for small p and over-cover for large p.  

The over-coverage for the Wilson near p = 1 is not as pronounced as for the Clopper-

Pearson. 

• The Jeffrey and Hall methods have large downward spikes (under-coverages) near the two 

boundaries. 

• The Mid-P has some large downward spikes near p = 0, but performs reasonably well for 

large p. 

• The Kott-Liu and Cai methods provide good coverages almost everywhere.  Both have 100% 

coverages as p gets very close to 1, but this “lip” begins for the Kott-Liu (at 0.929) while the 

Cai is still experiencing its worst downward spike or “dip” (it reaches a minimum coverage 

of 87.1% before beginning its lip at 0.935; the Kott-Liu minimum coverage is 89.4%).  

Before then, the methods have identical coverages for large p values (≥ .85).  

Analogous graphs for n = 20, 30, 60, and 120 (not show) behave similarly.   
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  We plot the average distances of lower bounds versus the tail values of p for the better 

methods (Mid-P, Cai, and Kott-Liu) and for the conservative Clopper-Pearson in Figure 2.  In 

general, the average distance is longer when the coverage probability is larger.  The Clopper-

Pearson has a much longer average distance than the other methods, not surprising since it tends 

to be conservative.  For small p, the Kott-Liu and Cai behave very similarly.  For large p, the 

Kott-Liu tends to be slightly longer than the Cai.  The Mid-P becomes longer than Kott-Liu and 

Cai when p gets near 1 but not before. 

 In summary, the Kott-Liu and Cai methods are the best in terms of having coverages almost 

always close to the nominal.  The Clopper-Pearson, never under-covers, but has longer average 

distances.  Many view the property of never providing less than nominal coverage as very 

desirable, if not absolutely required (see the discussions in Brown et. al, 2001).  They argue that 

the user should have “confidence” that his/her interval always covers at least as well as 

advertised.   Such confidence is rarely justified with complex-sample data, as we shall see.   

 

 

3.  Interval Construction Methods under Stratified Random Sampling 

 

Let s denote elements of the whole sample, k (again) denote an element, and kw  the weight of 

element k.  Let kx be either 0 or 1.  The estimated proportion is ˆ s sk k kp w x w= ∑ ∑ . 

 

3.1 The Methods 

 

The most common way of extending interval-construction methods to handle sample data from a 

complex design is by replacing the sample size n with the (estimated) effective sample size n* 
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and replacing x with x* = n* p̂ .  When ˆ( ) 0v p > , where ˆ( )v p  is the estimated variance of p̂  

under the complex sample design, the effective sample size n*  can be defined as  

 

* ˆ ˆ(1 )

ˆ ˆ( ) ( )

n p p
n

DEFF p v p

−
= =                                                                                                         (11) 

 

Sometimes, n* is defined as 1 plus the left-hand side of equation (11).  The distinction is usually 

trivial when n ≥ 30.   

The idealized effective sample size n�  features the true variance V( p̂ ) in the denominator 

of equation (11) in place of the estimated variance ˆ( )v p . Unfortunately, V( p̂ ) is unknown and 

needs to be estimated from the sample in practice.   

The ad hoc procedure of replacing n by n* is used and discussed in Kott and Carr (1997) 

for modifying the Wilson interval and in Korn and Graubard (1998) for modifying the Clopper-

Pearson interval.  Feng (2006) treats a few other intervals with this procedure.   

We focus in this section on an empirical evaluation of one-sided interval methods under 

stratified random sampling.  We apply the effective sample size procedure to all the methods 

from Section 2 except the Kott-Liu, which was designed especially to handle data from stratified 

random samples.   We follow Korn and Graubard and set n * = n when ˆ( ) 0.v p =   

Let h hW N N=  for a stratified random sample with H strata.  The estimated overall 

proportion is ˆ ˆH
h hp W p= ∑ , where ˆ

hp  is the observed stratum proportion of stratum h.   

Adapting the Edgeworth expansions in Hall and Cai, Kott and Liu actually discuss three 

different coverage intervals for data from a stratified random sample.  
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Basic Kott-Liu Interval 

 

2 2
1 1 1 1

ˆ ˆ( )KLL p z v p= + δ − + δ , and 

                                                                                                                                                     (12) 

2 2
1 1 1 1

ˆ ˆ( )KLU p z v p= + δ + + δ ,                            

 

where 2
11

ˆ ˆ ˆ( ) (1 ) ( 1),H
h h h h hv p W p p n== − −∑  

 

and  

[ ]32

1 2

ˆ ˆ ˆ(1 )(1 2 ) ( 1)( 2)1

3 6 ˆ ˆ(1 ) ( 1)

H
h h h h h h

H
h h h h

W p p p n nz

W p p n

− − − −  ∑
δ = + 

− −∑ 
 .                                                    (13) 

 

The variance of p̂  is not a simple function of the true p and n under stratified random 

sampling as it is under simple random sampling.  As a result, V( p̂ ) must be estimated from the 

sample.  The estimation has its own random error, which cannot be completely eliminated from 

the Edgeworth expansion (moreover, following Cai and keeping OP(1/n
2
) terms becomes 

impossible).   

 

DF-adjusted Kott-Liu Interval  

One way to adjust for the error in the implicit estimator for V( p̂ ) in the basic Kott-Liu method is 

by that replacing the z-score in equation (12) with a t-score from a Student t.  A t-distribution 

needs a degrees-of-freedom calculation.  Kott and Liu discusses a number of ways of estimating 

the effective degree of freedom.  When each stratum has at least 10 observations, a nearly 

unbiased estimator for this quantity is  
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A slightly conservative policy, followed here, sets the estimated effective degrees of 

freedom at 1 2( , )df Min df df=  and uses ( ,1 )t df − α  in place of  z in the lower and upper bounds 

defined in equation (12). 

 

Kott-Liu iid Interval   

If an independent and identically distributed (iid) Bernoulli model is assumed, then a different 

way to generalize equation (10) is with 

 

2 2
2 2 2 2

ˆ ˆ( )KLL p z v p= + δ − + δ , and 

                                                                                                                                                     (14) 

2 2
2 2 2 2

ˆ ˆ( )KLU p z v p= + δ + + δ ,                             

 

where 2
2

ˆ ˆ ˆ( ) (1 )H
h hv p W p p n= −∑ , 
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and 

3 2 22 2

2 2

1
ˆ(1 2 )

6 2

H
h h hH

H
h h h

W n Wz z
p

W n n

 ∑−
δ = + −∑  ∑ 

.                                                                        (15) 

 

Since both the basic and DF-adusted Kott-Liu intervals are undefined when p̂  = 0 or 1, Kott and 

Liu suggests using the iid method in equation (14) in this situation.  

     

3.2 Comparison of One-Sided Intervals under  Stratified Random Sampling 

 

All the methods described in the text are evaluated under the following stratified random 

sampling designs using simulations. A population of 6,000 is divided into 3 equal strata, that is, 

Nh = 2,000, 1, 2,3h = .  The overall proportion p takes the values of 0.001, 0.002, 0.003, ..., 

0.998, 0.999.   We consider these six settings for the stratum sample sizes and the comparative 

values of  the ph .  They are shown in Table 1.   

 

Table 1.  Simulation Settings 

Stratum Binomial Proportions 

 p1,  p2,  p3 Stratum Sample Sizes  

 n1, n2, n3 p,  p,  p p− p(1−p),  p,  p+ p(1−p) 

10, 10, 10 A B 

10, 30, 10 C D 

10, 10, 30 [same as C] E 

30, 10, 10 [same as C] F 
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One sample size allocation − 10, 10, 10 − has a total sample size of 30, our minimum.  The other 

allows one strata to be big enough to stand alone, nh = 30, while the other two strata contain 10 

samples. As for the ph values, they are either all equal or their spread is, in some sense, 

maximized while allowing all the ph values to fall into the 0 to 1 range.  

For the simulations, we first generate a finite population of 2,000 units in each stratum h, 

denoted as hix = 1, 2, ….., 2,000.  We then draw 1,000 stratified random samples for each 

stratum sample size allocation.  For each stratum proportion ph, we set 

 

 

1, if 2,000

0, otherwise

hi h

hi

x p

y

<


= 



.   

  

The weighted estimate for the proportion of  y = 1 is calculated for each value of p and 

for each sample.  The coverage intervals are constructed using the methods described earlier in 

the text with the coverage probabilities and the average distances calculated from the 1,000 

samples for each p.   

Analogously with the simple random sample sampling case, only the simulation results 

for a lower bound need be considered  (10, 10, 30 mirrors 30, 10, 10).  Due to the space 

limitation, we only display the lower-bound coverage plots using the Mid-P, Clopper-Pearson, 

Cai, and three Kott-Liu methods. 

The plots for setting A (not displayed) mirror those in Figure 1 with the three Kott-Liu 

methods being virtually identical.  This is not surprising since the ph are equal, the idealized 

effective samples size is 30, and the effective degrees of freedom are nearly infinite (as in simple 

random sampling).    
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Figure 3 displays the plots for Setting B.  Despite the variability in the ph, not much 

changes from Setting A.  The Clopper-Pearson has a small dip below 95% (to 94.7%), but that 

occurs with Setting A as well (not shown), probably due to the effective sample size not being 

estimated exactly.  Its lip again begins at 0.905, which is marked in all the plots.     

The basic and DF-adjusted Kott-Liu methods remain virtually identical everywhere, 

while the iid version is slightly more variable than the others when p is roughly between 0.2 and 

0.8 but matches their behavior in the tails.  The Mid-P is similar to the three Kott-Liu methods 

when p > 0.8 for both settings A and B, but continues to be plagued by downward spikes for 

some very small p.   

 Since the Kott-Liu iid method may have problems when the ph are not equal, Figures 4, 5, 

and 6 display the coverage plots for Settings D, E, and F.  For Setting D, the basic Kott-Liu has a 

very final deep dip just before its lip.  The DF-adjusted version is only slightly better.  Its lip 

starts at 0.952 rather than at 0.956 (the basic has a minimum coverage of 79.4%, the DF-adjusted 

81.4%).  The Kott-Liu iid method hardly dips at all.  Its lip starts at 0.948.   

The lip for the Mid-P starts at 0.942, just like the Clopper-Pearson.   This corresponds to 

the p-value such that p
50 

= 0.05, which is marked by a vertical line in all the plots.  The Cai’s lip 

doesn’t begin until at 0.961, while its dip (bottoming at 87.5%) is not as great as the basic and 

DF-adjusted Kott-Liu methods. 

 In Setting E, all the methods suffer from a deep dip before the final lip.  Here, there is no 

advantage of the DF-adjusted Kott-Liu over the basic.  Its lip starts slightly earlier, but by then 

the basic’s dip has ended.  The Clopper-Pearson has the slightest dip and longest lip among the 

methods, but its dip is well below the nominal (87.8% at 0.941 as opposed to iid Kott-Liu’s 

84.4% at 0.947).   The Cai has the deepest dip (74.1% as opposed to the basic and DF-adjusted 
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Kott-Liu’s 83.1%).  Both the Clopper-Pearson and the Kott-Liu iid method consistently over-

cover when p is less than 0.5.   

 In Setting F, only the basic and DF-adjusted Kott-Liu methods have final dips, and these 

are modest (the basic’s bottom is 88.8% as 0.955, while the DF-adjusted in 91.1% at 0.951).  The 

Clopper-Pearson consistently over-covers for all values of p.  The Kott-Liu iid method 

consistently over-covers when p is greater than 0.5 and suffers downward spikes for very low 

values of p, but not as severe as the Mid-P.  The  Mid-P and Cai tend to over-cover for p >0.6, 

but by not as much as the Clopper-Pearson and Kott-Liu iid methods. 

 The average distances for tail p-values in Settings B and C are displayed in Figures 7 and 

8, respectively, for the Clopper-Pearson, Cai, DF-adjusted Kott-Liu and Kott-Liu iid methods. 

The conservative Clopper-Pearson method exhibits the longest average distances, while the Cai 

method tends to have the smallest average distances, but not by much.  The average-distance 

plots for the other settings (not displayed) are similar.  

 

4.  Summary and Discussion 

 

 After reviewing much of the literature on constructing one-sided coverage intervals under 

simple random sampling, we conducted our own empirical evaluation and found that, among the 

methods reviewed, the Cai and Kott-Liu produced one-sided intervals coverages closest to 

nominal.  We also confirmed that the Clopper-Pearson method always provided at least the 

nominal coverage, which many find a singularly desirable property. 

We then turned to stratified random sampling. We adjusted all the non-Kott-Liu methods 

by replacing the sample size with an estimate for the effective sampling size. The Clopper-
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Pearson was still the most conservative method with coverage probabilities usually, but not 

always, at or above the nominal level.   The potential for under-coverage was larger when the 

sampling fraction varied across the strata.  

The basic Kott-Liu method worked reasonably well for constructing lower bounds when 

p < 0.9 (and symmetrically upper bounds when p > 0.1), but lower bounds often under-covered 

for larger p.  This under-coverage was less severe when the sampling fractions were equal across 

the strata.   

The Cai method appeared to have strengths and weaknesses in coverage similar to the 

basic Kott-Liu method and often slightly smaller average lengths.  Forcing the lower bound to be 

zero when p̂  was zero removed what would have been sharp downward spikes for small p 

values.  

Adjusting the basic Kott-Liu method for its effective degrees of freedom sometimes 

improved coverages for large and small
 
p, but not by much.   Based on our empirical analysis, it 

appears that the  iid version of the Kott-Liu provides a better, if not perfect, alternative for lower-

bound (upper-bound) construction when p is large (small).   Another alternative is suggested 

below. 

The lower bounds constructed using any of the methods have “lips” very near 1.  That is, 

a region in which coverage is 100%.   It is easy to see that this region includes all p > 1−2δ1 (see 

equations (12) and (13)) using the basic Kott-Liu method and all  p > 1−2δ2 using the iid method 

(see equations (14) and 15)).   

Using the Clopper-Pearson method, the lip begins in general at  p = pL,  where pL 
n 

= α, or 

equivalently,  
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( , ) exp[log( ) / ].L Lp p n n= α = α                                                                                     (16)                                               

 

Suppose all the ph were equal to, say, r.  If
  
r

  
were greater or equal to pL, and thus in the Clopper-

Pearson lip, then p̂ would have at least a probability α of being 1.  No matter how large p̂  was, r 

would have to be in the lower one-sided interval to assure at least (1 −α)% coverage.  As a 

consequence, finding a lower bound producing close to the nominal (1−α)% coverage when p = r 

can be an impossible task.  Nevertheless, it would be a prudent rule not to let the lower bound for 

an interval be any higher than  pL  (and,  symmetrically,  not let the upper bound  be any  lower 

than pU = 1 − pL ).   The size of the lip from using this rule is of asymptotic order 1/n: it 

decreases as the sample size increases.  

We have marked where pL falls in our coverage plots.  Notice that not allowing the lower 

bound to be higher than pL reduces the size of dips that would result from using the Cai or one of 

the Kott-Liu methods in the settings displayed in Figures (1) and (3).  There remain deep dips 

using all the methods in Setting E (Figure 5), even the Clopper-Pearson.   This may be because 

the ph are not all equal and neither are the sampling fractions.  

Observe that when the sampling fractions are the same across the three strata:  

  

31 2

1 2 3log( ) log{ [1 ( ) / )]} {log( ) ( ) / } log( ) log( ),  
nn n n

h h h hp p p n p p p p n p p p p p p= + − ≈ + − = =∑ ∑   

 

so the impact of the variability of the ph is muted.  This suggests the following policy when the 

sampling fractions are not all equal:  setting the maximum  value  of  the  lower  bound   at  pL2 = 

pL(α, N min{nh/Nh}) with pL(., .) defined in equation (16) (and setting the minimum value of the 

upper bound at 1 − pL(α, N min{nh/Nh}).  Such a policy will often be very conservative, 

extending the region where coverage will be 100%.  This is a reflection of the difficulty of 

constructing a lower bound at all when  p > pL(α, N min{nh/Nh}), and the variability among the 
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ph is unknown.  There is no parallel difficulty constructing an upper bound for large p or a lower 

bound for small p.   In any event, when one-sided coverage intervals for a small or a large 

proportion is a survey goal, it would be wise to avoid stratification schemes with widely varying 

sampling fractions if possible.   

Constructing one-sided coverage intervals from samples derived using a stratified, multi-

stage design were not addressed in this paper, but the Kott-Liu methods (perhaps modified in the 

tails) can in principle, be extended to cover such samples.  See Kott et al. (2001) for a method of 

estimating the replacement for [ ]3 ˆ ˆ ˆ(1 )(1 2 ) ( 1)( 2)H
h h h h h hW p p p n n− − − −∑ in equation (13) 

under a stratified, multi-stage sample; 2 ˆ ˆ(1 ) ( 1)H
h h h hW p p n− −∑  can be replaced by a standard 

randomization-based variance estimator for p̂ .  More work on data from such designs will have 

to wait for another time.   
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Figure 1.  Coverage Probabilities of Lower Bound at 95% Nominal Level:                            

Simple Random Sample with n=30 
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Figure 2.  Average Distance of Lower Bound at 95% Nominal Level:     

Simple Random Sample with n=30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Coverage Probabilities of Lower Bound at 95% Nominal Level for Setting B: 

Stratified Random Sample with n1 = n2 = n3 =10;  p1 = p− ∆,  p2 = p, p3 = p+ ∆;  

∆ = p(1− p)   
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Figure 4.  Coverage Probabilities of Lower Bound at 95% Nominal Level for Setting D: 

Stratified Random Sample with n1 = n3 =10, n2 =30; p1 = p− ∆,  p2 = p, p3 = p+ ∆;  

∆ = p(1− p)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Coverage Probabilities of Lower Bound at 95% Nominal Level for Setting E: 

Stratified Random Sample with n1 = n2 =10, n3 =30; p1 = p− ∆,  p2 = p, p3 = p+ ∆;  

∆ = p(1− p)   
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Figure 6.  Coverage Probabilities of Lower Bound at 95% Nominal Level for Setting F: 

Stratified Random Sample with n2 = n3 =10, n1 =30;  p1 = p− ∆,  p2 = p, p3 = p+ ∆;  

∆ = p(1− p)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Average Distances of Lower Bound at 95% Nominal Level for Setting B: 

Stratified Random Sample with n1 = n2 = n3 =10;  p1 = p− ∆,  p2 = p, p3 = p+ ∆;  

∆ = p(1− p)   
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Figure 8.  Average Distances of Lower Bound at 95% Nominal Level for Setting C: 

            Stratified Random Sample with n1 = n3 =10, n2 =30;  p1= p2 = p3 = p 
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