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Abstract

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Ser-
vice (NASS) conducts the Census of Agriculture every five years to estimate the number of U.S.
farms, as well as other agriculturally related population totals. NASS applies a Dual-System Esti-
mation (DSE) methodology on data collected from the Census and the June Area Survey (JAS) to
estimate the number of farms in the U.S.. Traditional multinomial-based capture-recapture method-
ology requires a model to estimate the probability of capture for every captured operation on either
survey. Of course, the selection probabilities associated with the JAS area frame design are different
from those associated with the Census. Such a difference makes it difficult to compute the exact JAS
selection probabilities for farm records captured only by the Census. For this reason, we propose
and compare three methods for estimating the overall capture probability. The first two methods in-
volve approximating the JAS selection probabilities and the third conditions them out. We compare
these three techniques to investigate their precision through a simulation study.
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1. Introduction

The National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agricul-
tural every five years to obtain a variety of agricultural totals, the most prominent being
the number of U.S. farms. The Census does not capture all farms, so some adjustment is
needed to get an estimate of the true population totals. To this end, NASS has adopted a
Dual System Estimation (DSE) methodology since 2012. This technique takes into account
those farms that are not captured by the Census. Two independent surveys are used to ad-
just the totals: the Census itself, which is based on a list frame called the Census Mailing
List (CML), and the June Area Survey (JAS), which is an area-frame survey conducted
each year during the month of June. If it is assumed that the JAS and Census lists are inde-
pendent given measurable covariates, standard capture-recapture techniques can estimate
the total number of farms in the U.S.

Data from the Census is obtained via response to mailed out questionnaires. Thus the
probability of response to the Census can be modeled by covariates relating to the propen-
sity to respond, when a second supplementary survey (in our case the JAS) is available.
The JAS uses a probability-sampling design to select data. In theory, all the land in the
U.S. is divided into segments, each of which has a probability of selection given by the
survey design. Segments are then selected at random based on this design and popula-
tion totals are estimated as a function of the segment totals. In practice, the probabilities
are only known for individuals actually selected in the JAS. In addition, the JAS samples
consist of segments while traditional capture-recapture methods operate at the individual
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(farm) level. These probabilities are only interchangeable if all farms are assumed to fit
neatly into a single segment, which is not always the case. In summary, even if the JAS
probabilities of selection are almost always available, they cannot be assigned to each in-
dividual farm belonging to the same segment, because federal budget constraints do not
allow to sustain the high costs of maintenance of an area-frame at the farm-level. To obtain
valid estimates, we will deal with the missing JAS probabilities. The first of two proposed
solutions approximate the JAS sample design probabilities with logistic models. The last
fits a regression model for the CML capture probability by conditioning out the JAS design
probabilities.

The paper is organized as follows. In section 2, the capture-recapture framework of
(Alho, 1990) is reviewed. Section 3 introduces the notation and reviews the JAS design.
In section 4, models for approximating the JAS capture probabilities are discussed. Al-
ternatively, a conditional model to remove the JAS probabilities is developed in section
5. Section 6 presents a simulation study to test the performance of the proposed methods.
Finally, section 7 exposes some concluding remarks.

2. Capture-recapture with covariates

The literature on capture-recapture is quite substantial, as the problem setup can vary
greatly with the situation. An overview is provided in Amstrup et al. (2010). The field
is narrowed in this application as only two lists are available. The simplest choice is the
Lincoln-Peterson estimator for two lists. If there are two registries, the estimate of the total
population is simply the product of the number of individuals captured by each registry
divided by the number captured in both. This method was first implemented by Laplace
in 1802 to estimate the population of France (Cochran, 1978). This estimator assumes that
the population is closed, the lists are independent, individuals are identified without error,
and all individuals have the same probability of capture.

With covariates available from the Census and the JAS, the assumption of equal in-
dividual level probabilities of capture may be relaxed. If all variables are discrete, post
stratification, where the population is divided into homogeneous groups and the Lincoln-
Peterson estimator calculated for each group, may be used (Sekar and Deming, 1949). The
disadvantage of this method is that the choice of groups is not always perfect and addi-
tional information allows for better partitioning criteria. It also does not allow for the use
of continuous variables unless they are discretized. The method of Alho (1990) and Hug-
gins (1989) allows every individual to have a different probability of capture, modeled by
observed covariates. This is the method used in this paper.

In particular, this section reviews the capture-recapture model developed in Alho (1990)
and Huggins (1989), which assumes that two independent registries are available. For this
application, the first is the JAS and the second is the U.S. Census of Agriculture. Further-
more, it is assumed no farms are opened or go out of business between the two surveys
(closed population assumption). Finally one more technical assumption is required. Essen-
tially, it is assumed that all operations have a capture probability that is not too small. See
Alho (1990) for theoretical details on this assumption. Then an unbiased estimator for the
number N of U.S. farms is

N̂ =
∑

i∈J∪C

1

φi
,

where J ∪ C is the event that an individual farm is captured by the JAS or the Census (or
both), and φi is the probability that the farm is captured by at least one of the surveys. If
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we further assume that the surveys are independent, then

φi = pJ ,i + pC,i − pJ ,ipC,i,

where pC,i is the probability that farm i is captured by the Census, and pJ ,i is the probability
that farm i is captured by the JAS. NASS adjusts this latter probability by the tract-to-farm
ratio, which is computed as the acres in the tract covered by the farm i divided by the total
acres of the farm i. This adjustment is performed to remove the undercount bias in the final
estimates.

For each individual farm i, the capture history follows a multinomial distribution

(uiJ , uiC , uiJC , ui0) ∼ Mult (pJ ,i(1− pC,i), pC,i(1− pJ ,i), pJ ,ipC,i, 1− pJ ,i − pC,i + pJ ,ipC,i) .

In practice, the individuals who are not captured (event ui0 = 1) are unobserved. This can
be resolved by working with the conditional likelihood, which is easily shown to be

L =

Ncap∏
i=1

[pJ ,i(1− pC,i)]
uiJ [pC,i(1− pJ ,i)]

uiC [pJ ,ipC,i]
uiJCφ−1

i (1)

where φi = pJ ,i + pC,i − pJ ,ipC,i, and Ncap denotes the total number of captured farms.
Let xi be a vector of observed covariates for each individual. As in Alho (1990), it is

assumed that the probability of capture by the Census is a logistic function of the covariates,
i.e.

pC,i = [1 + exp(−β>xi)]
−1,

where β is a vector of coefficients to estimate. If the same were possible with the JAS
probabilities, then the model would be exactly the same as in Alho (1990), and we could
obtain the estimated φi’s via standard likelihood maximization. Doing so would automat-
ically guarantee a loss of accuracy since the JAS probabilities should be known constants
obtained from the area frame design. As mentioned previously, obtaining these constants
is not feasible due to excessive operational costs. The next two sections provide methods
for dealing with the unknown pJ ,i’s.

3. Overview of the JAS Design

The actual methodology of the JAS design is quite complicated and can be found in Abreu
et al. (2010). A brief overview of the relevant portions pertaining to obtaining the sampling
probabilities pJ ,i is provided below. In essence, auxiliary information is used to divide the
entire landmass of the U.S. into primary sampling units (PSUs). Each PSU is given a known
probability of selection. In addition, each PSU will be divided into a pre-specified number
of segments NPSU. Note that the segments themselves are not yet drawn, only the number
is specified. A stratified random sample of PSUs is drawn. The sampled PSUs are then
divided into segments, and one segment is randomly selected from each PSU. Interviewers
are sent to the sampled segments to obtain the required data. From this methodology, an
exact representation of pJ ,i is theoretically obtainable. The probability that the i-th farm is
selected by the JAS is simply the sum of the selection probabilities of the JAS segments in
which it has land.

While simple, this quantity is not obtainable for two reasons. The first is that segments
are only drawn once a PSU has been selected in the JAS sample. Thus any Census record
that is not in a JAS PSU will not have any segment information. The second is that detailed
geographic knowledge of the farms is not available unless a part of a farm is in at least
a segment, so it is cumbersome and complex to determine how the farm’s area is divided
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between different segments and PSUs. If a farm is only captured by the Census, the farm’s
address and total acreage is the only known geographical information collected. Farms
captured by the JAS also have the segment where they were sampled and identified (but
not other unsampled segments in which they also have land). In the next section, some
strategies to estimate the pJ ,i’s given available information are suggested.

4. Model for the JAS Probabilities

To estimate the probability of capture by at least one survey, we must first obtain a model-
based estimate for the JAS probabilities for the approximately 63% of the JAS farms, whose
tract-to-farm ratio is less than one. The first possibility is to simply model them as functions
of all variables, in the same manner as the Census probabilities, i.e.

pJ ,i = [1 + exp(−α>xi)]
−1,

where α is a vector of parameters to estimate. Doing this, however, completely ignores
the JAS design. Since the JAS strata are created with respect to a relatively small set
of aggregate level variables, such as cultivation level, urban/suburban, special crops, etc.
(Abreu et al., 2010), it is unclear how accurate a model using farm-level variables would be.
Also, the potential for noise is large as many farm-level variables are probably irrelevant to
the JAS design.

Another approach is to try using only the variables deemed relevant to the JAS design.
To do this, we make the assumption that farms do not cross strata. While this assumption is
certainly not perfect, the hope is that it is a good approximation. The assumption is helped
by the fact that many of the largest farms are considered “must cases”. This means that
responses for them are obtained with probability one and hence they do not enter the model
(NASS, 2014). We also assume that a farm’s address is identified correctly so that it can be
associated with a JAS stratum.

Since PSUs (and segments given PSU) are selected at random from strata, a farm’s
probability of selection given its JAS stratum should only depend on its size. Thus a model
for the JAS selection probabilities can be adequately formulated as

PJ ,i =
evi

1 + evi
, where

vi = α0 +
S−1∑
j=1

(αjIij) + αS
A(fi)

A(stri)
.

Here the index j sums over all strata, Iij is an indicator for farm i being in stratum j, A(fi)
is the area of farm i, and A(stri) is the area of farm i’s stratum. We then plug PJ ,i into
the conditional likelihood and proceed as in (Alho, 1990) to get the point estimates of the
coefficients αj .

The advantage of this model is that it uses all of the available data as in (1), where
the model in the next section will not. Confidence intervals can be obtained using the
parametric bootstrap detailed in Zwane and Van der Heijden (2003) and Norris and Pollock
(1996). The major disadvantage is model misspecification. If the assumptions are not
approximately correct, the model will be biased. For example, it is certainly possible that
smaller farms happen to sit on or near strata borders. The model would then produce
capture probabilities that are too low.
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5. Conditional model

Suppose that instead of conditioning on capture by either the Census or JAS as in (1), we
condition only on capture by the JAS. Then it is easily shown that the resulting conditional
likelihood is of the form

L =

NJ∏
i=1

[pC,i]
uiJC [1− pC,i]

1−uiJC ,

where NJ is the total number of farms collected by the JAS. Here the product is taken over
all JAS samples. Notice that the marginalization causes the JAS capture probabilities to
“cancel out”, which removes the need to approximate them. In addition, the likelihood is
equivalent to a simple logistic regression model of the event that the individual is captured
by both surveys. Using this methodology leads to the following algorithm. First, estimate
the model parameters β by regressing the JAS data against the indicator uiJC . Then, weight
every farm in the Census by its probability of capture, p̂C,i, predicted using the β̂ from the
first step.

There are two drawbacks to this method. The first and most obvious is that conditioning
on the capture by the JAS excludes the data captured only by the CML; in fact, the excluded
data could improve the estimates β̂. Considering that the amount of data obtained from
the Census is typically much greater than that obtained by the JAS, a substantial loss in
efficiency is possible. The second problem lies in variance estimation. The extra round
of conditioning precludes the use of an unconditional, non-asymptotic confidence interval
for the population totals. Since we only know the probabilities of being captured by both
surveys or the Census, the complete pseudo capture histories required for the parametric
bootstrap cannot be generated by this model. Instead, an interval may be obtained following
a procedure similar to the original steps of Alho (1990). This is an asymptotic estimator,
and symmetric confidence intervals are often not appropriate for capture-recapture data
(Yip et al., 1995). Another possibility is to use the non-parametric bootstrap detailed in
Zwane and Van der Heijden (2003) and Norris and Pollock (1996) to obtain an interval. A
limitation of this method is that it only estimates the variance conditional on capture, which
will be smaller than the full variance (Norris and Pollock, 1996; Tilling and Sterne, 1999).
We take the latter approach here, as many variables are collected for each survey. This
means the assumption for using asymptotics (samples greatly outnumbering variables) is
unlikely to be the case, which means the bootstrap is likely more appropriate. In the next
section, we evaluate the methods discussed with a simulation study.

6. Simulation Study

To evaluate the methods discussed in this paper, we conducted a simulation study. The goal
was to make the setup of the simulated area sample close to the actual JAS sample while
only using publicly available data. The USDA has publicly available information on its area
frame strata (which are used in the JAS) for some states. In addition, numbers of farms with
various attributes are available at the county level from the 2012 Census of Agriculture. In
our case, the attribute of interest is the size of the farm. The goal was to find counties that
were entirely, or almost entirely, composed of a single stratum. The combination of these
two data sets would allow us to roughly estimate the number of farms of a given size per
square mile in each stratum. With these data, we then chose a county with multiple strata
and “impute” the number of farms in each stratum using the farms per area of the donor
counties and the area of the receiver strata. The number of farms in this “imputed” county
would be the objective of the study.

3548



The donor counties chosen were West Carroll, Jackson, and East Felicia parishes in
Louisiana. West Carroll represented stratum 13 (more than 50 percent cultivated), and
Jackson represented stratum 40 (less than 15 percent cultivated). Each of these counties
was almost entirely covered by the given strata, so the number of farms of each size per
area could be estimated by dividing the area of the county by the Census number of farms.
East Felicia had the previous two strata as well as stratum 20 (between 15 and 20 percent
cultivated). The unknown number of farms per area of stratum 20 in this county was solved
for using the previous two estimates for 13 and 40, along with a rough measurement of
the area in the county covered by stratum 20. The receiver county was Morehouse Parish,
which had strata in 13, 20, 40, and 31 (urban). For simplicity we took the number of farms
in stratum 31 to be zero. A diagram of the process is shown in Figure 1.

Donor stratum 13, West Carroll Parish Receiver stratum, 13.1, Morehouse Parish 

Receiver stratum, 13.2, Morehouse Parish 

Figure 1: Process for calculation of farm numbers per strata

For example, the area of West Carroll parish (see Figure 1) is 360 square miles. It
is almost entirely composed of stratum 13. From the 2012 Census, there are 111 farms
with size between 70 and 99 acres in this county. So, we may estimate the number of farms
between 70 and 99 acres per square mile in stratum 13 to be 111

360 . In the receiver Morehouse
parish, stratum 13 occurs in multiple groups, examples in the figure are 13.1 and 13.2. The
number of farms between 70 and 99 acres per square mile in 13.1 is then 111

360 × 392, where
the area of stratum 13.1 is estimated to be 392 square miles.

Using this process and an approximation of Morehouse parish discretized into cells of
one square mile each, the input parameters to our simulation are exposed in Table 1.

An image of the cell representation of Morehouse parish is given in Figure 2. Note that
there are 907 farms in the population. For each iteration of the simulation we do the follow-
ing. First, for each farm, generate its size uniformly given its size bounds. For example, if
a farm is between one and nine acres, its size is a draw from Unif(1, 9), converted to square
miles. Next, each farm is represented as a circle with area equal to its size. Its center is
then randomly placed inside its stratum and group. More specifically, suppose for example
a farm is in stratum 13, group 13.1 (see Figure 1 above). Then a cell in group 13.1 is ran-
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Table 1: Number of farms of various sizes for each strata
Strata 1-9 Acres 10-49 Acres 50-69 Acres 70-99 Acres
13 23 96 117 140
20 6 4 2 2
40 6 46 10 7

Strata 100-139 Acres 140-179 Acres 180-219 Acres 220-259 Acres
13 112 70 37 39
20 2 0 0 0
40 14 8 8 1

Strata 260-499 Acres 500-999 Acres 1000-1999 Acres 2000-3000 Acres
13 60 39 27 23
20 2 2 0 0
40 4 1 0 0

domly selected, and the center is placed in that cell. Furthermore, the (x, y)-coordinates
of the center in the cell are selected at uniform. Once all the farms have been placed, the
JAS sample is created by randomly selecting 50, 5, and 20 segments from strata 13, 20,
and 40, respectively. Any farm that lies in any of these segments is selected in the sam-
ple. Note that under this setup, it is indeed possible for farm boundaries to cross segments
(cells) or even strata (groups of cells). Next, five normal random variables x2, x3, x4, x5, u
are generated. In addition x1, the log of the farm’s size is also used. Individuals are then
drawn with probability pC,i =

exp(5+1.5x1+x2+x3+x4+x5+u)
1+exp(5+1.5x1+x2+x3+x4+x5+u) from the population to be in

the Census sample. Each of the 3 models discussed is run on the simulated data to obtain
point estimates and confidence intervals (1000 bootstrap replications). The simulation was
run 399 times (due to the high computational time). The results are tabulated below.

Table 2: Simulation results with JAS conditional outliers
Model Avg. Bias M.S.E. Coverage Mean C.I. Width
All Variables 44 5920 91.48 296
JAS Specific Variables -13 1852 91.98 167
Conditional 229 9178208 92.73 451631.8

Table 3: Simulation results without JAS conditional outliers
Model Avg. Bias M.S.E. Coverage Mean C.I. Width
All Variables 44 5920 91.48 296
JAS Specific Variables -13 1852 91.98 167
Conditional 60 24328 93.2 231020

It is apparent that the conditional model does the worst, especially in terms of mean
square error. This is to be expected, as the sample size for this model is much less than that
of the other two, as was mentioned before. This likely caused instability leading to the large
bias and mean squared error shown in Table 2. It was found that, out of the 399 simulations,
there were two outlier point estimates with magnitudes of 8,478 and 60,866. Table 3 gives
the summary with the outliers removed. Regardless, even with the outliers removed it
performs the worst in terms of bias and MSE, although it does have the closest to desired
confidence interval coverage. The mean confidence interval width is still influenced by 32
intervals with upper bound outliers larger than 10,000, caused by the same instability in the
parametric bootstrap, which explains there abnormally large width. With these additional
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Figure 2: Morehouse parish

outliers removed, the mean confidence interval width becomes 1541, still far larger than
the other two.

Also unsurprisingly, the model using only JAS relevant variables to estimate the JAS
selection probabilities performed better than the one using the same variables as the Census.
It has the lowest mean square error, average confidence interval width, and average bias.
It is only outperformed in coverage, where the conditional model is closer to the nominal
95% level. This suggests that it is potentially possible to approximate the JAS design with
a model and still obtain meaningful estimates.

While all confidence intervals have below the desired coverage, it should be mentioned
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that this is a well known property of the naive bootstrap (Shi, 1992). While the parametric
bootstrap was chosen to save computational time, a more advanced (but slower) method,
such as the double bootstrap or bootstrap t, may be used in a real application where multiple
simulations do not need to be run (Shi, 1992; Hall, 1988).

7. Conclusion and Further Research

This study shows promising signs of employing model-based approximations of survey de-
sign probabilities for our capture-recapture application. It demonstrates that the increased
sample size allowed by modeling the JAS probabilities allows for a significant increase
in model performance when compared to using an asymptotically unbiased model with a
smaller sample size (and the potential instability that the smaller sample size yields). This
is particularly important as the real capture-recapture procedure for the Census of Agricul-
ture also conditions on capture by the JAS. Considering that the JAS county-level sample
sizes are much smaller than in this simulation study and that the JAS sample is less than
a tenth of that of the Census sample, the importance of having as much data as possible is
even greater. The model-based approximation would allow use of the entire data set.

While we tried to make the simulation study as realistic as possible, using only pub-
licly available data (to allow for the release of this paper) limited how closely we could
approximate actual stratum level farm numbers. The detail-oriented reader may have no-
ticed that the actual number of farms in Morehouse parish published in the 2012 Census
is only half the imputed number used in this study. While having twice as many farms is
actually conservative in the sense of our objective (more farms means it is more likely seg-
ment and strata boundaries are crossed), more accurate inputs to the study can be obtained
using (non-publicly available) individual level data. Seeing if this changes the results of
the study will be a focus of future research. In addition, the effect of the tract-to-farm ratio
on the estimates needs to be further investigated.

It should be noted that the existing capture-recapture methodology that NASS uses to
estimate the number of farms takes into account misclassification of an operation’s farm
status, as well as the fact that Census capture is a two-stage process (NASS, 2014). In addi-
tion, other models to estimate the number of farms are also in development. Since we were
concerned only about the effect of estimating the JAS probabilities of selection on the bias
of a capture-recapture estimator, we used a simpler model assuming no misclassification
and treating the Census as a registry, e.g. the model developed in (Alho, 1990). Incorpo-
rating these ideas into models that more fully capture the characteristics of the Census of
Agriculture is an area of future research.
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