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10 Intfoduction.

Current approaches to the inventories of global crops from satellites
depend almost totally on the judgment and skills of an image analyst. The
input, in the form of analyst labelled pixels or groups of pixels, is used to
train a computer classification program. These approaches are very time con-
suming. If routine global inventories from satellites are to become a
reality, a considerable reduction, {f not the elimination of human interpreta-

tion, in crop identification will be necessary.

The current approaches to the inventories of global crops from remotely
sensed data relies on simple Gaussian statistical structure'(Fu, Landgrebe,
and Philips [1]). This implicitly assumes that the phenological growth stage
for each vegetation subclass is the same for all observations made at a.given
time. However, even in a geomorphologically homogenous area, this assumption
is known to be invalid and has been shown to lead to probability distributions
that are not unimodal (Chikkara and Register [2]). It is also known that
variation of phenological growth stages increases the variance of usual proba-
bility distribution by many times (Haralick et al [3], Badhwar [4]). Haralick
et al, have developed a method of spectral-temporal classification that involves

the creation of crop signatures which characterize multispectral observations as

functions of phenological growth states. In this approach, for each
possible crop category a correspondence of time to growth state is
established that minimizes the smallest difference between the given
multitemporal multispectral vector and the category mean vector indexed
by growth state; the latter must be established in some independent manner,
for example, crop calendar practices.

In this paper a new approach, based on an invariant-class of models, is
proposed. This approach explicitly takes into account differences in the
planting time which are one of the major causes of large variances and non unimodal
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distributions. In this approach the analyst is used to define,

using the Landsat imagery, a field of the crop of interest. The computer

classification program is then "trained" on this field only and every pixel

is classified as crop or non crop. This technique has been applied to

34 segments in the U.S. Cornbelt area to separate corn from other crops.

II. Temporal Model of Spectral Response

This approach to classification is based on the hypothesis that a

given crop, after emergence, has a unique spectral shape in time (a profile).

A crop exhibits emergence at different times over a site.. The result is
displacement of the crop development profile, but not a change in its basic

shape. This classification method incorporates the effects of planting

time distribution and bases the classification on the profile of the

erop. It is fully realized that many other agronomic variables, besides

the planting time, can and will effect the shape of this profile. However,
the effects of these variables are significantly reduced by local train-

ing; this is discussed in the next section.

The spectral reflectance in the 0.7-1.1 um of a healthy plant of an

ime. I
annual crop is known to rise, peak, and fall as a function of time n
n earlier paper, Badhwar [4], suggested that this behaviour can be des-
a 5 |
cribed by an incomplete gamma functional for the annual crops of spring

wheat and spring barley. Independently, Crist and Malila [5] applied

*
this functional form to the time behaviour of the Kauth-\homas Greenness,

i 1 [6
(a linear combination of spectral reflectance). Recently, Rice et a (6]

the
have applied this form to soybeans and Badhwar and Henderson [7] to

p . p S



o(t) = At Exp (-gt2) (1)

where o(t) is spectral response in a particular wavelength interval, o and 2
are crop and condition specific constants, and A is a normalization constant.

The spectral response on emergence day t = t_ should be equal to the spectral

0

response of bare soil, ps(to), Thus equation (1) can be rewritten as

o(t) = o (ty) (t/t))% Exp %e(_tg - t2>£ (2)
This analytic description of the spectral response henceforth will be called

a spectral profile. It was shown by Badhwar [4] that within a LACIE segment

if the crop emerges late (or early) relative to a reference field, the pfofi]e
is displaced but has the same basic shape as that of the reference field. This
model of the temporal characteristics of the reflectance is used as a basis for
the classification of the crop under consideration. The model has four

free parameters Pgs s B and to that are determined from the application area

that is to be classified.

III. Approach

A training area of the crop that is to be classified is selected from the
LACIE. segments by an analyst. This area is the interior of a field of the croo
of interest. This step is analogous to what is commonly referred to as extrapo-
lation mode (Steiner and Salerno, [8]). The obvious advantages of this mode are (i)
less exact calibration capability of the system sensors is required, and (ii) less
exact knowledge of other experimental variables is necessary since only varia-
tions of these factors within the segment need be accounted for. For example,
atmospheric correction do not have to be rigorously determined. [This, of course,
does not imply that the reduction of spatially varying atmospheric effects would

not improve the data quality].



The major disadvantage of this approach, as of any other technique in
use at present in remote sensing, is prior knowledge of the scene to be

classified.

The training area is screened for obvious outlier pixels. For each Land-

sat band, the mean, u, and the standard deviation, o, of the spectral values over

each acquisition day of interest are computed. The criterion for rejecting a

pixel is that channel value, n (t), on the acquisition day, t, does not satisfy

the inequality [u(t) - 3o(t)], <n (t) < [u(t) + 30 (t)].

This is a fairly
liberal criteria, especially if one considers the fact that outlier pixels would
distort the "true" u(t) values. If the pixel is an outlier in any Landsat band

on any of the acquisition days, it is removed from further consideration. After

rejecting these outlier pixels, the mean and standard deviation of the remaining
pixels are recomputed.
Having determined the means and standard deviations in individual Landsat

bands over the acquisitions, the temporal model of equation (2) is fitted iteratively

using the algorithm of Marquardt [9] to determine the four free parameters,

The fitted curves are the nominal temporal profiles of the crop and are assumed
to apply to every pixel of the same £rop in the scene except that diffetent pixels
may have different values of the emergence date to. However, before this nomznil r
profile can be used for classification of individual pixels, the "measurement" erro

i i nini nominal profile
( + scene noise) and the error associated with determining the
sensor

must be included.

Iv. Classification.

2 .
i i i Y ; defined by
Consider a modified distance function, gJ(T),
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where pga1(ti) is the calculated channel value in Landsat band j, (using

the fitted constant o> to, o and 8 obtained from training field) ng(ti)

is observed channel value on acquisition day t,, Oj(ti) is the "measure-
ment noise" in band j on day ti' T is the emergence date of pixel which
is determined by minimizing W?(T). This corresponds to the physical con-
dition that the emergence date of the pixel can be different from that of
the "nominai" emergence date. N is the number of acquisitions.

The classification scheme is based on this distance function. It is
basically a measure of how far (in units of standard deviation) the temporal
profile of an individual pixel lies away from the "nominal" profile of crop
as determined from the training area. This distance function is dimension-

less and if pgb(ti) is normally distributed with mean pga] (ti’ t) and

.), then

standard deviation Gj(ti)’ then [W?(T)]and standard deviation cj(t1

[¥2(1)]

; o has a chi-square distribution with (N-1) degress of freedom.

In order to use this distance measure for classifying individual pixels
one needs to (i) determine what Gj(ti) to assign to an individual pixel and,
(ii), determine the threshold boundary, Wih, above which a pixel is unlikely
to be that of the crop under consideration.

a. Noise. Figure 1 shows a plot of sensor noise as a function of input
channel value [10]. In Landsat band 1, 2, and 3, the noise is proporticnal

to (signal 1eve1)1/2

as expected and that in CH 4 is a constant. This

provides then the absolute minimum of the noise gj(ti) on any given date.

In addition to this, there is a scene noise due to the variance in the optical
depth caused by changes in the particulate size distribution (A = 0.35 -.7 um) and
in the infrared (.9 - 2.4 um)due to the water vapor distribution. Duggin [11]
from extensive measurements made over desert areas in the 0.5 - 0.6 um band shows

that o (scene)= (.07 - .18) x signal level. Pitts [12] has indicated that ¢ (scene)

~0.07 x signal level due to water vapor distribution. Additional sources of



scene "noise" arise due to the plowing pattern used, surface-drainage
variation, the solar azimuthal and elevation angles and the direction of
the furrows with respect to the line of sight of the sensor [13]. If one

simply includes the lowest value of above reported noise, one finds then
that the o7'"(t.) > [52 - J V2 %150, i )
e 2 (t1) 2 19 ansor * U%gene 5 GJ(sensor). It is, there
fore, assumed that o,(t.) = R ini (14|
t JJ( ;) = Max LOJ (sensor), oj(tra1n1ng f1e1d]. It
should, however, be noted that some uncertainty remains in the knowledge of

Oj(ti)'

b. Thresholding. A decision rule must be specified to determine when

the multitemporal profile of the pixel under consideration is dissimilar from

the temporal profile of the crop under consideration. For classification

using [WE(T)min this rule is specified by the numerical value, ?ih' If the

y 2 : N s
w15 less than wth the pixel is classified as

minimized value of [W?(r)]
the crop of the training field and not otherwise.

The value of this threshold is determined directly from the training
field itself. Using equation (3) and constants ps(t,)s @ and 8 and the noise

determined in the section above, the distribution of Wﬁin over all of the
pixels in training field is determined. Figure 2 shows one such distribution.
(The distribution in ten other ;egments is rather similar). However, this
distribution is not the standard chi-square distribution with (N-1) degrees
of freedom. Let Emax be the maximum value of Wﬁin in the training field

data. Thus, the threshold has to be at least as large as Emax'
But it is clear, that if the numbers of pixels in training field is rather

small, it is unlikely to reflect the tail end of the distribution. Moreover,

variations cuased by fertilization history, genetic variety, humidity and water



stress are all likely to cause a variation that is likely to push the

value of threshold to be higher than Emax' One of the causes why
2
Ymin

not know the true value of Oj (ti ). From equation (3), it is seen

that this uncertainty simply leads to a multiplicative factor, c, on

(t) is not a chi-square distribution is due to the fact that one does

w;in(r). The hypothesis that distribution of observed w;in(r) for
training is indeed a chi-square distribution, except for the scale
factor, can be studied by applying the Kolmogrov-Smirnov [14] test to the
data. The scale factor can be estimated using a maximum ‘1ikelihood

analysis and is found to be simply given by

2 .
¢ = (Mean of wmin(f) values of the field)/Degrees of freedom.
A check of the hypothesis that the observed values of wzmin in individual
Landsat channel is a "scaled" chi-square distribution was performed on

20 fields of corn and wheat scattered over segments spanning a large
geographic area and found to hold well. Using the chi-square table, the
threshold is set at 0.025% rejection level. 1In addition, one requires
that the value of v determined for a pixel satisfy the inequality [t0-20]
< < [t0+20]. That is, the calculated emergence date of a pixel must be
within £ 20 days of that of "nominal" crop as established by the training
ffe1d.

Knowing the temporal profile of the crop under consideration, an
estimate of the "measurement" noise of the signal for an individual pixel
and distance threshold, the classification of a segment can be done.

In the next section, the method followed in the site and training

field selection is discussed.



V. Analyst Input: Training Field Selection and Choice of Acquisitions.

The analyst provided the input for the classification procedure discussed
above using the LACIE film products. These products display spectral values
in 3 channel combinations; and provide a practical means of identifying
spectral signatures and separating spatfal features. Figure 3 is an example
of LACIE film product depicting Landsat Channel 1, 2, and 4, color coded
blue, green, and red. Using these products the analyst selects four

(preferably five) acquisitions for use in the classification. The selection

(2) with a X 1 pixel MSE multitemporal registration error and (3) of accept-
able data quality and (4) are sufficiently well distributed in time to
characterize the growth cycle of the crop in the post emergence to pre-harvest
growth stages.

Having selected the acquisitions, the analyst correlates agricultural
information for the geographical area of the segment to crop signature on
the imagery (for example, approximate planting time, growth cycle, and
harvest time). Using the change in relative channel reflectance over the
crop growth cycle over the acquisitions a training field is selected (Figure 3).
The training field selection criteria are (1) interior field size of 20 tc 40
pixels, (2) border and edge pixels excluded, (3) no roads, evident drainage
patterns, or other unusual features on the field of (4) a usual spectral

signature (for example, not an irrigated field in an area of dry land farming).

A single analyst, using the above criteria selected four corn fields
per segment is about 30 minutes. A comparison of the fields selected with
the ground truth showed perfect agreement. Thus, the training field can be

selected efficiently and accurately.



in t i scribes the growth cycie
In order to ascertain that the selected field describes the gro 5

Hes

of the crop and the acquisition set is useable, the individual channel va

were plotted as a function of the day of the year, Figure 4, If the fit of

the model form of equation (2) shown in Figure 4 by the solid curve was satis-

factory, this data was used for training field.

VI. Results and Discussion

Figure 5 gives the county distribution of 34 segments in the U.S. Corn
Belt that were classified using the profile similarity technique presented
above. These sites had reasonable acquisition histories and had available
the aircraft photography ground truth which made it possible to check on the
accuracy of the classification. The ground truth aircraft pﬁotography was
delineated, fields identified and digitized in subpixel unit, such that 6
ground truth pixelscorrespond to one Landsat pixels.

Before discussing the results from all of the segments, the classification
results of LACIE segment 0832 are presented. In section V, the Landsat imagery
(Figure 3) and the method of selecting a training field from this segment were
presented. The results of a pixel-by-pixel classification using the selected
field are shown in Figure 6. Here, the blank spaces are pixels that are
rejected by this method as not being corn and the filled out areas are classified
as corn. This classification map‘?s clean, that is, field patterns are quite
evident and well filled out, and the blank areas do not show a random scattering
of pixels. A comparison of the classification map with the observed ground truth
map shown in Figure 7 shows that these fields are corn fields indeed.

Table I summarizes the results of all 34 segments. Column I gives the
LACIE segment number, the county and state in which this geographic site is
located. Column II gives the acquisition days and the training field used in
the classification. Column III gives the confusion matrix, that is, the percent-
age of corn classified as corn, the percentage of corn classified as non-corn,
percentage of non-corn classified as corn and percentage of non-corn classified

Q
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as non-corn. The total of these percentages add to 1007 and represents the
total number of pixels in the segments. These confusion matrix are presented

in rows 1, 2, and 3 for all pixels and decreasingly pure pixels. Row 2 results
are based on only those pixels in which all six of the subpixels of the digitized
ground truth belong to the same category. Row 3 results are based on only those
pixels which are the centers of a area 4 subpixels wide by 5 subpixels high
having the same ground truth category. These represent essentially pixels
interior to field. It should however be noted the digitized ground truth is
registered to one base date which may or may not be one of the acquisitions
dates used in this classification. Thus, misregistration errors are minimized
as one goes from Row 1 to Row 3 but are not necessarily eliminated. It should
also be pointed out that the data was not screened for clouds or cloud shadows,
etc. These pixels along with those corn fields harvested (say for sillage)

or hail damaged before the final acquisition day may be classified as non-

corn, thus lowering the over all accuracy slightly. By averaging over all
segments, one finds that percentage of corn correctly classified (PCC) as corn
increasing from 64.1% to 73.7% and the percentage of non-corn classified as
non-corn increases from 85.0% to 90.3%. Figure (8a) shows a scatter plot of

PCC of corn for category 3 (Pure pixels) versus PCC for all pixels and Figure 8b
shows the same for non-corn. It is clearly seen that percentages increase in
going from all pixels to pure pixels as expected for all segments.

Finally, the purpose of any classifier is to determine the true proportion

T

determined proportion of corn versus the ground truth (GT) proportion. The results
jndicate a mean difference of (6T proportion - classifier proportion) of
_2.97 + 7.22, that is result which is essentially unbiased. Within the

accuracy of these results the classifier is not found to be sensitive to the

choice of the training field.

19



Conclusion

It has been shown that profile similarity classifier has the potential
of being an effective classification procedure. The method has very simple
training requirements and is very time efficient. The method, because of the
fact, that areas are correctly identified fields, has the potential of improve-
ments since the cause of misidentification can be traced.
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Figure Captions

Figure 1. A plot of the standard errors (counts) versus the signal Tlevel

(counts) for the four Landsat bands.

Figure 2. A histogram of the modified distance function [wz(r)] . for a

Figure 3.

min

particular training field.

Figures 3a to 3e are a time sequence of film product imagery
created from the Landsat spectral values, MSS channels 1, 2, and 4.
For this product, the channel values are represented by the colors
blue, green, and red respectively. Hence the temporal sequence
illustrates the change in relative reflectance of the channel.
values as the growth stage of vegetation progresses.

The grid on each figure provides a reference for field location
in the 195 pixel (picture element) by 117 line image. The coordinates
(line, pixels) of the training field defined for this segment, s.s.
882, are (77, 77), 76, 84), (81, 87), (82-80). On June 8, 1978

acquisition, this field exhibits a grey-green signature indicative
-

of approximately equal channel reflectance: a "bare soil"
signature. On acquisition day July 5, the red signature indicates
low reflectance in channels 1 and 2 (the chlorophyll absorption
bands) relative to the high reflectance in the infrared band
channel 4: a 'vigorous growth' signature. Acquisitions on

August 10 and August 19 indicate diminishing of this relative
difference, hence senescence of the corn in the field. Acquisition
day September 22 exﬁibits a grey-brown signature indicative

of ripe corn.

F-1



Figure 4. A plot of the mean and one standard deviation of the spectral
values as a function of the acquisition day. The solid curve
through the data points is the nonlinear fit to the model of
equation (4), the constants of the fit and their respective errors

are given at the top of each plot.

Figure 5. Geographical distribution of segments analyzed.

Figure 6. A pixel-by-pixel classification map of segment 0882. Dark areas

are non-corn and light area is corn crop.

Figure 7. A pixel-by-pixel ground truth map of segment 0882. Dark areas are

non-corn and light area are corn.

Figure 8. (a) A scatter plot of the percentage of corn correctly classified
for all pixel versus that for pure (Row 3) pixels.
(b) A scatter plot of the percentage of non-corn correctly classified
for all pixels versus that for pure pixels.
(c) A plot of the difference of ground truth proportion and
classification prgportion against ground truth proportion.

Each point in these figures corresponds to one segment.
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(40,178) (40,171) 2.6 64.2 19.3
10.4 9.1
3.7 72.1 4.7
202 78167, 78212 4.1 7.5
Atchison, Missouri Uzl emd &.4 30.4 53.6
(3:119), (3.126) 6.4 11.7 193
(9,130), (9,120) 9.3 53.5
8.0 15.5
11.2 597 51,7
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Add scem

% not
Confusion Matrix %:S;gd
Acquisition Set C+C C+N identifie
ieggent (Julian Day) N=C N=+N + pixels
URBEF Training Field rejectad
& Coordinates as imnura
IV, (Line, Pixel) (1) Superpure, (2) Pure, (3) A1l Pixels
205 78155, 78219 4.2 4.1
78246, 78272 1.9 38.4 51.5
Clark, Missouri (48,169), (48,173) 5.9 7.1
(55,175), (56,172) 4.4 51.6  21.1
7.2 9.9
5.6 68.0 9.3
2.1 1.0
209 78167, 78221
78247, 27266 1.4 41.5 53.9
Gentry, Missouri 78274 3.4 2.4
(11,187), (11,193) - R e
(13,193), (13,187) i.g 4.2 -
. 80.1 .
211 78166, 78220 1.4 1.3
78247, 78265 1.8 35.1 60.4
Grundy, Missouri 78274 o 5 5
(50,122), (50,128) 5.6 71.6  18.2
(655128) 5 (57,122) > 6 41
6.5 77.5 9.3
216 78184, 78220 2.0 0.6 49.1
78247, 27274 10.3 37.9
Mercer, Missouri (82,63), (80,74) 3.5 1.3
(85,75), (86,65) 19.8 §1.9 14.4
4.6 2.0
21.8 64.1 7.6
241 : 78187, 78205 7.9 .5
=
_ 78224, 78233 1.6 26.3 59.8
Devil, South Dakota 78251 - 1
: 8.
(6,174), (6,185) 43 58.0 18.4
].] ]l
5.7 64.0 4.7
800 78164, 78219 24.6 8.3
78246, 78261 30 14.9 439.2
Clinton, Iowa (68,14), (68, 34) 31.9 13.1
(70, 34), (70, 15) 6.5 27.5 21.0
36.5 17.5
9.7 33.7 2.7
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Add scene
% not

Confusion Matrix ground
) ., truth
Acquisition Set C>C C»:: Sdantitied
Segment (Julian Day) N-C N>+ pixels
HimRer Training Field rejectar
% Coordinates sa U
LoEatta (Line, Pixel) (1) Superpure, (2) Pure, (3) A1l Pixels
804 78166, 78229 24.1 2.4 S
Marshail, Towa 78247, 78265 1.6 20.4 .
(24,132), (23,141) 32.9 5.4
(30,143), (31,133) 539 35.5 21.8
36.6 9.5
8.1 42.0 3.8
809 78164, 78218 23.9 7.4
78244, 78271 1.8 11.8 55.2
Ogle, I1linois
(43,6) (40,17) 31.6 12.8
(47,20), (50,6) 4.6 25.8 25.1
35.8 17.6
6.6 32.6 7.3
824 78163, 78217 28.4 3.3
. _ 78235, 78243 4.0 24.2 20,2
Iroquois, I1linois 78262 36.2 61
(5,107), (5,118) 7.2 32.6  18.0
(10,118), (10,107) 0.8 91
10.3 36.9 2.9
832 78151, 78160 S 1.7 64.1
78232, 78268 6.2 22.4
Adams, Indiana
(91,143), (91,153) 11.2 3.7
(94,153), (94,143) 18.7 48.3 18.2
15-56 5.9
2310 53.1 2.4
837 78180, 78198 21.6 4.3
. 78216, 78252 3.1 23.7 47.3
Benton, Indiana (98,35), (96,47) 27.7 8.1
(101,48), (104, 37) 8.1 38.1 18.1
31.4 Ui
11.0 A3.7 2.2
842 78160, 78178 17.6 5.0 57.5
_ 78232, 78250 1.9 18.1
Henry, Indiana 78268 24 8 9.0
(3,133), (3,145) 6.4 38.6 21.1
(6,147), (9,137) 29.1 13.7
9.9 44.9 2.4
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Add scene

not
: . .. Qaround
Confusion Matrix Eruth
R Acquisition Set C~H Hentified
gﬁgggﬂt (Julian Day) N-H  + pixels
Training Field rejected
& Coordinates as imaure.
Location (Line, Pixel) (1) Suverpure, (2) Pure, (3) A1l Pixels
843 78178, 78197 2.2 255
’ - 78233, 78251 3.3 18.8 63.2
carys ‘hiana (13,121), (13,123) 19.1 5.2
(22,127), (22,125) 12.2 44.7 18.7
23.6 8.6
16.1 50.4 13
852 78178, 78232 o1 3.8
) 78250, 78268 . 23.0 64.0
Randolph, Indiana 1 3 3
(49,36), (49,44) : e
(5],46), (53,37) .8 38.4 17.4
3 1851
.2 65.9 1.8
853 78160, 78178 6%
78232, 78250 19.1 64.2

Randolph, Indiana

78268
(35 68), (34,72)
(41, 77), (43,71)

BE O N—

g
1
4
47.8  20.2
3
3

854

78161, 78207 4 4.3 .-
Tippicanoe, Indiana 78234, 78251 .2 24.3 ¢
(73, 148), (73,155) ol §.7
(80,155), (80,148) 5.4 3.3 15.4
.0 9.2
5 40.9 0.3
860 78160, 78197 9.6 2.8
- 78232, 78251 2.1 25.0 60.4
Wells, Indiana 78268 Ar % : 3
(91,61), (91,66) £.9 CTE R D 5
9.9 54.5 1.3
864 78159, 78186 19.8 4.0 59.9
Crawford, Iowa 78231, 78267 0.8 15.5
(65,116), (65,120) 27.4 8.2
(69,120), (69,116) 4.0 38.3 22.1
32.0 13.1
6.9 45.9 2.1
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‘ Add scen

% not
Confusion Matrix %rozgd
R rutn . .
Acquisiticn Set E>C C>H1 Jdentifie
Number Training Field ;21?%§Eie
Coordinates , R
Locgtion : (Line, Pixel) (1) Superpure, (2) Purz, (3) All Pixels
865 78168, 78186 11.4 3.1
' 78231, 78267 0.7 19.0 65). 7
CranOrd, Towa (7 71) (7 79) 16.5 7.4
(11,79}, (11,71) 3.9 47.7 24.4
20.3 12.8
6.3 56.0 4.7
877 78186, 78222 5.8 8.7
78231, 78267 8.6 11.0 65.7
Ida, Iowa _
(70,114), (69, 123) 1?.4 &)
(75,125), (77, 117) . 5,8 234 43.3
24.5 1307
8.3 32.2 21.4
878 78186, 78221 14.2 10.5
Kossuth, Iowa 78266, 78293 1.9 26.0 47.4
(9,140), (9,148) 20.5 15.0
(19,151), (19,144) 589 41.8 16.9
24.4 18.7
8.7 47.3 0.9
880 78186, 78222 21.0 6.8 46 .6
78231, 78267 0.8 24.8
Monona, lowa (46, 123), (46, 133) 26.5 1.2
(54, 136), (54, 127) 2.7 42.7 17.0
29.1 1557
4.7 48.8 1.6
881 ‘ 78159, 78186 21.1 4.0
: 78222, 78231 0.5 20.6 53..8
Monona, Iowa 78267 57 = 7 6
(13, 81), (12, 90) 2.5 43.2  19.2
(16, 90), (17, 82) 31.2 12.5
4.8 49.9 1.7
882 78159, 78186 23,6 2.4
78222, 78231 0.8 .
Palo Alto, Iowa 78267 256 6.6
30.4 5.9
(77,77) ,(76, 84) : 2 v
’ Y ae . 209 45.0 21.7
(81,87),(82, 80) 347 33
5.0 45.9 6.1

16



Add scens

= not
s Mty groun’j
Confusion Matrix Fruth
- Acquisition Set C+C C»N identified
Segment (Julian Day) N+ C N+ + pixels
Number g . ) _
Training Field rejectac
& Coordinates as Imoure
Location (Line, Pixel) (1) Superpure, (2) Pure, (3) A1l Pixels
883 78186, 78204 33 2.3
78213, 78221 3.4 25.7 55.4
Palo Alto, Iowa 78267 17.9 5.0
; 42.4 27 .
(22,109) (22,118) il
(29,120) (29,111) 21 .2 8.5
9.6 49.0 11.6
886 78167, 78204 2.3 6.3 52.6
Pottawatomi, Iowa 78231, 78249 0.8 19.0
(102,77), (102,86) 27 .2 11.0
(110,91), 110,81) 3.0 S0 2T
30.4 16.6
5.4 43.7 4.0
891 78168, 78186 16.1 6.4 ;
78204, 78267 2.0 10.0 65.5
Shelby, Iowa
(90,5), (90,13) 22.8 12°5
(97,13), (97,5) 6.4 NS 27
27.8 18.8
9.7 39.9 3.9
892 78167, 78204 24.7 2.4
78221, 78266 1.1 11.3  60.5
Shelby, Iowa _
J (16,50) (15,59) 34.1 o-g
(19,60) (19,53) 4.5 29.2 25.9
40.1 10.4
8.1 36.9 4.5
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