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ABSTRACT

One of the main problems 1in a multistage decision tree
procedure is predicting the optimal features to be used at
every node. An algorithm is proposed which predicts the
optimal features at every node in a binary tree procedure.
The algorithm estimates the probability of error by approxi-
mating the area under the 1likelihood ratio function for two
classes, and taking into account the number of training sam-
ples used 1in estimating each of these two classes. Some
results on feature selection techniques, particularly in the
presence of a very limited set of training samples are pre-
sented. Results comparing probabilities of error predicted
by the proposed algorithm as a function of dimensionality as
compared to experimental observations are shown for aircraft
and Landsat data. Results are obtained for both real and
simulated data. Finally, two binary tree examples which use
the algorithm are presented to illustrate the usefulness of

the procedure.






CHAPTER 1

INTRODUCTION

1.1 Multistage Classification

A number of different types of classifiers are now in
routine use in remote sensing. Most of these classification
algorithms, using pattern recognition techniques, can be
regarded as "single-stage" classifiers, where an "unknown"
pattern is tested against all classes using one feature sub-
set, and then the pattern is assigned to one of the present
classes in a single-stage decision procedure. An example of

such a procedure is shown in Figure 1.1.

In recent years, as classification of multispectral
data has found a larger number of users and a wider range of
applications, the need has been felt for alternate, more
powerful techniques than the conventional classifiers,
through the use of which more information could be extracted
more accurately and/or efficiently from the scene. Some of

the reasons that have warranted this need include:

1% The need to extract more detailed information from

data. The opportunity ¢to do so results from the
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emergence of more complex data sets. The growing
use of multitype data bases containing Landsat data
with a variety of other quantitative geodata
together with the anticipated launching of more
sophisticated sensors such as the Thematic Mapper
result in the opportunity to extract considerably

more information from the data.

The broadening of the range of applications. As
pattern recognition methods have developed, they
have found a larger number of users with a wider
range of applications. The feedback from these
different and versatile uses has indicated problems

and needs not initially present.

The ever present need for improved classification
accuracy. There are some applications for which
conventional classifiers have proved to be marginal
at best. Some of these are listed in Swain et al.
(1) and include multi-image analysis and the use of

mixed feature types.

The need for improved processing efficiency. The
conventional, single-stage, <classifiers use only
one particular feature subset and are somewhat
inefficient, as they must compare an unknown pat-
tern against all possible classes before assigning

that pattern to a particular class.



Because of these and other factors, there has been some
research in recent years directed towards developing multis-
tage classifiers, whereby the decision procedures go through
several stages before finally assigning a pattern to a
class. An example of such a procedure is shown in Figure

i

The purpose of this research 1is to develop a layered
decision algorithm that can increase the accuracy and effi-
ciency over the conventional single-stage <classification
approach. Developing such an algorithm requires, among
other things, a careful look at some parameters that are
crucial to any successful attempt at tackling such a complex
problem. In particular, three areas have to be investi-

gated:

1. The development of an adequate training procedure
to define an initial set of spectral classes with

their respective statistics;

2. The investigation of various error estimators and
the development of an adequate performance estima-
tor that can reasonably predict the accuracy or any

trends in performance;

3. The development of an algorithm to build a binary

tree making use of the above-mentioned methods.
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Figure 1.2 An Example of a "Multi-Stage" Algorithm
In Classifying Multispectral Data.



Of these three areas, the most important problem is
believed to be the development of an accurate error estima-
tor, especially in the presence of what has come to be known
as the Hughes phenomenon (elaborated upon later in the
review of literature). Predicting the conditions under
which the Hughes phenomenon occurs provides the key to the
solution of the problem. Therefore, a considerable portion
of the research has been directed towards trying to under-

stand and predict the impact of this phenomenon.

1.2 Review of Literature
1.2.1 Training Procedure

Several training methods have been suggested in the
literature. We will not attempt to 1list all of them, but
rather will give a background of some of the methods

reviewed and used in this work.

The training process is the procedure whereby labeled
samples are selected and used to compute class statistics

which in turn are used to classify wunlabeled (i.e., "unk-

nown") samples.

Several parameter estimation methods (training methods)
have appeared in the literature. Sample-partitioning meth-
ods, the leaving-one-out method, clustering are but a few.

See, for example, Fukunaga (2) and Duda and Hart (3).



For remote sensing purposes, clustering has been widely

used in developing training Sitia tels Eale s Two basic
approaches have been: a supervised clustering approach, in
which the analyst selects areas of known cover types , each

set of areas belonging to one cover type is clustered sepa-
rately, and then the statistics for these areas are then
obtained with the aid of a computer; and the non-supervised
clustering approach, in which the entire training area is
subdivided into clusters by the <clustering algorithm and
each cluster is then identified by the analyst and given a
specific label. The statistics of each cluster correspond-
ing to a cover type or a subclass of a cover type are then

calculated. Fleming et al. (4,5) investigated several clus-

tering approaches and their effect on classification accu-

racy. Among the approaches they used were non-supervised
clustering, supervised clustering, modified clustering,
mono- (aggregate) cluster blocks, and multi- (class-condi-

tional) cluster blocks.

l2bere Performance Estimators

A key factor in the design of a layered decision algor-
ithm is the ability to predict how the algorithm will per-
form in terms of accuracy at every node. While optimizing
the performance at every node does not necessarily produce a
.globally optimal tree, it is still a very important and use-

ful step in the design.



Several performance (or error) estimators have appeared
in the 1literature. Again, we will not attempt here to
exhaustively list all the contributions made, but rather
will give an idea of how the research in this area has pro-

gressed.

Performance estimators can be divided into two main

categories:

Performance functions which have some sort f direct

relationship with the probability of error. Examples are

Parzen estimators (see (2)), the k-nearest neighbor error
estimator (see (6)). More recently, Mobasseri et al. (7)
published an error estimator that computes the minimum prob-
ability of error through use of a combined analytical and
numerical integration over a sequence of simplifying trans-
formations of the feature space. The results have been
shown to be similar to those obtained by conventional tech-
niques. However, the algorithm becomes computationally too
inefficient to use as the number of classes and/or features
increases. Moore, Whitsitt and Landgrebe (8) (see also
Whitsitt and Landgrebe (9)) developed a stratified posterior
estimator which, 1like Mobasseri's, depends oniy on a given
set of statistics. This was later used by Wiersma (10) and
both estimators (Mobasseri's and Whitsitt's) were compared
in (11) and found to give similar results, with Whitsitt's

algorithm being faster in some cases. The former procedure



uses a "deterministic" grid to sample the feature space,
while the latter uses an internally generated random data
base and assigns the feature vector to the appropriate class
via the maximum a posteriori principle. Both procedures

assume normal class conditional statistics.

Separability measures, most of which have only a sub-

tle, indirect, and often unknown, relationship to the proba-

bility of error. Various separability measures have been in

common use in remote sensing applications. Among these are:
Divergence (12), Transformed Divergence (13), Jeffreys-Ma-
tusita distance (14,15), Bhattacharyya distance (16) and the

Mahalanobis distance (17). (See list in (24).)

Several works have been reported comparing different
separability measures and their effects on performance. (See

(9,13,18,19,62).)

There are two problems with most of the above separa-
bility measures applied to remote sensing applications: (1)
ambiguity and (2) linearity in pairwise error. The term
ambiguity implies here that there does not exist a one-to-
one relationship between the value of the measure and the
probability of error. Linearity means that equal incremen-
tal changes in the measure imply equal changes in the proba-
bility of error, over the whole range. Whitsitt (9) devel-
oped a distance measure D = erf (/2B) where B is the

erf

Bhattacharyya distance and erf(-) is the gaussian error
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function. He found that the resulting measure is less ambi-

guous and more linear than the measure B.

Another key factor in the process of error estimation
is the choice of feature subsets. The problems here are

twofold:

1. As the number of features becomes large, it becomes
desirable to choose a subset of these features that
can adequately predict the accuracy. This selec-
tion process also can become expensive if one must
search through all possible combinations of the
feature set. It is desirable, therefore, to have a
priori knowledge of the importance of each feature
in relation to the probability of error. The
Karhunen-Loeve expansion (attributed to Karhunen
(20), and Loeve (21)) in pattern recognition liter-
ature has historically been used as a feature
selection technique. It has the advantage of pro-
ducing uncorrelated features (in theory, but the
features are actually approximately uncorrelated in
a practical K-L transformation). In addition, it
imposes an ordering on the features 1in terms of
importance in a representation error sense. As a
result, first feature is "likely" to be more impor-
tant than the second in calculating the probability

of error, and so on. More recently, O0ja and
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Karhunen (22,23) published two papers on the con-
struction of K-L expansions for pattern recognition
purposes that do not require the computation of any

covariance matrices.

The probability of error is not necessarily mono-
tonically decreasing as the number of features
increases. This is due to a peculiar phenomenon
that has come to be known as the Hughes phenome-
non. Hughes (25) found that with a fixed and
finite training pattern sample, recognition accu-
racy can first increase as the number of measure-
ments on a pattern increases, but decay with mea-
surement complexity higher than some optimum value.
He also reported that for unlimited training data,
this does not occur and the recognition accuracy
reaches an optimum only at infinite measurement
dimensionality. According to Hughes, if insuffi-
cient sample data are available to estimate the
pattern probabilities accurately, then a Bayes
recognizer is not necessarily optimal. Many papers
have since been published on this phenomenon, con-
firming it or trying to explain why it occurs (see
(26-42)). Thus, it appears that a successful
design should predict when and if such phenomena

occur.



12

1.2.3 Multistage Classifiers

In recent years, some work has appeared in the litera-
ture aimed at developing multistage classification algor-
ithms. There is much yet to be learned about such algor-
ithms, and no work has been reported claiming optimality (or

even close to optimality) of results.

In general, earlier work can be grouped into two main

categories:

Sequential classification methods. These can be found

in several papers and books (see, for example, (43-45)).
Basically, the method consists of observations made on fea-
ture measurements, one at a time. After an observation is
made, the classifier either reaches a final decision and the
process is terminated, or it makes another observation until

a final decision is reached.

Hierarchical classification methods. These are subdi-

vided into two categories:

1. Hierarchical clustering methods. Examples of such
work are found in Fukunaga (2), Dubes and Jain (46), who
present a semi-tutorial review of the state of the art in
cluster validity, and Lukasova (47). 1In general, hierarchi-
cal clustering is designed to generate a <classification
tree. The "root"™ node of the tree represents a collection

of samples (either a training data set or the entire sample
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set) and each terminal node represents either an individual
sample or a group of samples belonging to some class within
the set of classes in the data set. The method attempts to
divide the set of samples in each node into disjoint subsets
which form new nodes. Defined as such, the method is often
nonparametric and depends heavily on the ability of the
algorithm to find meaningful divisions of samples that cor-

respond at terminal nodes with meaningful classes.

20 Decision trees and criterion functions. Most of

the work done in multistage algorithms belongs to this cate-

gory. Often, a decision tree 1S Sb ST using an
optimization or criterion function that dictates the
structure of the tree. It is this kind of approach that

will be of greatest concern in this research.

Hierarchical methods differ from sequential methods in
certain important respects. While in sequential schemes any
class can be accepted at any stage of the measurement pro-
cess, 1in hierarchical schemes certain classes are excluded
from consideration at each stage. Also, sequential methods
impose a linear ordering on the features. In hierarchical
methods, features used along one decision path can be diffe-

rent from those used along another path.

In 1971, Nadler (48) tried to calculate error rates in
a hierarchical decision structure under assumptions of sta-

tistical independence among the members of the hierarchy.
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Even wunder such assumptions, the results assume "small"

probabilities of errors at any level.

Several heuristic methods of constructing tree designs
have been proposed in the 1literature. Some studies were
done using optimization methods to automate the classifier
design procedure, but the assumptions made were often too
restrictive. Meisel and Michalopoulos (49) in 1973 pre-
sented a two-stage partitioning algorithm for the design of
an optimal binary tree. In the first stage, a suboptimal
sufficient partition is obtained. The second stage optim-
izes the result of the first stage through a dynamic pro-
gramming approach. The method allows only for linear dis-
criminant functions to partition the space, certainly a

suboptimal and too restrictive condition.

In 1974, Wu et al. (50) reported on a decision tree
approach with direct application to multispectral data ana-
lysis. Several design procedures were proposed (one of
which is manual), with special emphasis on a heuristic,
machine-implemented approach. The optimality criterion used
is a weighted sum of computation cost and accuracy. Results
were presented which showed superiority in efficiency (but
infrequently in accuracy) over the conventional classifier.
The criterion function used, as it cannot predict beforehand
the structure of the tree below that node, assumes all the

nodes below the node under consideration are terminal nodes,
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and hence is necessarily suboptimal. Later papers have
appeared that have pointed to applications using this parti-

cular classifier (51,52).

In 1976, You and Fu (53) presented a linear binary tree
classifier that uses linear discriminant functions at deci-
sion stages with an application to multispectral remotely
sensed data. The procedure includes a grouping algorithm, a
separability measure, and an error minimization procedure
using the Fletcher-Powell algorithm (54). Again, the proce-~
dure is certainly suboptimal because of the assumption of
linearity. Results reported, though, show that this classi-
fier is much faster and more accurate than the maximum like-
lihood classifier with the same number of features. This is
due to the fact that the procedure uses different feature
subsets (with a restriction on their number) at each node,
compared with only one feature subset used in the one-stage

maximum likelihood classifier.

Kulkarni and Kanal (55) used dynamic programming and
branch-and-bound methodologies in the design of hierarchical
classifiers. The criterion of optimality they used is a
weighted sum of the probability of error and the average
measurement cost incurred in classifying a random sample.
The design assumes that the features used at the nodes are
statistically independent and that the decision at each node

is a function of only that particular feature observation,
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the design wusing only one best feature at each tree node.
Further, the design of the optimal tree assumes a very low
error rate for the tree, a very restrictive assumption since

in many cases a high error rate is specifically the reason

why a layered classifier was selected, i.e., to improve the
accuracy. Although the authors presented some methods to
reduce the complexity of their design algorithms, the exam-

ples they wused involve only a small number of classes and

features.

In 1977, Parkih (56) compared several classification
techniques of clouds, including hierarchical design. How-
ever, his paper offers no new insights or major results that

would help improve the state of the art.

Also in 1977, Sethi and Chatterjee (57) developed an
algorithm for the design of an efficient decision tree with
application to pattern recognition problems involving dis-
crete variables. A criterion function was defined to esti-
mate the minimum expected cost of a tree in terms of the
weights of its terminal nodes and costs of the measurements,
which then was used to establish the search procedure for
the efficient decision tree. The concept of prime events
was used to obtain the number of nodes and the corresponding
weights in the design sample. No optimality claim was made,
but the procedure was found to lead to the optimal tree in

most of the cases. The procedure uses only one feature at
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every node, and its applicability to remotely sensed multis-

pectral data is very doubtful.

In 1978, Breiman (58) presented a procedure for build-
ing a binary classification tree. He used a criterion func-
tion that is only a function of the parent node and the two
descendent nodes. He used one best feature at every node.
He also reported on another regression algorithm developed
at Survey Research Center, University of Michigan (59), in
which the criterion function tries to reduce the variances
of the two descendent nodes as much as possible from the

variance of the parent node.

Rounds (60) in 1979 developed a binary decision tree
algorithm, but again one feature is selected at every node.
The approach is a nonparametric one, based on the Kolmogo-

rov-Smirnov criterion.

Dattatreya and Sarma (61) in 1981 presented a multis-
tage binary tree "minimum-cost"™ <classifier, when general
cost functions are associated with the tasks of feature mea-
surements. The optimization of the binary tree is carried
out using dynamic programming. However, one feature is only

selected at every node.

In summary, most of the work done with multistage clas-
sifiers often imposed too restrictive assumptions or condi-

tions, such as using one feature only at each node, or hav-
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ing a 1linear discriminant function. Moreover, very few
results have been reported on situations where the Hughes
phenomenon occurs, namely, working with a limited set of

training samples.

The major contributions of this research are then:

1. The development of some theroretical results that
clearly show the dependence of the accuracy of the
estimated statisties of the classes under considera-
tion on the number of training samples used to esti-
mate the statistics of those <classes, as well as on

the number of features used.

2. The development of an error estimator which is par-
ticularly useful when the number of training samples
is limited, and which is suited for a binary tree
classification procedure. This estimator, which
allows the selection of a "near optimal"™ feature sub-
set at every node, has no restrictions on the number

of features that can be used at any node.

3. The incorporation of the above error estimator in a
binary tree procedure, showing the usefulness of such
a procedure in predicting the optimal features that
lead to the best accuracy that can be attained given

a fixed set of training samples.
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1.3 Summary of Contents

In chapter 2, some parameter considerations for a mul-

tistage binary tree classifier are addressed in detail. The

Hughes phenomenon is elaborated upon, and a technique known
as "sumultaneous diagonalization" is introduced. Feature
selection techniques are also treated. A data simulation

algorithm that is repeatedly used in the research 1is also

treated.

In chapter 3, an approximation algorithm to the proba-
bility of error is proposed that takes into account the

Hughes phenomenon.

Chapter U4 presents experimental results on real and

simulated data.

Finally, chapter 5 summarizes conclusions about the
sibudy’s Some analytical details, together with computer

listings and training data are placed in appendices.
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CHAPTER 2
PARAMETER CONSIDERATIONS
FOR

A MULTISTAGE BINARY TREE CLASSIFIER

2.1 The Hughes Phenomenon

One of the major needs for a decision tree classifier
originates from a dimensionality problem often referred to
as the Hughes Phenomenon (25). A considerable portion of
this research is directed towards understanding the Hughes
phenomenon. Figure 2.1 illustrates the phenomenon concep-
tually. In the presence of a limited training sample size,
the mean recognition accuracy as a function of the measure-
ment complexity (number of features for our purposes) exhi-
bits a peaking effect. Contrary to intuition, the mean
accuracy does not always increase with additional measure-
ments. Further, peaking of the curve shifts up and to the
right as the number of samples increases, disappearing in
the case of an infinite number of training samples (complete

knowledge of the underlying distributions).

Figure 2.2 suggests a concept for one possible explana-

tion of this phenomenon. Figure 2.2a shows a hypothetical



7211

P

Mean Recognition Accuracy

Measurement Complexity (Total Discrete Values)
log scale

Figure 2.1 The Hughes Phenomenon.
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graph of class separability plotted vs. dimensionality. As
dimensionality increases, so does class separability (a non-
decreasing function of dimensionality) until it saturates,

and any further increase in dimensionality does not have a

significant effect on class separability. But this is not
the only effect on the mean accuracy. With the presence of
a fixed, limited training sample size, any increase 1in

dimensionality necessarily results on the average in a deg-

radation in the accuracy of statistics estimation of the

elass distributions. Thus, conceptually, one should expect
a curve similar to that of Figure 2.2b.. Further, as the
number of samples increases, the curve should shift to the

right, i.e., for any given dimensionality, the larger sample
size should provide a better estimate of the true distribu-
tiense Assuming these two effects are the dominant effects
on accuracy, adding the two effects results in Figure 2.2c,
a curve similar to Figure 2.1. Based upon this concept of
the phenomenon, the solution to the problem 1lies in being
able to predict quantitatively how the number of samples
present affects the accuracy of the estimated statistics .
Especially in remote sensing applications of pattern recog-
nition methods, training samples are limited as ground truth
is often not present or difficult to get. Thus, the impor-
tance of the Hughes phenomenon becomes evident, as well as

the validity of this conceptual explanation of it.
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The Hughes phenomenon was studied by many researchers.
(See (26-42)). Hughes (25), who was one of the earliest to
introduce it and treat it in some detail, tried to explain
it from a nonparametric point of view. The explanation
given by Wacker and Landgrebe (62) is of another nonparame-
tric case, where the Euclidean distance measure is used for

discrimination among classes.

Several researchers (28-34) tried to study the effect
of limited training sample size and independence of measure-

ments on the recognition accuracy.

In 1979, Trunk (38) provided a simple example in which
he showed theoretically that the probability of error
approaches zero as the dimensionality increases and all the
parameters are known 1in a two-class problem, but it
approaches one-half as the dimensionality increases and the

parameters are estimated.

In remote sensing applications, where maximum likeli-
hood classifiers are frequently used, and where the assump-
tion of class-conditional multivariate normally distributed
data is invoked, not much work concerning the dimensionality
problem has been reported yet. Wacker and E1-Sheikh (40-42)
presented some papers dealing with dimensionality problems
for two-class Gaussian problems. Their results again show a

Hughes phenomenon occuring with finite training data.
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It then follows that any error estimator in a multis-
tage classification algorithm that can claim some optimality
in results from an accuracy point of view, should be able to
predict when/if a peaking occurs in the curve mentioned ear-
lier. It is this key problem that this research is attempt-
ing to solve, i.e. the development of an error estimator

that can accurately predict the Hughes phenomenon.

Working with multispectral data, one almost always has
to work with multiple feature measurements and multiple
classes. In this research, we propose a binary tree multis-
tage classifier. This means that any node in the tree is
either a terminal node or is further subdivided into two

nodes (with statistiecs corresponding to two classes).

The advantages of a binary tree procedure are the fol-

lowing:

e Working with two classes allows a theoretical
understanding of the problem. Many pattern recog-
nition results that apply to two-class problems
fail to do so in multi-class ones. This is parti-
cularly true in the "simultaneous diagonalization"

technique that will be introduced shortly.

2 Most feature selection algorithms used in pattern

recognition applications generally, and in remote
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sensing applications specifically, are optimal only
when applied to two-class problems. For multi-
class problems, a separability criterion israver-
aged over pairs of classes and thus is optimal only
in an average sense. Working with a binary tree,
then, should provide us with both convenience and

accuracy.

Working with multiple features, several properties are
desired in these features which will make further analysis

easier:

Uncoupled (Independent) Features. Uncoupling of fea-

tures from one another simplifies analysis a great deal as
it permits evaluating the effect of each feature separately

from other features.

Ordered Features. If the features can be ordered, or
at least approximately so, 1in terms of their effect on the
probability of error, then the process of feature selection

would be made easier.

Optimal Separability. The features should be optimal

with respect to the probability of error for two distribu-
tions at hand. Putting it in different words, the feature
subset should be tailored to the separability of the two

distributions.
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To this end, a technique known as a "simultaneous

diagonalization" (63,64) is discussed in the next section.

2.2 Simultaneous Diagonalization: Theory

~ ~

Let Zland 22 be the estimated covariance matrices for
classes 1 and 2, respectively. We seek a transformation

matrix A such that
AZA =1 AZA = A (2.1)
where I is the identity matrix and A is a diagonal matrix.

This transformation would uncouple the features, while
not affecting the probability of error because the latter is
invariant under linear transformations. We proceed to find
such a transformation as follows. (For more details, see

(2), pp. 31-35.)

Let © and ¢ be the eigenvalue and eigenvector matrices

of Zl’ respectively; then

-1 ~ -1 ~

0~ %p T I, ¢ 0 S = 7 (¢T21® = 0) (2.2)
LT - -L _

0 %% I. o 06 * =K K is a general matrix (2.3)
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Next, we desire to diagonalize K. To find eigenvalues

of K, it is necessary to solve the equation

IK - )\Il = 0 (2.4)

Replacing K and I in (2.4) by (2.2) and (2.3), we get

= 0 (2.5)

’5‘ = 0 (2.6)

-1
Since © ZQT is nonsingular, it follows that

_ = 0 (2.7)
I, = AL
or,
N (2.8)
_ -0
By Ly ”[

A1
So, only the eigenvalue and eigenvector matrices of 21 22

need be calculated.
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The eigenvalue matrix is then A , and the transpose of
the eigenvector matrix, AT, serves as the transformation

matrix.

The idea behind simultaneous diagonalization is to
transform the original features into a new space where the
features are independent and then choose a subset of these
features in the new space which is optimal with respect to
the probability of error. This is illustrated in Figure

2.3.

2.3 Feature Selection

Before proceeding to discuss the approximation algor-
ithms to estimate the probability of error, we digress

briefly to discuss how the features are ordered.

The literature offers many studies made on comparing
different separability measures and their effectiveness in
choosing the best feature subset (see (9,13,18,62,65)). It
appears that the Bhattacharyya distance is one of the most
suitable separability measures for distinguishing between
classes. Thus , it will be used as a basis for feature
selection. The fact that the features are independent
allows us to determine the effect of each feature on the

probability of error separately.
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The Bhattacharyya distance for two normal distributions

can be expressed as follows:

5 ( )
B=%(M1M)( )I(MM)+— : 12]

(2.9)

After the simultaneous diagonalization transformation,

however, B can be expressed as:
P 1(dli_d2i 1 1/ 1 5
- = e = = 3 2110
B E 4 Ai+ i 2 tn 2 L ¥y > ( )

where dij is the jth element of the transformed class-condi-

tional mean: Di = A Mi; and Ai is the ith diagonal element
of A.

Thus, it is clear that for every feature i, B can be
calculated separately. The feature with the largest B is

the best feature, the one with the second largest 1is the
second best, and so on. Also, the two best are the best

two, and so on.
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2l Simulation Algorithm

2.4.1 Need For A Simulation Algorithm

For remote sensing data analysis, several assumptions
are commonly made. These assumptions are usually that the
data are class-conditionally distributed multivariate normal
and that the data used to train the classifier are represen-
tative of the area of interest. This second assumption
actually has several parts. The assumption is made that in
the process of training, all classes present in the scene
are found, and all spectral subclasses of each <class are
also represented 1in the training data. Furthermore, the
parameters of the distribution of each subclass are also
assumed to be known from the training data. Each pixel is
assumed to come from one of the training classes, and also

is assumed to be entirely of one cover type.

In actual practice, these assumptions are not met. The
number of spectral classes 1in the area is not known and

clustering or some other method is used to determine the

number of subclasses, 1in addition to estimating the statis-
tics of those subclasses. Some of these methods also lead
to non-normal subclasses. In particular, the clustering

algorithm available through LARSYS truncates the tails of
the subeclass distributions and so leads to non-normal dis-

tributieons.



33

There are also questions relating to a single picture
element. A single pixel in Landsat data covers an area
approximately 80 meters by 50 meters. More than one cover
type may be present in this area and result in a "mixture
pixel"™ observation. It is not clear how the distribution of
the spectral response of mixture pixels can be related to

the distribution of the spectral response of "pure pixels".

There has been much speculation in the remote sensing
community as to the effect of the non-satisfaction of the
basic assumptions. Whenever new algorithms are brought
forth, the old question is raised again, indicating that
there is 1insufficient understanding of the interaction of
the real attributes of the data and the theory of the algor-
ithms. At times it 1is not clear whether a particular
result 1is due to aspects of the algorithm or to the extent

the data set deviates from the assumptions.

In testing new algorithms, deviations from the assump-
tions may obscure the action of the new process. One way to
clarify the situation 1is to apply the algorithm first to a

data set satisfying the assumptions.

Such a data set could be obtained artificially, through
simulation. The analyst could then know: how many classes
exist in the data; the true distributions of the classes,
including normality if desired; the observations could

really be independent; and no pixel would be a "mixture
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pixel™. New algorithms could be studied on such a data set
with the knowledge that any "strange" effects are indeed

algorithm rather than data problems.

In many cases where simulated data have been used in
the past, the data were too artificial, in the sense that
all aspects of the image were controlled, removing the
natural variation in object size, position, and relationship
which occur in real data. This limited the use of the simu-

lated data sets in testing new algorithms.

The natural spatial information occuring in multispec-
tral data could be retained in a simulated image by spa-
tially basing the simulation on a classification. It would
be even better to base the simulated data on a digitized
"ground truth" map if the spectral characteristies of the

cover types were known. By basing the simulation on a clas-

sification, the number of classes, their exact distribu-
T ilon'sy, and the class of each pixel in the area are known.
If the classification was sufficiently accurate, then the

spatial information held in the classification map will be
close to the actual cover type map and actual spatial con-
tent of the original data. For each pixel in the area, a
random vector distributed according to the pixel's <class
statistices could be generated. This becomes the simulated

data vector.
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This simulated method was reported in LARS Technical
Report 070980 (66), and the program will be used for testing

the error estimator developed.

2SR Statistical Background

From the classification chosen as a basis for the simu-
lation, the following are known: the number of classes K,
the set of classes (wi ,  di=15cc.K ), the elass distributions
(f(tnﬁ,i=1,...K), their means and covariances ( Mg andZi .
iz1,...K ), the number of channels p, and the class of every

pixel in the scene.
From classical statisties:

C10) S Let Xeipxl,  A:pxp, and bipxil:

If XN (0,I), then Y = AX + bvN (b, AIDAT = aah)

(where I is the identity matrix having dimensionality
p).

(2) Let I be a symmetric, positive definite matrix. Then
there exists A, such that

1
IV (A is denoted f?)

To simulate a pixel which was a member of class i in
the base classification, N(O,Ip) (the random vector for each
pixel is independent of other vectors) is generated. (See

L
Appendix A.) Next Y = E;x + 1, is calculated; it is then a
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random vector from the population N( My ):1_). This process is
repeated for each pixel of the base classification and the
random vectors thus generated are stored appropriétely,
i.e., so as to correspond to their simulated spatial loca-

tion.

The program requires as an input a <classification map
stored on a results tape. The results tape has the class
statistics for p-dimensions also stored on it. The program
then, uses the results map and the stored statistics to gen-
erate a p-dimensional data set, which is stored on a user

specified output tape in LARSYS format.

Appendix A provides a mathematical derivation related
to the generation of normally distributed samples. Appendix
E provides a Fortran program listing for the simulation pro-

gram.

With all the preliminaries discussed, we are now ready

to begin our discussion of the error estimator algorithm.
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CHAPTER 3
PERFORMANCE ESTIMATOR:

APPROXIMATION TO THE PROBABILITY OF ERROR

3.1 The Likelihood Function

As mentioned earlier, our goal is to develop a perfor-
mance estimator that can predict where the peak in the
Hughes curve occurs. Some of the most serious difficulties
facing researchers in trying to estimate the probability of

error in multidimensional analysis are:

1. The need ¢to carry out a multiple integration on
the multivariate probability density function. Most
often, this integration 1is almost impossible to
carry out analytically, and numerical integration

that is often costly has to be perfomed.

2. The measurement features are often correlated,
making it difficult to assess the importance of each

feature separately on the probability of error.

3. In most of the cases, one has to deal with multi-
class problems (greater than 2) which further com-

plicates multivariate probability density functions.
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It would be much easier, therefore, if one could work
with a function that is one-dimensional but carries all the
information present. Fortunately, since we are looking at
two classes at a time in a binary tree procedure, such a
function does exist, and is called the likelihood function

(minus the log of the likelihood ratio). See, for example,

(66) .

The likelihood function, denoted h(X), is given by:

h(X) = =1n p(X/w)) / p(X/u,) (3.1)

where
p(X/wi) is the probability density function of

X given Wy o

In remote sensing applications, the assumption of mul-
tivariate class-conditional normal distributions is almost

always invoked, and will be consistently used in this work.

Using this assumption, p(X/wi) becomes:

p(X/wi) = 1 exp (—‘/z(XT—MiT )Z;1 (X—Mi)) (3.2)

(2m)P/2 I : |’

]
i

where M. is the mean vector of class i.
i
. is the covariance matrix of class i.
1

p is the number of dimensions.
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In practice, Mi and Zi are estimated from training

statistics and are replaced by Mi and Zi.

The Bayes decision rule for minimum error may be writ-

ten as follows:

P(w, /X) 2 P(w,/X) > X e (3.3)

The a posteriori probabilities P(wi/X) may be calcu-
lated from the a priori probabilities P(wi) and the condi-

tional density functions p(X/wi) using Bayes theorem, i.e.

P(wi/X) = p(X/w)) P(wi) / p(X) (3.4)

Since p(X) is common to both sides of the inequality

of (3.3), the decision rule can be expressed as:

W
p(X/w,) P(w,;) < p(X/v,) P(w,) =+ X ! (3.5)
Yo
P(w,) w
2(X) = Py 2 . xe : (3.6)
p(X/w,) P(w,) )

h(X) can then be written as:
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T -1 T -1
h(X) = -1 2(X = L(x- - -L(x- -
(X) n (2(X)) 5 ( M) I (X Ml) 5 (X M2) I, (X Mz)
|2, .
5 - > 1n Pty + X e 4 (3.7)
’32, P(w,)
Y2 Y1
~
In practice, since Mi and Zi are replaced by Mi and

-

Zi, h(X) becomes (after moving 1n P(wl)/P(wz) to the L.H.S.):

- & L 2.3 . AP SN -
h X = 1 N — = - L - -
® = w0 T 3T en) - wxen) T 5 xemy)

- 3 w
+i lnl.iﬂ - P 0 4 xe |2 G

I EJ 1;(“72) v,

The Bayes test for minimum error reduces then to look-
ing at the value of E(X), assigning measurements with posi-
tive values to class 2, and measurements with negative

values to class 1.

Note that ;(X) is a one-dimensional random variable.
The problem then is to know, or estimate, the probability
density function of ;(X). Once that is known, the proba-
bility of error can be obtained by carrying out a scalar
integration. Figure 3.1 shows the probability density

functions for h(X) given either class 1 or 2.
The probability of error can be calculated as:

€ = p(error) = p(error/w;)P(w;) + p(error/w,)P(w,)

(359)
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Let the domain or decision space of X be divided into
regions Fl and Fz. Then, if a sample belongs to LET an

error occurs whenever Xerz. Similarly, if a sample belongs

to w_, an error occurs whenever Xsrl. Thus

g =P (x5r2/w1) P(wl) + P(Xsrl/wz) P(wz) (3.10)

In terms of the probability density functions of

h(X/w_ ), this becomes:
il

e = P(wl) jfp(h/wl) dh + P(wz)J[ p(h/wz) dh

0 0
(3.11)

1 4 e,

The probability of error is then the area under the
two curves in Figure 3.1 multiplied by the prior probabili-
ties. The objective is to develop an algorithm which will
approximate the class-conditional probability of ﬂ(X), and

hence, the probability of error.

F el Performance Estimator

Fukunaga and Krile (6l4) developed an algorithm that
approximates Q(X). This algorithm assumes there are two-
class multivariate normal distributions, and was tested

using one eight-dimensional simulated data set.
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The algorithm, however, assumes the training samples
are enough to reasonably estimate the true statistics of
the distributions, and hence does not take into account the
Hughes phenomenon. Put in other words, in situations where
the training samples are few and do not reflect the true
statistics of the distributions, the algorithm will treat
the statistics obtained from the training samples as a
"perfect" estimation of some "wrong" distributions, when in
fact they are an "imperfect" estimation of the true statis-

tiecs.

It is this algorithm, proposed by Fukunaga and Krile,
that we will use and modify to take into account the Hughes
phenomenon. Therefore, it seems appropriate to explain the
algorithm in detail, and then discuss the modifications

made to it.

3201 The Normal Assumption

~

Looking at equation (3.8), since h(X) is a quadratic
function in general of a normal random variable X, it can-
not itself in general be normally distributed. However, in
the case where le 22, ﬂ(X) becomes a linear function of X

and hence is normally distributed.

In most cases, however, Zl # 22. Fukunaga and Krile

still tried to assume that h(X) is normally distributed.
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An algorithm was developed and tested in this research
under the assumption that ;(X) is normally distributed
(although Zl #22 ) but results showed it to be a very poor
approximation of the probability of error and hence it was

not further analyzed.

3.2.2 The Modified Gamma Distribution Assumption:

Fukunaga and Krile Version

Consider ﬂ(X) as given by equation (3.8). Applying
the simultaneous diagonalization technique described ear-
lier, §l is transformed to the identity matrix I, and £2 is
transformed to a diagonal matrix A . The transformation
matrix is denoted AT, or the transpose of the eigenvector

matrix A.

Without losing generality, we assign the origin of the
coordinate system such that:

~ ~ Ca

ml =0 and m2 = Ml - M2 (3.12)

With Xew h(X) can be written as another function of

1 )
Y, where Y:ATX, as follows:

>

h(Y/u) = YTy —(v-)F A7Y (Y-D) + 1m l—ll
A | %, |
- 2 1n A( )
P(w
X - 2

where D = A mj.
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Since the features are now uncoupled, this can be
written as:
-~ p - 2 ~ P(w)
h(Y/w,) = = (y? - é (y.-d.)” -1n 2,) - 2 1n e
1 . i o Tl i .
i=1 A,
i P(wz)
A ~9 (3.14)
E 1 4, 3= di :
= I ((-=) (y; + = = (= + 1o 1A;))
i=1 AL A,-1 A.-1
- i i
P(wl)
- 2 1n ———
P(wz)
where p is the number of dimensions.
éi is the ith element of vector D.
Now, we have h(Y/wl) in terms of p independent Gaus-
sian random variables Yo each of which has zero mean and

unit variance with respect to class wl.

Defining a new transformed variable Z and a trans-

~

formed difference- of-means vector V as follows:

~_1 ~
z = (A7% AT (%-m) (3.15)
v o= (K Ay m, = 8- %D (3.16)
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h(X/wz) can be expressed as a function of +the new
variable Z and v by substituting (3.15) and (3.16) into

(3.8) as follows:

B o
- = xF - 3t 1 2 1 1
h(z/w,) = (Z+v) p (Z+v) - 2°Z + 1ln = - nh—
2 lZ P(wz)
(3.17)
Again, since the features are uncoupled, we can write
ﬁ(Z/wz) as follows:
P(w,)
- P ~ 9 2 ¢ 1
h(z/w.,) = I (r.(z.,4v,)" - z; - 1n A;) - 2 1n %
2 i=1 it i i i St P(wz)
a1 o~ ~
P . *? 8z i 5
= I ((x,-1) (z.+ < Y —— + 1n X.))
i=1 + o =1 i.~1 *
T i i
1;(w )
- 2 1n = 1 (3.18)
P(wz)

Again, we have an expression in terms of p independent

Gaussian variables z _ , each of which has zero mean and unit
2l

variance.

Next, we define the following quantities for conveni-
ence:
a..=1- 1/x,. (3.19)
1i i
b= d. /(3 ,-1) (3.20)
14 i i
a = &, = 1 (3.21)
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Al/ ~ - _
b,.= 27 a /Oy D (3.22)
1 5 I 1
P . 5w . . (3.23)
C= I (1n A, + d./(x -1 ’
o1 i i ( i ) + 2 1n P(wl)/P(wz)

Substituting equations (3.19)-(3.23) back into equa-

tions (3.14) and (3.18), we get:

- P
R(U/wp) = T (ay Gy o+ b, )0)- ¢ (3.24)

(3.25)

h(z/w,) 21 (%3 21

Referring from now on to Y and Z as &, and to Y and
zZ_ as g,, we find that h(&/wl) and h(é/wz) have the same
il 1

functional form, except for the values of a;;,b;;, ay;, and

b ..
21

Theorem 3.1

TRX = (xl,....,xp) where the x, are a sample from a
Normal(O,oz) population, then the random variable V =
Pa2 2 2 : R
rx7 /0° has a xp, or chi-square, distribution.

: 2
i=1
Proof:

See (67), p. 16.
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Theorem 3.2

If sl,....,s are independent random variables, then
the density of their sum sl+sz+...+sp equals the cohvolu-
tion of their respective densities.

Proof

See (68), p. 189.

Examining equations (3.24) and (3.25), shows that the
density functions of ﬁ(E/wl) and ﬂ(i/wz) can be obtained by
convolving the densities of p non-central (because of the
b and the b2i terms) x2 variables having multiplicative

11
constants ali and aZi’ and adding a shift parameter C.

The density of h(g) is divided into three parts:

pkr 9
= 3.2
Vir 8 e (Bpg ¥ Pyy) for 8., 2 0 (3-20)
a, .,.> 0
ki-—
Pys 2 7
v, = I a, . (E,. + b_.) for a,_ ., < 0 (3.27
ks a % 0 kj kj kj kj
kj
- ~ B g s - (3.28)
C = T 1 + = .
L (1n Ai di/(Ai 1) + 2 1n P(wl)/P(WZ)
= + =
(p Prr T Prg) (k= 1,2}

The density function of Vkr’ pkr(h), is the convolu-

tion of pk densities of squared Gaussian variables having
r

multiplicative constants. All pk densities lie above the
r
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positive h axis with ak%'O. Similarly, the density func-

tion of V (h), is the convolution of p, densities of

ks’ Pks
squared Gaussian variables with multiplicative constants.

All Pre densities lie on the negative h axis with ak; Qi3

A gamma density function is given by:

~1 =N
By n " AP xP7l M yr(p) (3.29)
?

Let k be a positive integer. With p=1/2k, and x =1/2,
the gamma density g(p,A») 1is referred to as the chi-squared

density with k degrees of freedom. (See (67),p.13).
Theorem 3.3

If Xl,....,X are independent random variables with
n
gamma distributions (pl,A),...., (p ,2), then Y:X1+....+Xn
n
has a gamma distribution (p1+...+p e
n

Proof

See (67). p. 15.

Since what we have 1is the summation of chi-squared
random variables (special form of a gamma distribution),
both pkr(h) and pks(-h) (pks(h) reflected to the positive
side) can be reasonably approximated by a general gamma

form, especially for large nkr and n, , as follows:

ks
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hu e—h/B
g(h) = Ho2 0
< Bu+1 IT'(a+l)
(3.30)
0 h <0

The parameters o

mean

n and the

and B can be determined so that the

: 2 . . 7
variance o of the "true " distribution

match those of the approximation.

Next, we calculate the expected values nkr and ﬂks of
i 2 2
Vkr’ and Vks’ and the variances okr and Uks.
P
kr
2 a > 0
= + ki —
Vir 5 ag (Epg ¥ Pyy)
a..> 0
ki-
pkr 2 2
— S .
- < qyi (Ekl - bk B )
a,.> 0
Jed—
. Prr 2
= = 1 +0 + b .)
E(T, ) = mg z ( ki
a. .> 0
ii—
or,
= pkr 2 (h)
- f
Myr z a, s (1 + bki) OT Py . (3.31)
a..> 0
ki-
(Ek, has zero mean and unit variance)
i
Similarly,
= 1 + b, . for 3.32
"ks f g ey Pks (

0
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P
E(Vz)-E( T l;r (g, .+b )2( +b )2
kr) 2ki k3 tkiTPki 357 Pk
a, ., a > 0
ki kj —
P
kr
B 2 2 3 2 2
= E( L oA By ¥ 8 by By +6 by B
a, .> 0
ka —
3 4
+ 4 bki Eki + bki)) + 0

( The zero term comes because gki is independent from

Ekj and hence they are mutually orthogonal as E(Eki) =Y
P
kr
- 2 - & (3.33)
. aki (3 + 6 bki + bk )
ki= 0
where E(Ezl) 1.3 e o(n-1) for n even
0 for n odd
P
Ez(v)= zkr a2(1+b2)+0
kr A ki ki
ki— 0
P
kr
= o) a2.(1+ 2b2. +bl‘.) (3.34)
ki ki i
a .> 0
ki-
Yar (Vo ) =6 = BLV- ) = E= (V. )
kr kr kr kr
P
kr
_ 2 2 (3:535)
9, ) f . aki(l + 2 bki) for pkr(h) ,
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Similarly,

pks
S 2 2 £ 3.36
O = 2 I akj(l + 2 bkj) or pks(h) (3.36)
aij 0

For a random variable h, which has a gamma distribu-

tion with parameters o and B, (See equation (3.30) ), then

E(h) = (ot 1)8 Yar (B) = Lot 136" (3.37)

(See (67), p. 44)

Therefore, O aks’ Bkr’ Bks’ can be calculated as:
L, 2 =2 .
o -(nkr / Ot r ) -1 (5.38)
a2 =
“ks _(nks / %%s o (3.39)
B - /A 3.40
kr kr Tkr (3. )
- / " (3.41)
8ks - oks nks :

The density function p(h/gi),i=1,2, which is our final
goal, is then the convolution of two gamma densities with a
constant shift: one is distributed on the positive side of

the h-axis, and the other on the negative side.
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However, the convolution of these two gamma
densitities is hard to obtain in an explicit mathematical
expression, because in general, o is not an integer. Since
we do not favor a numerical integration technique for cal-
culating the error rate, a "modified " gamma distribution

is proposed as follows:

(h—c)Y e_(h—c)/6 for h > ¢

y+1

)

g” (h) =
{ T(y+1)

(3.42)

\ for h < ¢

Yy = 0 or 1

In other words, Gamma density curves are roughly cate-
gorized into two types: one is exp(-h/B), and the other is
h exp(-h/B), depending on whether o obtained by (3.38) or
(3.39) is larger than or smaller than a threshold value of
0.35. (The threshold value of 0.35 is a compromise value,
chosen in an attempt to match the maximum value and loca-
tion of the maximum value of the gamma density to the modi-

fied gamma approximation. It is further explained in

(64)).

The procedure proposed by Fukunaga and Krile, then, is
as follows:

- - "2 ~2 .
1) Calculate Ny ' Meer Yk ks from equations

(3.31),(3«32);(3.35), and (3.36)
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-
2) Czalculate @y and T form equations

(3.39)‘
3) ¥,,= 0if a %0.35, and Y, =

Similarly forYkS .

4) Calculated, , &, and ¢, _, €. by

equations: (modified forms

(3.38)-(3.41))

- 2
_ (nkr - ckr) 1
Ykr "2 B
O%r
- 2
_ (nks B cks) -1
Yks ;2
ks
5. = o / (n,_ - ¢ )
kr kr Txr Ckr
5. = o2/ (n._ - c,)
ks 0ks nks Cks

(3.38)

and

ifakr; 0.35-

the following

equations

(3.43)

(3.44)

(3.45)

(3.46)

Equations (3.43)-(3.46) are the same as (3.38)-(3.41),

except for the shift of the mean Cur OF Cg -

P
The convolution of pkr(h) and pks(h), q((h),k=1,2, can

be obtained as an explicit expression. The result is

(See (64) for details)



8 Ykr Yks
p () = ks __t . (Ykr+vks)Okr RILI
+
(e 5kg)Ykr 1L ks Spr ¥ Oks
4 for t £ 0
5 Yks Ykl’
kr t ., (Ykr+ Yks)®ks ot/ Ky
\ Yks+1
5, +
( kr Gks) 6kr 6kr+6ks
for t 2 0
(3.47)

Defining the distance d as
d = C - (e, = cks) (3.48)

=
We can find e, by integrating pl(t) form d1 to~, and

*
e, by integrating pz(t) from -« to d2. The term dk brings

2

the shift parameter C back ino the picture, and also
accounts for the displacement of the (h/wk) approximations

by ¢ and c In general,

kr ks*®
Sy

DF(d. ) = p, X (t)dt =

( . Ykr+1 4 . Ykis 4. /6

- ks

( ks > - Kk, 4 (Ykr+ Yks) Skr Jk . a0

Sxe + Oks ks Skr + ks
< s Yks+lp Ykr

8 —de 15
1~ 4F§ k , ;4 (Ykr+ Yks)Oks o et kr a, 20
kr ks Skr Bijer T Difea

(3.49)
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* ~
where D (dk) is the approximation for Prob(h/wk<O).

Thus, the approximated values of recognition errors are:

]
|

-~ *
= BP(wy) (1 - D (4y)) (3.50)

- *
P(w,) (D (d,)) (3.51)

o
I

3.2.3 Proposed, Modified Algorithm

Figure 3.2 shows a flowchart of Fukunaga's and Krile's
algorithm. The algorithm assumes that the training statis-
tics are an accurate representation of the true statistics
of the two distributions. This being the case, the proba-
bility of <correct classification that the algorithm pro-
jects 1is monotonically non-decreasing as a function of
dimensionality. It is this drawback in the algorithm that
we are trying to correct such that the algorithm would take

into account the number of samples used for training.

Looking back at the calculation of the parameters of

the modified gamma distribution, we see that all of them

depend on two parameters, e and Op,s» OT the mean and vari-

ance of h. If these parameters are inaccurate, then all of

the other parameters will be affected.
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Do Simultaneous
Diagonalization to
Get D, A, A

Order Features
Using Bhattacharyya
Distance

‘ Do [ =1, Number of Features )

Calculate Parameters
0f Gamma Distributions

n, o6, a, G’C

Calculate Probability
of Error Using
First I Dimensions

I

Continue )

({
\
‘ Stop ’

Figure 3.2 A Flowchart of Fukunaga and Krile's
Algorithm.
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We propose to look at the way these parameters, parti-

cularly Oi and 0%, are distributed as a function of the

number of training samples. We then want to incorpbrate
a A

that information in our estimation of 91 and Ug, such that

the algorithm has a mbre realistic picture of what the

training samples represent.

~

Estimating the probability density function of 01 and

%y is by no means an easy task. For the amount of informa-
tion that we have, such an estimation is very involved and

impractical. A discussion of the difficulties one faces in

attempting such an estimation is found in Appendix B.

52
We propose instead to look at the variances of 04 and

~

%
99, and then incorporate that information in our estimation

of these parameters.

Let us look at © (Var (h/w;)) and dz (Var (h/wz)).

17 2’
From equation (3.35), (or (3.36)):
i P 2 2 .
oi =2 1 &)y (1 + 2 byy) (3.35)

Substituting for ajj and byy by their values from

(3.19) and (3.20) in (3.35), we get:

_n 2 g T (3.52)
(1 = 1/2)° (F + 2 4 00, -1)%)

After multiplying, this reduces to:
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- P A ~9 ~9
2
o 2 E (1 - 2/Ai + (2 di + 1) /Ai )

In matrix form, this can be written as:

af =2 (tr (1 - A2+ 20T (i7H2 p

Or in terms of the original distributions:

<9 Sl & 2ap Sl 2 2eil 2
gy = 2 (tr (I - zz zl) + 2 m, I, I, I, mz)

(See (6U4)).

Similarly,

A9 P 2 2
U =
5 =2 Ioay;, (1+ 2 Byl
i=1
= = (A, - 12 (1+23 3 /(A.-1)2 )
i=1 i i i
p ~ ~ ~
=2 I (A +2(d, -1)r, + 1)
i=1 * *

-~

In matrix form, 0, can be written as:

‘2 & o~ -~ -~
o, = 2 (tr (A - 1)% + 2 pTa D)

(3.493)

(3.54)

(355)

(3.56)

(31.57)
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Or, in terms of the original distributions:

_ ~=1 = 2 “T 2-1 2 =2-1 -
o5 2 (tr (z1 I, - I)" + 2 m, I, 22 I m, ) (3.58)

(See (614)).

A A

2
In order to calculate the variances of £ and 9,,

make the following assumptions:

1. The original and transformed means, Ml,Mz, and D

are assumed to be constant. Experience has shown

that one can approximate first- order statistics

with a relatively few number of training samples.

- ~

2. 21 and 22 are independent. This is to say that we

will ignore any relationships that might exist

between the two classes.

Having assumed the above, the results are: (See

Appendix C for the complete derivation)

. P
vere2) =43 (L4t 8 ) _afs e 8
g=1 % Ac B3 2 12 A\ 2 13
2 2 2 2
8 32 48 48 64 - Bd N Ehde S eds
b, = ¥ = + — + o5 =
n2 nl 2 nln2 nln2 n1n2 Al Ro nl 2 n
3242
N + 1L (8 , 8 , 128 40 _ 40 _ 48 48 | 512
n n -1




2

P zg e e A A L (Bﬁ_ 7 o

nln2 nlnz nznl n1n2 n1n2 nlnz 1 )

1 2 12 12 172 2 172 12 172
+4d;(;2_+i+5_(2)+ 24, 48, 88 963) (3.59)

il g B, By R, ns n,n; n;n,
. P
Var(o3) = 4 & | A} ni+-8—+12n8+4—2+ig—)+4—§+—1‘—§-+5212
i=1 1 Uy ) ny nj nj n; nin,

p S22 . 136, 36, 396, 2212 . 2;13 . 2:33013. il d%(as_

b i T e T T TS o B S o TS T B R 1
+ni+%+4_g+ n6:: N 2256 N 26 +i%+ 2388 . 32522 . 32843>

2 n2 nl = nlnz nznl nl nznl n1n2 nznl
-<_4+i+%+%+ 32, 48, 48, 64N\, 50 (i

q By nj nj nity n,nj nin, njnj 1 oy
T +2du<i+i+4_g+2i +ig+§8+g6>

f2 T2 1 fz mp Wtz 8 . myn, TRy

2 4 12 8 16
- 442 (— + = + + = +
i\n, n, n,n, ni nin2> (3.60)

Note that Var(;i) and Var(ag) are inversely propor-
tional to the number of training samples used to estimate
the statistics of classes 1 and 2, and directly propor-
tional to the number of dimensions. In other words, as the

number of training samples increases, the variances of our



62

~ ~

: 2
estimates of 9 and 0, decrease, as expected. Also, as the
number of dimensions is increased, the variances of the
estimates increase.
Since we do not have the probability density functions

of Gy and 02, we want to think of a reasonable way to

incorporate the effect of the number of training samples

2 o2
into our estimation of 0; and 0, . We claim that a better
2 2
estimation of the true variances o7 and o), consists of our
22 a2
estimation of these variances, 0; and 0, , plus some multi-

plicative factor of the standard deviations of these esti-
mates, namely the square roots of Var(ol) and Var(Gg), that

were calculated above.

This multiplicative factor was chosen empirically.
Experimental results in Chapter 4 show that the variance of
the probability of error generally increases with increas-
ing dimensionality, especially in the presence of a very
limited training data set. Results also show that the
probability of error is inversely proportional to the num-
ber of training samples. Moreover, it is very sensitive to
the number of training samples in the cases where that num-

ber is not much greater than the number of dimensions.

Based on the above observations, the following empiri-

cal formula for the multiplicative factor was used:

M.F. = 2 p2/(n1. nz) (3.61)
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where p is the number of dimensions

n1 and n, are as before.

The new procedure to calculate the probability

error, becomes as follows:

1)

2)

3)

4)

5)

6)

eral

o
ks’ %kr’

(3.32), (3.35), and (3.36)

Calculate nkr’ %s®

-~

Update 02 and 02 as follows:

kr ks
= L 2 ~2 %
Oy (new) = Oty (o01d) +(2p /“1°“2)' (Var(okr))
52 - 1d) #(2p . esin)s (Haxlos ))>
Oke (new) = ks (o0ld) p /n;.n,). s

Yer 1 if a2 0.35, and Ve = 0 if o < 0.35.

Similarly for Yis

Calculate § 5 O , and ¢, , c from equations

kr ks kr
( (3.43) - (3.46) ).

ks’

= *
Calculate Py (t) and D (dk) from equations (3.47)
and (3.49).
Calculate the probability of error from equations

(3.59) and (3.60).

of

from equations (3.31),

We are ready now to procced to Chapter U4, where sev-

experimental results are shown.
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CHAPTER U4

EXPERIMENTAL RESULTS

4.1 Introduction

Some results on feature selection techniques will be
presented first. Next, several experimental results illus-
trating the Hughes phenomenon are shown. Results comparing
probabilities of error predicted by the proposed algorithm
as a function of dimensionality as compared to experimental
observations are then presented for aircraft and Landsat
data. Results are obtained for both real and simulated
data. Finally, two binary tree classification procedures
that make use of the algorithm are presented to illustrate

the usefulness of the procedure.

The Bayesian decision rule with assumptions of 0-1 loss
funetion, equal a priori probabilities , and multivariate
normal distributions is used as the decision rule in all

experiments when classification is involved.

Detailed training and test field descriptions for all

the experiments conducted are found in Appendix F.
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4,2 Experiments on Feature Selection Techniques

In this section, some experiments on different feature
selection techniques are presented. The purpose of conduct-
ing these experiments 1is to choose an effective feature
selection technique, particularly when dealing with a small

number of training samples.

Experiment 4.1

Two classes of wheat and corn are selected from multis-
pectral scanner (hereafter referred to as MSS or aircraft)
data of the 1971 Flightline 210 from the Corn Blight Watch
Experiment, and classified. The data was collected on
August 13, 197 1. Part of the selected data is used for
training and a much larger portion is used for testing. The
number of features used for classification varies from one
to twelve, and the number of training samples for each class
is chosen such that it is much higher than the number of
features (265 samples for wheat, 569 samples for corn). A
principle components (Karhunen-Loeve) transformation is
applied to the data, and then three feature selection tech-

niques are compared:

1) In the first feature selection method, the features
are ordered according to the largest eigenvalues
resulting from the K-L expansion. This method,

referred to hereafter as the K-L ordering method,
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assumes that the best feature is that which corres-
ponds to the largest eigenvalue of the mixture covar-
iance matrix of the whole data set, the second best
corresponds to the second largest eigenvalue, ...etc.
This ordering then imposes the condition that a fea-
ture subset with lower dimensionality is always a
subset of another with higher dimensionality. Tihe
method then depends on the eigenvalues of the mixture
covariance matrix, and ignores any among-class vari-

abilities.

2) The second feature selection technique method is
referred to as the Transformed Divergence method
(13). The transformed divergence, Qr, is defined as

follows:

D_ = 2000 (1 -D/8

T ) (4.1)

where D is the divergence of two normal distribu-

tions, and is defined as follows (12):

D = 7 tr (21—22)(22 —Zl )
+ 5 (Ml—Mz) (£,7+L, ) (M, Mz) (4.2)
For a given dimensionality, the method chooses the

feature subset with that dimensionality which gives
the largest value of Dq. Unlike the K-L method, a

feature subset of lower dimensionality is not neces-
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sarily a subset of another with higher dimensional-
ity. This method is applied to the data after it has

been K-L transformed.

3) The third feature selection technique method used
is the Bhattacharyya distance (16), defined by equa-
tion (2.9). In this method, a simultaneous diagonal-
ization technique 1is applied to the covariance
matrices of the two classes (after a K-L transforma-
tion of the data), and the best feature is then
selected as that which corresponds to the 1largest
value of B as defined by equation (2.10). The second
largest is that which corresponds to the second larg-
est B, and so on. As in the K-L method, a feature
subset of lower dimensionality is always a subset of
one with higher dimensionality. The transpose of the
eigenvector matrix obtained is then multiplied by the
observation vectors to transform the data, the mean
vectors and the covariance matrices are transformed,

and the data classified.

Results are shown in Figure 4.1, which plots the recog-
nition accuracy (P..%) as a function of dimensionality. It
is seen that of the three methods, the transformed diver-
gence one gives the poorest performance. The K-L method is
better, but the best method is that obtained from the Bhat-

tacharyya ordering, which saturates at a very low dimension-
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Experiment 4.1 Using Three Feature
Selection Techniques.
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alityl Note that as dimensionality increases, the three
curves start approaching each other, until they all coincide
when all features are used (The probability of error is

invariant under any linear transformation).

Experiment 4.2

In this experiment, 20 samples each of wheat and corn
are chosen randomly from the training samples of experiment
4.l. The test samples are the same in both experiments.
Again, the same three feature selection techniques elabo-
rated upon above are used. Classification results are shown
in Figure 4.2. Unlike the results in experiment 4.1, the
Bhattacharyya ordering here gives the poorest results.
Further, it does not exhibit a peaking effect, an effect

that is expected when working with such a small number of

training samples. The transformed divergence ordering does
much better and does exhibit a peaking effect. However, it
has a lot of fluctuations. The K-L ordering, on the other

hand, while giving slightly poorer results than transformed
divergence at low dimensionality, is better than the other
two techniques at high dimensionality and has less fluctua-

tions.
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(after K-L expansion
Q0 " of whole data set)
| / —-- Bhattacharyya
e ! (20 samples /class)
O 86t / !
a® I !
g === /
82 o I II \\\ 'I'
|f N
1
781 | !
!
1
\ I’
74t AN
\\\ ',
\ ”
A 1 A 1 't "y A e A i i A
i 1 2 3 4 ) 6 7 8 9 10 11 12
Best n Channels
Figure 4.2 Classification Results of Data
in Experiment 4.2 Using Three
Feature Selection Techniques.
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Experiment 4.3

Another two classes, corn and forest, are selected from
the same data set described in experiment U4.1. Again, 20
samples per class are chosen randomly from a larger set of
training samples, and the three feature selection techniques

are compared. Results appear in Figure 4.3

Again, we notice that the Bhattacharyya ordering does
poorer than the other two techniques, and does not exhibit a
peaking effect. Transformed divergence gives better
results, but again has a lot of fluctuations. The K-L ord-

ering is superior to both, and has less fluctuations.

It should be noted again that the K-L ordering we used
is based over the full data set. It is dependent on the
mixture covariance matrix of the full data set, and thus
ignores any between class variabilities resulting from dif-
ferences between class covariance matrices. Because it is
always dependent on the full data set, the number of train-
ing samples used to estimate the mixture covariance mtrix is

almost always large, and hence a good estimate is obtained.

The Bhattacharyya ordering used, on the other hand,
although it takes into account between class variabilities,
depends heavily on the number of training samples used to
estimate the individual covariance matrices of the classes

at hand. Thus, as the number of training samples decreases,
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poorer estimates of the covariance matrices are obtained,

leading to poorer transformations.

It appears that the transformation obtained from the
simultaneous diagonalization technique is very sensitive to
the number of training samples wused to estimate the statis-
tics of the classes at hand. While it produces superior
results when there are enough samples, it fails to do so

when the training samples are limited.

Indeed, Wu (50) published results in which he showed
that the divergence criterion breaks down when the number of
training samples is small, and no longer is an effective

predictor of accuracy.

The K-L ordering, while ignoring the among-class vari-
abilities in the scene, 1is only dependent on the number of
data points in the data set used to approximate the mixture
covariance matrix, but is otherwise independent of the num-
ber of training samples used. Thus, while sacrificing the
information we get about the variability between classes in
the set, experimental results show that this sacrifice is
more than warranted when dealing with a small number of
training samples. While not claiming that the K-L ordering
gives the optimal results, we think it is a very effective
procedure in the presence of few training samples, that is
not surpassed by any other procedure that we know of, given

the circumstances above.
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Based on the above, and on the fact that the K-L order-
ing is a very efficient technique in that it reduces the
number of permutations of features that have to be searched
through to only the number of features present, it will be
used as a feature selection technique throughout the remain-

der of the experiments.

4.3 Experiments on the Hughes Phenomenon

In this section, some experimental results that illus-
trate the Hughes phenomenon will be presented. The objec-
tives of conducting these experiments are to demonstrate the
existence of this phenomenon in remote sensing applications,
and to verify the hypothetical explanation of it. Experi-
ments will be performed on aircraft and Landsat data, both
simulated and real. In all the following experiments, no
_ results are obtained for the dimensionality of one. Tabu-

lated classification results are found in Appendix D.

Experiment 4.4

The data set described in experiment 4.1 1is simulated
using the algorithm described in section 2.4. Two classes,
corn and forest, are selected and 500 training samples are

chosen for each class. A larger, mutually exclusive set is
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used for testing. The K-L method is used 1in ordering the
features, and the data selected is classified using the best
25 3. ,12 features. Subsequently, 5 training sets are
randomly chosen from the larger training set, each set hav-
ing 20 samples per class of corn and forest. The five sets
are classified, wusing the same test fields above, and the
average classification accuracy, (sometimes referred to as
the probability of correct classification, or Pcc), is cal-
culated for each subset of features. Another 5 training
sets are then randomly chosen, this time with 13 samples per
class of corn and forest (The minimum number of samples pos-
sible for 12 features without getting singular covariance
matrices). Again, the 5 sets are classified and the aver-

age classification accuracy is calculated for each feature

subset. The results are then plotted in Figure 4.4.

Looking at Figure 4.4, it is seen that when the number
of training samples is adequate, as 1in the 500 samples per
class case, the probability of correct classification is a
monotonically non-decreasing function of dimensionality.
Since in a K-L ordering, the information is concentrated in
the first few channels, we notice that after the best 5 fea-

tures, the recognition accuracy tends to saturate.

When the number of training samples per class drops to
20, however, we see that not only does the accuracy drop
from the 500 samples case, but also it exhibits a slight

Hughes phenomenon. Although the curve has a maximum at
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dimensionality 3, it is approximately constant until the
best 10 features, after which it starts decreasing, even

though slightly.

The 13 samples per class case offers a dramatic change
from the two other curves. There is a clear peaking effect
here, with the curve reaching a maximum at dimensionality 5,

after which it drops drastically.

The results conform with the hypothetical curves of
Figures 2.1 and 2.2. The 20 samples and 13 samples curves
can be made smoother if more than 5 sets are averaged, and
hence we should look at them with the idea in mind that
these are only apprbximations of what the true curves look
like. However, the trend these curves point to is clear.
In the presence of a limited set of training samples, an
increase in dimensionality can result in a decrease in the
classification accuracy, with this effect disappearing as

the number of training samples increases.

Experiment 4.5

The same aircraft data set as that wused in experiment
ﬁ.1 is used, but without any simulation. LO00O samples each
of corn and forest are selected for training, and a larger,
separate set is used for testing. Again, 5 different train-

ing sets of 20 and 13 samples per class are randomly chosen
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from the original training set and classified. The average
classification results for each feature subset are calcu-

lated and plotted. Results appear in Figure 4.5.

The curves in Figure 4.5 are not as smooth as they are

in Figure 4.4, This is attributed to the fact that we are
working with real data, which does not as well satisfy the
assumptions we make as the simulated data does. Still, the

curve with the 13 samples does generally poorer than the
other two curves and drops dramatically in accuracy, whereas
the 400 samples curve appears to saturate almost from the
sitart. The 20 samples curve appears to have a slight peak-

ing effect, although the curve is very noisy.

Experiment 4.6

The data set wused in this experiment 1is obtained from
Landsat, flown over Henry County, Indiana. To obtain a data
set with more than the 4 features available from Landsat on
any particular date, four data sets flown over the site at
different times are used. The dates the data was collected
on are: June 9, July 16, August 20, and September 26, all
in 1978. The data is concatenated, and a K-L transformation
was performed on it. Simulated data, more precisely meeting
such assumptions as normality is generated, and the first 12
channels are used for classification. We will refer to this
data as multitemporal data to indicate that it is collected

over different times.
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Two classes, corn and soybeans, are selected with 250
samples per class for training, and a larger independent set
for testing. Again, 5 different training sets of 20 and 13
samples per class are chosen from the original training set
and classified. Results are averaged and plotted in Figure

4.6.

The same results obtained in the previous two experi-
ments are again evident. Note that even with 20 or 13 sam-
ples per class, the accuracy obtained is very close to that
obtained by using all the available training samples. This
is due to the fact that the two classes chosen are highly
separable and thus are easily distinguishible even when
using a small number of training samples to estimate their

statastiesh

Experiment 4.7

The same data set as experiment 4.6 is used, but with-
out any simulation. Two classes, corn and soybeans, are
selected with 250 samples per class used for training, and a
larger, separate, set for testing. Again, 5 different
training sets of 20 and 13 samples per class are randomly
chosen from the original training set and classified.

Results are averaged and plotted in Figure 4.7.
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The same observations noticed in the three previous
experiments apply here. There is a drastic drop in accuracy
when 13 samples are used, a slight one when 20 samples are

used, and no drop when 250 samples are used.

Summarizing>the results of the last four experiments,
we see that there 1is a definite Hughes phenomenon 1in the
presence of a limited number of training samples compared to
the number of features used. Further, as the number of sam-
ples increases, the accuracy for any given dimensionality
increases, and the peak in the curve shifts to the right,
i.e., the peaking effect takes place at a higher dimension-

ality, as is seen in Figures 4.4-4.7.

Studying Figures 4 .,4-4.7 reveals that the region bet-
ween 13 samples and 20 samples 1is a very sensitive one when
working with a maximum dimensionality of 12. While there is
a sharp decline in accuracy at 13 samples per class, there
is only a slight one at 20 samples per class. Another point
to note is that the 20 and 13 samples are chosen from spec-
trally homogeneous classes, and so a very large number of
samples is not needed to estimate the statistics of these
classes. In a practical situation, the 20 and 13 samples
curves might not be as close to the curves with large num-

bers of training samples as they are in these experiments.
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The results of the last four experiments were a factor
in choosing the empirical formula, or equation (3.61), dis-
gussed ansSection  3.2.3. A formula was sought that takes
the sensitivity in the number of training samples 1into
account, as well as other factors that were discussed ear-

lier.

b,y Experiments Comparing Algorithm and Experimental

Results

In this section, several experiments will be conducted
to assess the performance of the proposed algorithm. Again,
aircraft and Landsat data are used, both simulated and real,
and the number of training samples used will be varied. But
first, we will reproduce the results obtained by Fukunaga

and Krile (64) to verify the validity of the algorithm.

Experiment 4.8

The data set used by Fukunaga and Krile is described in
detail in Marill and Green (12), The data is simulated, has
two classes and eight features. Each class has 200 training
samples, and both the exact, or true, and the algorithm
recognition rates are calculated. The true recognition
rates are not calculated again in here, but are reproduced
from Fukunaga and Krile, who wused numerical integration to

arrive at them.



85

Two methods used by Fukunaga and Krile are employed
hieres The normal assumption, discussed briefly in Section
3.2.1, and the modified gamma assumption, discussed in Sec-
tion 3.2.2 and used throughout this research. The Bhatta-
charyya distance was used by Fukunaga and Krile, and alt-
hough we have shown it to have limitations, it is used as a
criterion for ordering the features. Results appear in Fig-

ure 4.8.

The results show that the modified gamma assumption
method is a reasonable approximation of the true probability
of correct classification. The normal assumption, though,
does not give a good approximation of P.., and hence it is

not further used.

While in this experiment, the modified gamma assumption
is compared to the true probability of error, in actual
bractice the true probability of error cannot be calculated
because the underlying distributions are not known. There-
fore, in the following experiments, the proposed algorithm
is compared to an average of five classifications obtained
from five different training sets having the same number of
training samples. This average classification serves as an
estimate of the "true" error curve. This faect should be
remembered as the experimental curves that are obtained are

not as "smooth" as what the true curves would be expected to
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87

be. The algorithm curves, on the other hand, being depen-
dent, among other things, on the number of training samples
in an average way, are expected to be "smoother" than the

experimental ones.

Before we embark on studying the next experiments, it
is appropriate at this point to look at a flowchart describ-
ing the modified algorithm that is proposed. This is shown
in Figure 4.9. This figure is to be compared to Figure 3.2,
or Fukunaga and Krile's algorithm, to see the changes that

are made.

Experiment 4.9 (Aircraft, Simulated Data, 20 Samples per

Class)

The simulated, aircraft data set used in Experiment 4.4

is used here. Two classes, corn and forest, are used. ifhe
experimental, 20 samples per class curve, in Figure 4.4 is
plotted again in Figure 4.10, together with the approxima-

tion to the probability of correct classification predicted
by the proposed algorithm. Also plotted in Figure U4.10 are
the standard deviations for each feature subset of the five

different classifications performed.

We see that the algorithm is a good approximation to
the experimental curve. The approximation is not as good at

lower dimensionalities as it is at higher ones, because the
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assumptions the algorithm makes are better at higher dimen-
sionalities. However, the two curves do peak at the same
dimensionality, 3, but more importantly, they have a similar
shape. Both remain relatively constant for a while and then

start decreasing at about the dimensionality of 8.

Examining the standard deviations of P WIS

ce.’
observed that 1in general they have an increasing trend as
the dimensionality increases. Put in other words, the
curves indicate that the variance of the probability of
error seems to increase with 1increasing dimensionality.
This agrees with the hypothetical explanation given of the
Hughes phenomenon, namely that the accuracy of the estimated
statistics decreases with increasing dimensionality (i.e.
becoming more random and hence 1increasing the variance of
error) and that when this effect outweighs the increase in
separability between classes due to increasing dimensional-
ity, a peaking effect is observed. As the number of samples

is decreased, 1larger increases in the variance of error are

expected.

Experiment Y4.10 (Aircraft, Simulated Data, 13 Samples per

Class)

The same example used in Experiment 4.9 is used again,

but with 13 samples per class used for training. The exper-
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imental curve of Experiment 4.4 is reproduced, together with
the curve predicted by the algorithm. The standard devia-
tion of P is again plotted. Results appear 1in Figure

ce

4.11.

Again, the curve predicted by the algorithm is a better
approximation of the experimental curve at high dimensional-
ity. The experimental curve, however, is not very sensitive
to dimensionality at lower values, and thus a small ambigu-
ity in where the peak occurs can be afforded. Still, both
curves predict a peak at 3. The standard deviation of the
error again has an increasing trend as dimensionality

increases.

Experiment 4.11 (Aircraft, Real Data, 20 Samples per Class)

The example used in Experiment 4.5 is repeated. Again,
two classes are used, corn and forest, from the aircraft,
real data set. Twenty samples per class are used for train-
ing, and five different sets of training samples are classi-
fied and averaged. The average is then compared to the

algorithm performance. Results appear in Figure 4.12.

The experimental curve has a lot of error variance as
can be seen from the curve and does not seem to be following
any general pattern, although it starts consistently

decreasing after dimensionality 9. It is 1interesting to
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compare this curve with Figure 4.10, where the same condi-
tions exist with the exception that the data is simulated.

Because simulated data satisfies the assumptions made about

the distributions of classes, it produces results that con-
form more with theory than real data does. The algorithm
performance appears to be closer to what is expected, alt-

hough in this case it does not quite follow the experimental
curve. This "randomness" of the experimental curve is made
more evident from looking at the standard deviations of P..,
which do not seem to follow any general pattern and are all
relatively large. This is a clear example of a case where
deviations from the assumptions may obscure the action of a

new proposed algorithm.

Experiment 4.12 (Aircraft, Real Data, 13 Samples per Class)

The same example used in Experiment 4.11 is used here,
with 13 samples per class for training. Results are shown

in Figure 4.13.

Experimental and algorithm results here are very close.
Both peak at 3, and both are very close at high dimensional-
ities. The standard deviations of the errors are also
increasing in general, particularly at high dimensionality.
It is interesting to note that the standard deviation in

almost all of the above four experiments starts increasing
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notably at about the same place the probability of correct
classification starts dropping sharply. This supports the
idea that at these dimensionalities, the randomness in the
estimated statistics 1is so 1large that it pulls the curve

down.

Experiment 4.13 (Landsat, Multitemporal, Simulated Data, 20

Samples per Class)

The datea set used 1in this experiment 1is the same as
that used in Experiment 4.6. It is obtained from Landsat,
with four dates concatenated so that more features are pre-
sented. The 20 samples per class curve of Figure 4.6 is
reproduced in Figure 4.14, together with the curve predicted

by the algorithm.

The algorithm curve seems to drop in accuracy faster
than the experimental curve, but both peak at around 4. The
standard deviation of error also increases as more features

are used.

Experiment 4.14 (Landsat, Multitemporal, Simulated Data, 13

Samples per Class)

The same data set used in Experiment 4.13 is used, but

with 13 samples per class for training. Results appear in
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Figure 4.15. The increase in the variance of error with
increasing dimensionality is very noticeable here. Again,
the same observations apply, with both curves starting to

drop in accuracy at the dimensionality of 4.

Experiment 4.15 (Landsat, Multitemporal, Real Data, 20 Sam-

ples per Class)

The Landsat data set is again used, but without any
simulation. 20 samples per class are used for training,

classification results are averaged and plotted in Figure

4,16,

While the algorithm predicts a somewhat better perfor-
mance than the experimental curve, both have the same shape,
and both are fairly cénstant until the first 7 or 8 fea-
tures. This is due to the fact that the two classes in this
set, corn and soybeans, are largely separable and hence the
increase in the variance of the error with increasing dimen-
sionality does not outweigh the large separability effect

between these two classes.
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Experiment 4.16 (Landsat, Multitemporal, Real Data, 13 Sam-

ples per C€lass)

The Landsat, real data set 1is used in this experiment
with 13 samples per class for training. Results are shown
in Figure 4.17. The two curves have the same shape, and

peak at the same place, 4, although again the algorithm
predicts a better performance than does the experimental
curve. The variance of error is again seen to be increasing

with the number of features used.

To summarize the results of the last eight experiments
(4.9-4.16), the probabilities of error predicted by the pro-
posed algorithm as a function of dimensionality as compared

to experimental observations are shown flortaidreraft  and

Landsat data. Results are obtained for both simulated and
real data, wusing 20 and 13 samples per class for training.
For each case, five different training sets are used, and

classification results are averaged over these five sets.
The standard deviations of errors for each feature subset

are also plotted.

Results indicate that the algorithm predicts in most of
the cases| the best, or near best, subset of features to be

used. While not always predicting closely the actual clas-
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sification accuracies obtained from the experimental average
curve, it has in most of the cases the same shape as the
experimental curve and seems to follow any trends in perfor-
mance that the experimental curve undertakes. Since the
objective behind the algorithm is to predict the best fea-
ture dimensionality and specific subset to be used in clas-
sification rather than to predict the probability of error
itself, the fact that the algorithm does not always accu-
rately predict this probability of error is not of serious

concerne.

The standard deviations plotted seem to indicate that
in general, an increase in dimensionality results in an
increase in the variance of error, that increase becoming
highly noticeable at high dimensionality, when the random-
ness in the estimated statistics, given a limited set of

training samples, is large.

The next step is to incorporate this algorithm in a
binary tree classification procedure, using more than two
classes, and assess its performance. This is done in Sec-

tion 4.5.
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4.5 Experiments on a Binary Tree Classification Procedure

In this section, two data sets will be classified in a
binary tree <classification procedure, . using the proposed

algorithm to predict the optimal features at every node.

A complete design of a binary tree classification
procedure should address the problem of how to separate the
nodes in the tree effectively. Seprations should be sought
that lead to meaningful classes at the intermediate and ter-
minal nodes. This problem should be thoroughly studied

before a solution can be arrived at.

It is not the purpose of this research to address this
problem in any detail. Theréfore, no attempt has been made
here to dictate a particular procedure or claim any optimal,
or close to optimal, one. The procedure that will be used
is heuristic, the purpose of conducting the next two exper-
iments is to illustrate the wusefuleness of the proposed
algorithm in predicting the optimal features to be used at
every node. The problem of how to separate the nodes is

left as a topic for future research.

Experiment 4.17

The Landsat, multitemporal, real data set used in

Experiment 4.6 is used here again. Three informational
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classes exist in the scene: corn, soybeans, and other. 12
samples per class are used for training, creating 3 spectral
classes. The reason this is done is that in actual practice

siltuations, it is almost impossible to distinguish spectral

classes with only 13 training samples per class. A much
larger, separate, set is used for testing (all training and
test field descriptions are found in Appendix F). The

binary tree is constructed by using a bottom-up procedure,
combining the most separable classes. The criterion for
measuring separability is that used by Whitsitt (9), and is

defined as follows:

D = exf( 28y %) (4.3)
where B 1is the Bhattacharyya distance and erf (.) is the
gaussian error function. Whitsitt found that this measure
is less ambiguous and more linear than the measure B. The

measure is calculated using the first 12 features after a
Karhunen-Loeve expansion was performed on the data. After
the tree is constructed this way, the proposed algorithm was

used to predict the optimal features to be used at every

node.

The binary tree that resulted from the above procedure

is shown in Figure 4.18. The algorithm predicts an optimal
feature subset of 4 at the top, and a subset of 2 at the
intermediate node. These appear below each node. Inside

the node, the classes present are shown together with the

total number of training samples present.
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A single-stage classification is then performed on the
data using feature subsets of 2 to 12. This is done to com-
pare the performance of the binary tree procedure to that of

each of the feature subsets.

Results are plotted in Figure 4.19. The classification
result obtained from the binary tree procedure is drawn in a
dotted line across the page only to compare against the sin-
gle-stage curve, and does not imply that all the feature
subsets were used, or that the classification result is the

same for all feature subsets.

The results indicate that using three classes, the sin-
gle-stage curve has a peak at LU, and that by wusing all
twelve features, the result is much poorer. The binary tree
procedure, on the other hand, results in a classification
accuracy that is almost as good as the best result obtained
from using the best feature subset (which is unknown in an
actual practice situation) in a single-stage classification.
Thus, it appears that the algorithm is effective in predict-

ing the best features to be used at each node.

Experiment 4.18

The aircraft, real data set used in Experiment 4.1 is

used here. The data set has seven informational classes.
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In this experiment, supervised clustering (discussed in Sec-
tion 1.2.1) is used to get 9 spectral classes, using an ade-
quate number of training samples per class. 13 samples per
class were then randomly chosen from the larger training set
so that it is known that each set of these samples comes
from one spectral class. The bottom-up procedure described
in Experiment 4.17 was then used to build the binary tree,
with the exception of class water, which was separated from
the other classes at the beginning, as water has been known
from experience to have spectral properties that are much
different from other agricultural classes. The proposed
algorithm is then used to predict the best features at each
node. A single-stage classification is performed using fea-
ture subsets of 2 to 12, and then the same statistics were

used in the binary tree classification procedure.

The resulting tree appears in Figure 4.20. Figure 4.21
shows the classification results obtained from the single-

stage and the binary tree classifiers.

The binary tree procedure, using the proposed algor-
ithm, performs better than any feature subset does in a sin-
gle-stage procedure. The Hughes phenomenom is very evident
here, as the overall classification accuracy for seven
informational classes (9 spectral) drops sharply from a high

of 69.4% to a low of 43.0%.
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Summarizing the results of the last two experiments,
the proposed algorithm is shown to be effective in predict-
ing feature subsets that lead to the maximum, or near maxi-
mum , accuracy possible using the Karhunen-Loeve expansion

for ordering the features.

It is worthwhile to note that common belief is that few
features need be used at the top of the tree to separate
classes, and more features need be used deeper in the tree
to distinguish between somewhat 1inseparable classes. How-
ever, if there are inadequate training samples present, then
the number of training samples towards the bottom of the
tree is less than that towards the pop. Hence, 1less fea-
tures should be used at the bottom to avoid the Hughes phe-
nomenon. This is evident in the last two examples, particu-
larly in Figure 4.20, where many features are used at the

top, but only few at the bottom.

One point also worth mentioning is that in situations
where a node 1is divided into two nodes of unequal training
samples, one of them might have inadequate training samples
while the other might have adequate ones. This situation is
illustrated in Figure U4.20, where the top node is divided
into water, and everything else. In this case, the number

of features used is "intermediate", depending on the effect
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of the degradation in the accuracy of the estimated statis-
tics of the node with the inadequate number of training sam-

ples.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary of Results

The purpose of this research has been to develop an
error estimator that will predict when/if the Hughes pheno-
menon occurs in multispectral data. Several significant

results were arrived at and are summarized below.

The probability of error was studied through the like-
lihood ratio funection, which offered the convenience of
working with a one- dimensional variable, regardless of the
number of features wused in estimating the training statis-
tics. An algorithm was then developed to estimate the sta-
tistics of this function, taking into account the number of
training samples used to estimate these statistics. Several
theoretical and experimental results were obtained on the
Hughes phenomenon. These showed the dependency of the prob-
ability of error on the number of training samples and fea-
tures used. The algorithm developed in Chapter 3 was shown
to predict a suitable feature subset to be used at each node

in a binary tree procedure. The algorithm was tested in



115

Chapter 4 by comparing it to experimental observations under
different conditions, and was utilized in two binary tree

classification procedures to demonstrate its practicality.

Some results were also shown, demonstrating the use-
fuleness of the K-L expansion over the whole data set in
ordering features in the presence of a limited set of train-
ing samples. The procedure is used extensively in the
research, and appears to have less variablity than other

procedures under the conditions given.

Certain parts of the algorithm developed are heuristic
in nature. Reasons why more theoretical solutions were not
pursued were explained. These heuristic procedures often
raise difficulty in verifying'the validity of the algorithm
strategy. The basic point is that when both a practical
solution and theoretical perfection cannot be achieved sim-
ultaneously, one tends to choose the former. Experimental
results in Chapter 4 demonstrated that the algorithm can be

used practically to yield optimal, or near optimal, results.

5.2 Suggestions for Further Research

The main objective behind developing the error algor-
ithm is to use it as a feature selection technique in a mul-
ti-stage <classification procedure. In particular, the

algorithm was developed to be used in a binary tree proce-

dure., The design of suqh a procedure requires, in addition



to choosing the optimal features at each node, an effective
design of separating the nodes. This question was only

addressed superficially in this research, and could serve as

a topic for another research project. An effective design
for separating the nodes, coupled with the developed algor-
ithm to choose the features, should 1lead to much higher

accuracies than a single-stage classifier.

Several strategies developed in the research were heu-
ristie in nature. Appendix B addfesses the problem of why
it is difficult to theoretiéally calculate the probability
density function of the variances of the 1likelihood ratio
function given either class one or two. If such a deriva-
tion is made possible, a much better and cleager idea will
be obtained on how the variance of the likelihood ratio
function is affected by the number of training samples, and
the error algorithm can be made to more accurately predict
the probability of error in the presence of a limited number

of training samples.

The K-L expansion was used extensively as a feature
selection technique in the presence of few training samples.
This was based on experimental observations, but necessarily
meant sacrificing the information found from the between
classes variablity. A more detailed study of the relation
of several feature selection techniques to the number of

training samples can be very helpful.
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Appendix A

Generation of Normally Distributed Samples

Let U1 and U2 be two random variables independent and

identically distributed Uniform (0,1). Then, let

L

(-2 1n Ul)2 cos 21U (A.1)

N
1]

2

(a8}
"

Lo
(=2 1n Ul) sin 27U, (A.2)

then Z1 and 22 are independent and identically distri-

buted normal (0,1).

Eroofis

1 0 <U1 <O

f(Ul’UZ) (A.3)

0 otherwise

is the probability density function of two independent

uniforms.



125

2 2
_ 1 .
U1 exp [ /§(Z1 + Z2 )] (A.4)
U = —1— arctan<—2——2—>
2 27 Z
! 1 (A.5)

-1 " 2 2
J - exp[ 2(Z1 + Z2 )]
£(2,,2,) = £(U,,U,) IJ‘
1
=, exp [-1/2(212 + 222)] 0 < exp[—‘z(Z1 - ZZZ)] < 1
%y
U= e tan <——> < 1
2 %
I
= 0 otherwise (A.6)
f(Zl) v N(O0,1) f(Zz) vN(O0,1)
The side conditions give - =< Zl<00 > - ©< Z?_<00 .
Strictly speaking, Z1 cannot equal zero; however, pr'ob(Z1 =

0)=0 as we are working with continuous densities.

To test the effectiveness of the pseudo random vectors
in the multivariate case, random vectors distributed N(O,Ip)
were generated and then tested with a Kolmogorov-Smirnov
tesits. Since the multivariate normal c¢df is difficult to
evaluate, the sum of squares was calculated and compared to

2
the Xp distribution.
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For sample sizes greater than 100, the pseudo random
vectors were distributed properly. For sample sizes less
than 100, the K-S test is not valid. Since we would gener-

ally (over an entire area) be working with more than 100

points per class, this was not pursued further.

In addition, the sample covariance matrices were tested
for homogeneity against the true class statistics. For sam-
ple runs of wup to 2000 points, there were not significant

differences at the a = 0.10 level.
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Appendix B

On The Probability Density Functions

OfgiAndog
Let us 1look at the expressions for oi and og . From
(3.55) and (3.58), we have:
0% - 2(er(r -2, 2% 4 2m 272 5Ty (Bl
1 2 1 2 “2 1 "2 M ’
g 2 =g o 2 e
o, = 2(tr(Z1 22 - I)° + 2m2 Zl z, I m2) (B.2)

To be able to calculate the probability density func-
- = ~ » ~21 o~

tions of 0, and 0,, one has to know those of m, L1, Ly, 5,

and ZZ .

Before we proceed, we make the following assumptions:

1o M1 and MZ’

constant. Experience has shown that one can esti-

the means of the two classes at hand are

mate these two quantities relatively accurately

with a small number of training samples. Hence-

A

forth, we will assume m, (:Ml—MZ) to be constant

and not a random variable.
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2. I and L are independent. We will ignore any
2

rc<lationships that might exist between the covari-

ar2e matrices of the two classes.

Ly 22 are each Wishart distributed with parameters

1 1
;121, ny and ;222, n, respectively, where n; =Ny -1 and Ny
is the number of samples used in estimating Zi'

Proof

See (B.1),pp.159.

Thus, Xi’ iz1,2 , has the following Wishart distribu-
tion:
N 3 & n,-p-1 2 o
2 (n )= |z i S exp(-%(n, tr I =l £.))
zi " i‘2 gt 2 5t i i (B.3)
n,p p(p-1)/4 ni/2 "
3 2 | } _
5 |zi R CICHEEY

k=1

where p is the number of dimensions.

Theorem B.2

-1

. - . s - 1 ;
Ei is again Wishart distributed with parameters = Zi ’

1
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Theorem B.3

If A is distributed according to Wishart, W(L ,n), then

ji
B = CAC 1is also distributed Wishart W(¢ ,n), where ¢ =

See (B.1),pp.162.

~ ~

From the above theorems, we see that Zl’ 22,
%

7=
l ’

1 is transformed

and

o are Wishart distributed. Further, as

(e |00

~

intel the ddentity matrix L, and 22 is transformed into a

diagonal matrix A > the new covariance matrices are also

~

Wishart distributed. Hence, 21 is transformed into a diago-

nal matrix I that is distributed W(1/n11,n1). We will call

~ ~

the diagonal elements of this matrix Y,. Similarly, 22 i's

transformed into a diagonal matrix A , that is -distributed

w(1/n2A ,n2). We will <call the diagonal elements of this

- -1 =
matrix A;. ;" is transformed into a diagonal matrix I L
£29 _
distributed W(1/n11 ,nl), and 22 is transformed into a

diagonal matrix A distribubed W(1/n,A ,n, ).

2

Thus, after applying the simultaneous diagonalization

. 2
transformation, o, and o, become:

1 2
2 ~ ~ 2 -~
2 P
o0 = 2 I (1- 24+ Yy TR i ) (B.4)
== " —== i =
i=1 2 =g
X . A
i i 1!
~ 9 R =
&g P
o, =21 (Ai ~ o % 4 9 d_2 Xy o ) (B.5)
~ ot i =
i=1 2 - A
Yi Yy Yy
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Note that equations (B.4) and (B.5) are modified ver-

sions of equations (3.53) and (3.56).

We now look at the probability density functions of the

one-dimensional elements Ai and Yj.

Theorem B.4

If Zij:O for i 3 j, and if A is distributed according
to W(EZ ,n), then Ai1y Agoy  oee, App are independently dis-
tributed and Ay, is distributed according to WCEs5,03.

Proof

See (B.1),pp.163.

Therefore, il’ ....,Ap are each distributed W( ii ,q?
A A n
and vy, ~eeeyYp are each distributed W(1/m,m). Hence,2
~(n,=2)/2 R n, /2 5
-1 3
J Yy exp (-% n,v;) (n1/2) y; >0
Yy v ' (n,/2)
L (B.6)
5 .
\ y <0

~

A similar expression exists for Ygl, with Y

1

i
replaced by Y;
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( A(n2—2)/2 . n2/2 .
_1
Ai exp (-% nzki/Ai) (n2/2) Ai > 0
N { n2/2
Ai n r (n2/2) Ai
(B.7)
\ 0 A, <0
A similar expression exists for i;l, with ii’ AL
i
replaced by Agl, A;1
Looking at equations (B.5) and (B.6), we see that even

~

though we know the individual distributions of"J\i and Yio

2
the calculation of the densities of o1 and 09 is still a
very involved and difficult process. An attempt to arrive
at these densities directly from those expressions is almost

2
impossible. However, the moments of 0y and 0, can be calcu-

lated.

3 o SIS |
Since calculating the moments of X, (and X, v; , vy )

involves the evaluation of an integral of the type
o N -at . . . .
It e dt, and since such an integral does 1indeed exist,
0
~ - A ~
the task of calculating any moment of X;, A\; ,Y; , and y-1
i

is a very easy one.

From any integration table book, we find:

/7" exp(-at) dt = L (ntl)

0 n+1l
2

(n >-1, a> 0) (B.8)

Thus, if x is distributed W(x/n,n), then:
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E(x) = x
~2 2
E(x“) = (142/n) x
4 (B.9)
E(x2) = (1+6/n + 8/n%) x

=) 4
(1+12/n +44/n2 + 48/n7) x

E(x)

A ~

Since any moment of 6, or o, is a function of the

- P = .
moments of A,, A", Y;, and Yi], it is theoretically possi-
ble to calculate any moment of 9y and 02. Thus, 1 bals

theoretically possible to calculate the characteristic func-

~ PN

tion of 97 or 9, uniquely from these moments.

Papoulis (B.3) provides a way to estimate the probabil-
ity density function of a random variable once its charac-
teristic function is known. However, the convergence prop-
erties of calculating the characteristic function from the
moments of a random variable are very slow. A large number
of moments would have to be calculated. Looking at equa-
tions (B.4) and (B.5), it is evident that beyond the first
few moments, the derivation becomes quite a formidable task,

and is very impractical.

Because of these difficulties encountered, it was

. "2 "2
decided to calculate only the variances of a4 and o, and

heuristically incorporate them into the algorithm developed.
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Appendix C

Derivation of the Variances of 8% and o%

We look first at 8%

From Appendix B, equation (B.4), we have

(GEPRIN)

Q>
- N

]

N

[2lligo)
bt
T

=

I

N
o IH‘

=

s

JL

N

(oW

(2%
> < >
He N[ N
| S )

Noting the assumption that the Xi's are independent from the

;i, and taking the expected value of 8%, we get
: P E(v;) E(¥3) E(y2)
BCo2) =21 |1 - 2—=+ = A; (C.2)
s _ & T2
i=1 E(Ai) E(Ai) E(Ai)
Making use of the expressions in (B.9), we get
- o 2 2 2 .1 2 .1
E(oi) =21 |1 -3+ (I+2)(1+0) — + 2 dE (=) ~={(C=-3)
= i 1 2 a2 2 A%

2 and 02 are the summation of uncorrelated

Now note that ol 5

~

random variables. Since Ai's are independent, Yi's are inde-

pendent, and each Xi is independent from each ;i’ then any

~

function of Ai's and Yi's in one dimension is uncorrelated
with any other function of Ai's and Yi's in another dimen-

2 and o2

i f
1 2 consist o the sum

sion. Hence, the variancesof o

of the variances in each dimension (See (69), p. 211) and
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do not have any cross-product terms between dimensions.
Therefore, in the following derivations, we will not attempt
to derive any cross-product terms as they will cancel out in

the end result.

- . 2
> 2 2
p Y YS + 2d<vy. : d
20N - t
[E(Gi)z] = 4E ¥ <1 _ 2 _;\_l S X - al 4 CIOS:EE;Z 16 (e
i=1 4 A2
1
P Y 13+ 2dive 13 i
= 4E z 1 = 4 i 2 - + L} T— - 4 —:— —
i=1 Ag Ai xi xi
229 " 2.3 452
8 diYi 4 Yy N 4diYi l 4diYi + cross-product
23 i; terms (C.4)
il

Substituting the expressions of (B.9) into (C.4), we get

. P (1+42/n;) + 2d° 2
[E(e)?] =41 (1 - fL + 2 . Ha+2H
i=1 il A 2

6 8

A v - S a2 e Has 2+

A% T "2 Ay 1 0] 2 nj2

8d 2 6 8 1 12 . 44 . 48

= 31 (l+n——)(l 1 . + ‘—2‘) AF = (1 + =0 + — -+ ——3)

M 1 2 My N 2. 85 8
(1+ 224 8, 38y a2+ b Ly +aata + )
"1 n] nj * 1 03 1

cross—product

+
terms
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- 4 2 2 2 4 . 4]
=4 7 1—3\——+—21+—-+——+nn+2d;+4—l
f=1 i A M1 ™2 172 "2
R R AT R (R AT S TN
1 2 12 ) Ay A 1 2T 172
48 48 64 a 2 . 6 12 8 16
+n 2+ + 22 —8—'3‘ l+n—+'1-1-+nn +_2‘+'—"—2-—
105 n1n2 ning Ai 1 2 152 n2 nln2
r (1212, 100, 80, 80, 88, 88, 028, 928
A nl L) nl 5 n1 n2 nl n, nlnz nznl
" 1232 " 5;6 5 %]6 +_2§1§ 1 2%15 i zgog e 4d%<1+—§i-+ %&
nlnz nlnz nznl nlnz nln2 nlnz 1 2
" 3% . g% . 7§ 264 . 96 3§>+ 28% , 352, 384 )
ny w3 "1%2  myny  najn, My ngn, njn;  agny
+4d;<1+i+;_2+%+ g B8 e
1 2 m; M™%z ny mgny omymy
4 cross-product {G=5)
terms
& P
[E(eD)]? = 4 = <1—%+(1+—2—+l+‘—~4 )%
i=1 i By By “1“2 Ai
2d2 2
- i (1 i jL) 4 cross-product
A2 n, terms
i
P 442
=4 1-A—4—+% 1+nl+—2—+ 4 4 o942 + —1 4
=1 i i 1 M2 MM Y B3
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R O S +2d§<1+L> v, 4,4
Ai nl 2 nl 2 n n n

- T nlg b 16, 16, 16 g0 <1 L2, 4
n2 12 nlnz n 1 n n

& 8 3 4 + 8 + 4a% (1 + 4 P 4 + Cross-product
2 st n 2
2 n,

nlnz n% nlnz terms
(C.6)
Now, Var (%) = [E(o2)2] - [E(o2)]?
O,
- P 2 [ 4 4 8 4 (4 4 8
Var(oi) = 4 I vl + — + = = o = $ = sy
i=1 \*; \™1 2 ™1™ A \M1 %2 ong
2 2 2 2
. 8 32 48 48 64 4d7  8df 2447  16d?
2 taa * 2 T 5 Eem e oa, ¢ n n-n 2
- 1°2 ™ty My My 1 2 12 M
324°
> i)y, (8 , 8 , 128 , 40 40 , 48 48 | 512
. A4 \n n n,n n2 nl o a3 n2n
1%2 i\ 1 2 172 1 2 1 2 172
2
i 1222 . 576 2]6 N 2;1§ N 2%13 . ziog v 4a) (fL . fL
Lidy  Tify fony 12 Mf MM 1 2
+ j% . ﬁ% & n6g 256 . 96 3% N 28% . i?% N %fég)
nl n2 172 nlnz nlnz n2 nln2 n1n2 n1n2
+ 4adt (é&.+ L 5% b 22 4 —% + 882 + 963) {c.7)
s 3 n, n; n,n, n; n;n; n,n,
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we look at 82

Niext3

From Appendix B,
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equation (B.5) we have

R P ii ii diii
02 = 2L | x5 - 2=+ 2—/5 +1 (C.8)
» [E2 A 2d2E(X,)
. p [EGDH  EG) 2E(A
E(63) = 2 I = e 5 + 1
P T 2 2 2
L { i3 = =) e=) xg = 2xn, + 1 % 2d§(1+n—)xi (c.9)
i=1] 1 2 2
55 . 32
. p /A 2% . i ~
[E(52)2] = 4E 3 2 -1+ 2425 | + °r°sie§;§d“°t
isly 14 i Y3
Ly 2 2 L
p [ Y d2 X 4d2 244
= 4E % —:% = 4)\3 :—t— - —;];3' ok 21% % A:; Ax::
i=1 \ Y5 Yi o Yi 13 Y3 Yi
ae
+ 42 SEC %L_ + 1 4 cross-product
i\ g2 Y. terms
5 5
£ 2 _ 44 | 48 12 | 44 ., 48
= AL]_*L 1+=+ =5 + =3 L+ ==+ = ¥
i=1 il ny ny 2 n; n,
radf1+ 848 <1+Lz+£_g+4_§.)dg-<l+ni+%>
2 1'12 1 ‘[11 nl 1 nl
+ a2+ 2 3(1+%>—4d§<1+—§—+—83>+2dlf<1+-l—2
2 1 m1 0 * ny
- A% 3 i% + &% a2 (1 + 2z oy 1) +1 )+ cross-product
n n L 1 n terms
1 1 1
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p .
= & I A‘i* 1+r11—2+—i3+n“’n“+l’—[2‘+£’—g+£’-§+-l’—§i 5228
i=1 1 2 1%9 ny ng nj n; nin,
. 338 . 1332 . 236 %:6 . 2§1§ 2112 , 2304
Rl mpfy  Bpfp Moy MRy Mty My
+4>\i <1+—12+—6——+4—2‘+%+ 72+226[’+?_6 +§_£3§+2388
1 "2 m}  ny; My @myny;  mony ng ngny
2
+3;~2+32843>d§-(1+n1+ni+%+%+n3g 48, 48
Byl RV, 1 2 "y mp 172 MRy PPy
. gg> L 02 <3+56_+§_+n1§ ) z.dz(1+i+56_+ 12
nlnz 1 2 12 + n 1 nlnz
pBa 16 N e 2o L2 80, 28, 48, EE 36)
npomMny 2 S1 my Wy mp agE;  Bans
+ 4, [ a2 <1 +——3~>-1_ + 1|+ cross-product (c.10)
st 1 nl terms
. E 2 2 4
[E(oD]? = 4 1 +—= + = = HE = Zhg .2
i=1 b T TS )
2 _
+ 242 <} 4 jL)A,} 4 cross product
1 n at terms
1
p
j=3 24 oo nj nj 12 nin, n,nj ninj
RUCY (FEY SUFE S S S T >_<1+L+L 4
1t 5C nl 1'12 n1n2 nl nlnz n 'ﬂ2 nl 2
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2  cross-product
2 2\ _ p
N Axi di <l * nl ) 1 +1f + terms (G, 11)
var(o2) = [E(62)2] - [E(02)]? or
2 2 2
. p
Var(o§)=42 A‘; —f—+ni+n12n8+ﬂ2)—+£g—+4—§+é—g+5212
=il 1 2 12 Hg a5 2] N5 L)
N 51% N 1222 : 5;6 N 57% . zilg . zilg N 2302 b a2 di(ﬁi
Rq®s DBy BgE,  GgRe Eglly,  HRe BRg 1
. ;14_+ 8, 40, nei 2256 . 26 +_4__§_ . 2388 s 352, 32843>
2 R, M 12 @gnp, Poiy s @y B0y B3R, @GR

2 3 2 3
2 "M% "1 % =n] ™% 0y  njn, nyn,
- Adi <§L + iL g nli + j% + ;6 (6. 1.2)
2 1 1"2  my  nin,

Because we do not know the true values of ki, we substitute

for Ai in equations (C.7) and (C.12) by ii'
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Appendix D

Classification Results Tables
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Appendix E

Computer Program Listings






-n
&
=
3

(elelelelelsisislolelsiciclivcinialioliolsielslsloinigislsislolislslislielsloloisliololeleclnlnielisisislslisinisiglnisislielsisicslnlnlals

CH3
C IN
CHx#

c

15}

SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

B R R R R e e e 2]
WRITTEN RY: BILL PFAFF

EDITED BY: MARWAN MUASHER JUNE 14, 1980
D R s R e e e e R e 2 2 2 2

B e ey e e e e e R TR LS 2
THIS PROGRAM GENERATES SIMULATED DATA BASED ON A
CLASSIFICATION MAP OR A GROUND TRUTH MAP EACH PIXEL
GENERATED THUS COMES FRDN A KNOWN CLASS DISTRIBUTION. THE
METHOD USED 1S AS FOLLOW
1. A GOOD CLAS"IFICATIDN IS CHOSEN AS A BASE FOR
SIMULATED DATA
2. FROM THIS CLASSIFICATION WE KNOW THE NUMBER OF CLASSES, THE
CLASS STATISTICS, AND THE CLASS OF EACH PIXEL IN THE
AREA CLASSIFIED.
3. A STREAM OF UNIFORM RANDOM NUMBERS IS GENERATED FOR
EACH CHANNEL. THEY ARE CHANGED TO NORMAL (0, 1) DEVIATES.
4. FOR _EACH PIXEL, A RANDOM N(O, I)VECTCR IS TRANSFORMED TO
LE DISTRIBUTED ACCORDING TO THE CLASS STATIGTICS OF THAT
PIXEL. THIS IS THE SIMULATED DATA VECTOR.
AS EACH LINE IS COMPLETED, IT IS WRITTEN TO AN OUTPUT TAPE.
TO RUN THE PROGRAM, YDOU NEED TD HAVE THE FOLLOWING
EXEC FILE ON YOUR DISK:

GETDISK LARSYS

GETDISK_DVSYS

GLOBAL TXTLIB CMSLIB FORTRAN SSP370

FILEDEF &6 PRINTER

FILEDEF 16 TERMINAL

FILEDEF 12 TAP2

FILEDEF 11 TAP1 (RECFM VS LRECL 1500 BLKSIZE 1500)

LOAD SWRITE GLOCOM MMTAPE TAPOP BCDVAL GTSERL GTDATE MFSD
RANDU WRTMTX

START SWRITE

THE PROGRAM WILL ASK FOR INFORMATION SUCH AS
TAPE NUMBERS, FILE NUMBERS, ..ETC. FROM HERE ON. IT
SHOULD BE EASY TO rFOLLUW.
B R S R S S E T 2R

333035 333330 T A 3 R 2 I A I 3 6 32 T 3 R 3 3 B 36 3636 36 3 30 36 3 36 3 3 3 34 34 3 33 %
VARIABLES USED IN TPRINT

=COVARIANCE ST0ORAGE FOR FACTURXNG
AREANU AREA NUMBER OF CLASSIFICATIO
B =CUVARIANCE STORAGE FOR HULT]PLICATIGN
DATA =DATA FOINT STURAGE
DATVAL=LINE HNUMBER AND ROLL PARAMETER
ICAL =CALIDRATION IMNFORMATION
IDREC =IDEMTIFICATIUN RECORD STORAGE
ISTART=STARTING POINTS FOUR CAUSS
LOGDAT=DATA POINTS IN LOGICAL FORMAT
NOCHAN=NUM3 Iz ZLS IN CLASSIFICATION

NOCLAS=NU IN DRIGINAL STATISTICS
NOFLNS=NU R 0% T FIELDS
NOPOGL=NUIEER OF POOLED CLASEES
PNTCLb CLASSIF ICATIONS ARRAY
STATISTICS STORAGE

**%i—#**##! 3625343 303 3 3 3036 26 30 30 3 3 30 3 3098 3 3 303536 3 S 3 36 I 338 36 3638 3 36 24 3 33 31 3 33 S 3

39304040 2 22 363 30 5 2 3533 30 36 3 33 3 2 33436 30630 30 3 3030 T R 33 30 3 3 0 23030 93 H A F I H W
ITIALIZATION
e R R S R TS T S S s 2
sINTEGER*E} 2 N;EAI ICAL(3), ILIN(2), PNTCLS(1000), ISTAT(4),
FE 1303
LOGTCAL+1 1 1(2),LOSDAT(2), LCAL( CATOUT (12000)
REAL#4 AL Z:), AZ(12), 2(2700), B(1

152 Y1, DATACLZ2),
).

1

% KiiCail » 180, RVAR (30, 1 "( 00Dy FROEALICSA0)
INTEGER*»4 1% G Edsy INEDC] ARE AT, IDNEC(200), TACEND, THREE,
¢ T3, IM=AN(30, 12 IVnn\\O,l;,IH):YcJ,Nﬂ DATE (3)
INTEGFR®4 IO,FLCT

EQUIVALET.CE 2 1.1, C(INTDAT, LOGDAT), (ICAL, LCAL), (LNWRT, ILIN)
EGUIVALLE RS (FkuCAL(l 1).1DREL(51 )

DATA EUS, S5-AM /’EDS 7, 1.0.0.0 /

ES ‘W 'ND ‘%, 37/

DATA YES, NO. THREE /'Y



152

FILE: SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

(@

DATA FLGT /‘SIM ‘/
ERPS=1E=5

(08 8 s e e R R S S PR TSRS S22 223

C

LOAD TAPES AND READ PARAMETERS

C 48 3 3 5 5 30 3 30 50 3 40 9 30 9 3 33 3 38 3 35 3 30 36 33530 90 9 6 3 3 46 36 3 36 36 36 36 3 3 35 3 35 36 3 3 36 36 3 5 3 3 6 3 3% 3% 3 3 9 3 9 3 % B

(¢

WRITE(16, 500)
500 FORMAT(//5X, ‘SPECIFY TAPE NUMBER ON WHICH RESULTS FILE IS LOCATED
$/5Y%, “(TYPE EIGHT DIGIT TAPE NUMBER) ’)
READ (16, 505) INTAP
505 FORMAT(IS8)
WRITE(16, 510)
510 FORMAT(5X, ‘SPECIFY FILE NUMBER AT WHICH RESULTS FILE 1S LOCATED’/
X, ‘(TYPE THREE DIGIT FILE NUMBER)"’)
READ(16, S15)IFILE
515 FORMAT(13)
CALL MMTAPE(INTAP, IFILE, O0)
WRITE(16, 570)
570 FouMAT(//sx.'SPECIFY THE TAPE NUMBER ONTO WHICH SIMULATED DATA IS
270 DZ WRITTEN’/SX, “(TYPE EIGHT DIGIT TAPE NUMBER) ‘)
RLAD(16, 575) TAPENDO
575 FORHAT(IB)
WRITE(16, 580)
580 FORMAT(SX, ‘SPECIFY FILE NUMBER AT WHICH SINULATED DATA IS TO BE W
$ITTEN’/5X, “(TYPE THREE DIGIT FILE NUMBER) ‘)
READL (16, 5BS)JFILE
585 FORMAT(13)
WRITE(16, 590)
590 FORFMAT(//5X, ‘SPECIFY THE RUN NUMBER FOR THE SIMULATED DATA RUN‘/
1 S5X, '(TYPE EIGHT DIGIT RUN NUMBER) ‘)
READ(16, 575) RUNMO
CALL MOUNT(TAPENQO, 12, ‘R1‘)
MARG=JFILE-1
IF(MARG.LE. O) GO TO 3
DO 3 LIP=1, MARG
CALL TOPFF(12)
CONT INUE
RCAD(11)1
IF(I.NE. 1) GO TO 310
READ(11)1, J, NOCLLAS, NOCHAN, NOFLDS, NOPOOL., (FETVC3(IX), IX=1, NOCHAN)
NQOCH=( (NOCHAM+1) /2)#2
NOCOMP=NOCHAN* (NOCHAN+1) /2
1STGRP=NOCOMP #NOPO0L
IEND=ISTOP+NOCHAN®NOPOOL

(Q] A

15 READ(11)1, U, K
IECL LT 3Y GO TO 15
IF(K. NE. EOS) GO T0O 15
READ(11)1,J, (Z¢(IX), IX=1, IEND)
D3 17 1X=1, IEN
22CIX)=Z(1IX)
17 CONTINUE
45 READ(11)1, AREANO, NOPNTS, NOLINE, INFO, IDREC
NIOFET3=NOCHAN
IF(1.NE. D) GO TO 45
WRITE (6, 52
S20 FORMAT(IHI/Z/ /775X, "+4+++++++++4++++t+++++4++44+++4+++++ 444444 7)
VRITE (6, 325
525 FORMAT(5X, ‘+DATA SIMULATION USING MCCABES EQUATION+‘)
WRITE (5, 530)
530 FOPMATISDY, ‘+++++++4+++++++444t4++++++++++ 44444444444 7))
WRITZ(&, 539) RUNNMO, IDREC(3)
535 FORMAT(////5X, ‘SIMULATED DATA EUN 1S‘, 19, ° FROM RUN’, 19)
WRITE(L, S37)INFOL4), INFO(S), INFO(7:, INFO(3)
537 FORMAT(/5X, ‘LINE’, IS, * TO LINE’, IS5, * AND COLUMN’, IS, * TO COLUMN’,
g§
RITE (&, 540) INTA?, IFILE
540 FUHN~T(/5X,‘INPUF RESULTS FILE IS ON TAPE‘, 19, FILE"’, I4)
LRIT:(& L45) TAPE!D, JFILE
OPMAT(/5X. ‘SIMUILATED DATA IS ON TAPE’, 19, FILE’, I4)
6, 550)
( 5\3’C MN”CLS USED ‘)
Yox= N
n DS )EE] \?(IX) FPGCAL(l IX), FRQCAL (2, IX)
Yo I 2X. F 5. FS5.2)
ATE(DATE)
569)DAT
5X.’DATE OF SIMULATION IS ‘. 3A4)
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IBEG=1
C

C 364538 36 3¢ 38 35 36 45 36 46 36 36 36 36 36 3 36 36 30 36 35 3 36 3 31 36 36 25 3096 3 36 35 26 35 0 3636 30 3 36 36 30 35 36 38 36 8 3 3 3 36 36 3 3 3 3 3 3 M A %

C FACTOR COVARIANCE MATRICES
C 39 36 4 36 3 34 36 2 35 4 556 30 36 636 30 340 346 5 3 36 34 340 30 363 3626 20 33096 3 90 3 34 3635 3 35 3 36 0 30 31 3 3H 35 30 9 30 2 30 36 33 2 38

€
DO 30 IX=1, NOPOOL
&DgNE=IBEG+NDCOMP—1
DO 20 IY=IBEG. IDONE
K=K+1
20 A(K)I=Z (1Y)
CALL MFSD(A, NOCHAN, EPS, IER)
IF(IER. EQ. -1) GO _TO 300
&FéIER GE. 1) GO TO 310
DO 25 I1Y=IBEG, IDONE
K=K+1
25 Z(1Y)=A(K)
- 30 IBEG=IBEG+NOCOMP

C #3626 363636 36 36 36 38 36 3690 36 36 3036 36 36 36 36 51 36 30 36 36 6 036 303696 30 36 26 363 3690 30 0 36 34 963 96 30 930 H 3 2330 M A RAHARR
C GENERATE STARTING POINTS
C 36 4056 56 36 338 3646 36 36 336 36 36 38 3638 30 3 3036 330 30 M 30303 3 IR A RN N MM E RS ARS
(o
29 WRITE(16,31)
31 FORMAT(S5X, ‘DO _YOU WANT TO SPECIF1Y THE STARTING POINTS FOR THE‘/S
%, ‘'RANDOM NUMBER GENERATOR? (TYPE YES OR NO) ‘)
READ (16, 32) INPUT
32 FORMAT (A4)
IF(INPUT. EQ. NO) CO TO 36
IF(INPUT. EG. YES) GO TO 33
GO TO 29
33 DO 39 IX=1, NOCHAN
WRITE(146,41)1IX
41 FORMAT(5X, ‘SPECIFY STARTING POINT FOR CHANNEL‘, I3/5X, “(TYPE A NIN
$ DIGIT ODD NUMBER) ‘)
READ (16, 42) ISTART(IX)
G SR Van 1) o)
39 CONTINUE
GO TO 43
36 CALL GTSERL (ISERL)
ISERL=(ISERL/10)#8+1
DO 40 I=1, NOCH
ISERL=ISERL+1000000
ISTART(I)=ISERL
40 CONTINUE
43 WRITE(6, 34)
34 FORMAT(////5X, ‘'STARTING POINTS FOR RANDOM NUMBER GENERATOR‘//)
DO 44 I=1, NOCHAN
WRITE(6,35)1, ISTART(I)
35 FORMAT(OX, "STARTING POINT FOR CHANNEL ‘, I2,’ IS ‘, I9)
e 44 CONTINUE

CHer R RN H N AR R HH RS TR F IR RN H AU R HHH R RSB HHH R BL A H R RS

C READ CLASSIFICATICNS
(o R R S T 2 22

DLHAN

141

145

0OOO0OO0O0O0O
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g 150 CONTINUE

CALL TOPWR (12,800, IER, IDREC)

IF(IER NE. O) WRITE(16,234)IER

IF(IER CT.0) GO TO 310

DO 50 MA=1, NOCLAS

CLAPNT (MA) =0

DO 50 mMDB=1, NOCHAN

IMEAN(MA, MB)=0

RMEAN(MA, MB)=0. O

DO 50 MC=1, NOCHAN

IVAR (MA, MB, MC)=0
50 RVAR(MA, MB,MC)=0.0

LNWRT = O
55 READ(11)J, K, LINENO, (PNTCLS(IX), IX=1, NOPNTS)

IF(J. GT. 6) GO TO 95

LNWRT=LNWRT+1

IF (MOD(LNWRT,25). EG. 0) WRITE(16, 57)LNWRT, NOLINE
57 FORMAT(S5X, I4, * LINES OUT OF ’, 14, * ARE COMPLETED’)

C 336 3 3435 36 38 3636 34 36 34 36 1 36 3 336 35 3 30 36 36 3636 36 3 3 3 30 3 20 36 333 36 3 36 3 3 3 3 3 3 I 3 M I F 3 33 I 33 I M H AR

C GENERATE AND WRITE DATA POINTS
C 33636 38 35 36 36 36 38 3536 35 35 336 363 3436 36 3 3 3 3030 3038 3 36 3 36 3030 30 3303 3 3038 36 363 396 3538 I 2030 30 5030 336 3 3 0 330 3 3 0 S

60 I2=ILIN(
é

7

3

4

I1COUNT=4

DO 20 IX=1, NOPNTS
ICOUNT=ICOUNT+1

I2=PNTCLS(IX)
L1(1)=. FALS
IPOL=(I2-1)#NOCHAN
IBEG=(12-1)%NOCOMP
K=1BEG
DO 65 I1Y=1, NOCHAN
DO 65 1Z=1,1Y
K=K+1
B(1Y, 1Z)=Z(K)
IF(IY.EQ. IZ) GD TO &5
B(IZ,1Y)=0.0
65 CONTINUE
DO 70 IY=1,NOCH
CALL RANDU(XSTART(IY):NXINP.AZ(IY))
ISTART (1Y )=NXINP
CALL RAJDU(ISTART(IY) NXINP, ACIY))
ISTART(IY) = NXIN
. AC(IY)=5QRT (-2. *ALOG(A"(IY)))*CDS(b 28318*A(IY))
70 CONTINUE
CLAPNT(I2)=CLAPNT(I2)+1
DO 80 IY=1, NOCHAN
DATA(IY)=0.0
1Q=NOPOOL#NOCOMP+IPOL+1Y
DO 75 I1Z=1, NOCHAN
75 DATA(CIY)=DATA(IY)+B(IY, IZ)*A(1Z)
DATA(IY)=DATA(IY)+Z(IQ)
INTDAT=DATA(IY)+. 5
IF(INTDAT.LT. O) INTDAT=0
IFC(INTDAT. GT 255) INTDAT=255
ISTAT(IY)=INTDAT
DATOUT( (1Y—-1)#NOSAM+ICOUNT)=LOGDAT (2)
D0 92 1Z=1,6
52 DATOUT((IY-1)#NDSAM+ICOUNT+IZ)=. FALSE.
30 CONT INUE
DO S0 11=1, NDCHAN
IMEAN(IZ2, I1)=1HZAN(I2, IT)+ISTAT(II)
DO 90 JJ=11,NOCHAN
IVAR(IZ, 11, JUI=IVARCIZ, 11, JJ)+ISTAT(II)#ISTAT(JJ)

90 CONTINUE
NOBYTE=4+NOCHANXNOSAM

CALL TOFiR(12, N3RYTE, IER, DATOUT)
IF(IER. KE. O) WRITE (16, 234)IER
IF(IER.GT. O) GD T0 310
GO TO 55

95 CONTINUE



EILE:

98

100

605
610
615

620
622
625
&30

&35
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DO 100 IP=1, NOCLAS

DO 100 I0=1, NOCHAN

IF(CLAPNT(IP). LE O0) GO TD

RMEANICIP, XD)=FLOMF(IMEAN(IP 10))/FLOAT(CLAPNT(IP))
DO 100 IT=10, NOCHAN

IF(Ct APNT(IP).LE 1) GO TO 100
REFNT=FLOAT(CLAPNT (
REVAR=FLOAT(IVAR(IP,
REMEAN=FLOAT(IMEAN(I
SEHEAN=FLDHT(INEAN>{
R(

|~

RVAR(IP, 10, IT)=(1. ) #(REVAR—REMEAN#SEMEAN/REPNT)
RVAR(IP, IT, I0)=RVA
CONT INUE

DO 645 IP=1, NOCLAS
WRITE (&, 605 IP, CLAPNT(IP)

FORMAT (1H1/5X, ‘CLASS NUMBER‘, I3, 5X, I8, * POINTS’///)

WRITE (6, 610) .

FORMAT (37X, ‘ACTUAL ‘, 4X, ‘SIMULATED ‘)

WRITE (L, 615)

FORMAT (38X, "MEAN’, 7X, ‘MEAN’/)

DO 622 IX=1, NOCHAN

NINC=NOCOM=2#NOCLAS+(IP—1)*NOCHAN

WRITE (6, 622)FETVC3(1IX), FRGCAL(1, FETVC3(IX)), FRQCAL (2, FETVC3(IX)),

1.)
2 IT)

S2(NIHNC+IX), RMEANCIP, IX)

FORMAT(5X, “CHANNEL “, I3, 2X, ‘(’,F5. 2, '=*,F5. 2, *) ‘, 5X, FB. 3, 3X, F8. 3)
CONT INUE

WRITE (&, 625)

FORMAT(////7/5X, "ACTUAL COVARIANCE MATRIX‘)
DO 630 NO=1, NOCOMP

NINC=(IP-1)#NOCOMP

A(ND)=Z2(NINC+NO?

CALL WRTMTX (A, NOCHAN, FRQCAL, THREE, FETVC3)
WRITE (&, 635)

ESRgAT(////SX.‘SIHULATED COVARIANCE MATRIX’)
DO 640 ID0=1, NOCHAN

DO 640 IN=1, 10

NO=NO+1

A(NOY=RVAR(IP, 10, IM)

CALL WRTMTX (A, NOCHAN, FRGCAL, THREE, FETVC3)
CONTINUE

CALL TOPEF(12, IER)

DO 650 IX=3, 200

IDREC(IX)=0

CALL TOPWR{12, 800, IER, IDREC)

IF(IER NE 0) WRITE(1&6,234)IER

IF(IER_GT.0) GO TO 310

GO TO 320

FORMAT (5X, ‘ERROR IS, 15)

(C 363035 36 46 3630 36 3 35 38 230 369 36 3030 36 36 3 3030 30 30 36 336 30 3030 3 36 30 3 3 343 3636 363 3030 33 3 2 0 3 03 30 2 3 03 R H AR

C ERROR MESSAGES

C 33634 38 3 383 34 >0 30 ot 38 B 303 I T I AT R I TR 3 I M 3 I I NN NN R

Cc

WRITE (6, 305)

FORMAT(S5X, '"ERROR -1"’)
WRITE (6, 315)

FORMAT(S5X, "ERROR GT 1)
STOP



156

FILE: HUGHES FORTRAN A LARS / PURDUE UNIVERSITY

FHEH AR AR EREDRDERRRBRBRER DI H RS R BB FER B RS R RBRERSFERBSRARBTRREES

HUGHES FORTRAN
PROG 4 TO CALCULATE THE PROBABLITY OF ERROR FOR TWOD CLASSES
EZE£8£M REQUIRES AS INPUT A DECK IN THE READER FILE AS
J 1
— FIf:ST CARD: NUMBER OF TRAINING SAMPLES OF CLASS 1
(FORMAT I3)
= %{E?NRTC?gb NUMBER OF TRAINING SAMPLES OF CLASS 2
<M
— M&ANS AND COVARIANCE MATRICES OF CLASS 1 AND 2 IN
LARSYS FORMAT
THE FROGRAM GIVES AS AN OUTPUT THE PROBABILITY OF CORRECT
CLAGSIFICATION FOR EACH CHANNEL (FOR CHANNEL1, CHANNEL 1,2
GCLS 1,2,3, ETC. ), THE TRANSFORMATION MATRIX AND THE
NEW MeAN AND COVARIANCE MATRICES
THE PRGGRAM REGQUIRES THE FOLLOWING EXEC FILE

GETDISK IMSL

GLOPAL TXTLIB FORTMOD2 CMSLIB DIMSLIB SIMSLIB
LOAD HUGHES

START

36 3 35 3 3 3 30 3038 3 3 3 3636 3 45 36 30 0 3 303 50 3030 30 3 30 30 3 36 330 3 303 5 3 3 3634 3 W 0 F I3 3033 36 33035 3 3 3 33 M H AR

35 36 3 35 3 3 3435 3E 38 3F 36 30 36 36 2 I 3 I 3 35 36 36 3 3 36 35 36 36 3 35 I 96 3 35 6 3 3 36 36 36 5 3 36 I 5 36 30 96 T 3 36 I 36 30 3 36 I 333 H

LIST OF VARIABLES

N1: NUMBER OF TRAINING SAMPLES OF CLASS 1

Ne: NUMBER OF TRAINING SAMPLES, PF_ CLASS 2

EGVAL1: EIGENVALUE VECTOR OF 3, ¥, AFTER TRANSFORMATION
DD1- NEW MEAN VECTOR OF CLASS 1

DD2: NEW MEAN VECTOR, OF CLASS 2
VSGMAL: VARIANCE OF "“ VAR H(X/W
VSGMA2: VARIANCE OF &, = VAR H(X/W
TRANSL: TRANSFOUrHATION MATRIX

S51 HEW COVARIANIT MATRIX O CLASS I

SS2NZW: NEW COVARIANCE MATRIX OF CLASS

CONST: MJLTXPLICATIVE FACTOR OF VAR ( fﬁ AND VAR (ﬁ )

Q(Nﬁﬁ(uﬁnf“ﬁﬁrﬂﬁOﬁ(ﬂﬁOﬁfﬂﬁﬁfﬂﬁﬁ(ﬂﬁofﬂﬁOfﬂﬁﬁfﬂﬁﬁ(ﬂﬁﬁfﬂﬁﬁf

R R X S R S e
IMPLICIT REAL#8 (A-H,C-Z)

REAL =8 SIGMA1(78),SIGMA2(78), AINV(78), WK(102), PS152(12, 12),
#WR(168), M1C12), M2{12), PERPOR ECVECG(ILAI) EGVECT(1,12),CC(1, 12),

%EGVA LR(24), EGVECR(25Q), 516M15(12, 12), AA(1, 1), DEGVEC(12, 12),
(12), BATACH(12), TtVHl(l“),DD GVC (12, 12), MEANR(2), MEANS(2),
), SGMS(2), GAMAR(2), GAMAS(2), ALPHR(2), ALPHS(2),
CS(2), A(2),B(2), DELTAR(2), DELTAS(2), DIST(2), ERROR(2),
(78),SSQNEN(79).ASGMS(2).ASCHH(Z).
(12, 12),DD1(12), DD2(12), TRANS (12, 12), TRANG1 (12, 12),
s WOK(400), MEANS1 (12, 2), MEANR1 (12, 2), SGMS51 (12, 2), SGMR1(12, 2)
(12)., VEGMA(Z)
X% 16 EGVAL(12), EGVEC(12, 12), ZN,
Di(12),D2C12)
EQUIVALENCE (EGVAL(1),EGVALR(1)), (EGVEC(1,1),EGVECR(1))
(&
CoH3 333t 234 2% 302 23303 S H 2 36 3 2 8 R 3 R F ST A I IR H LR TR H R E AR RN
C
C READ NUMBER OF TRAINING SAMPLES 0OF CLASS 1 AND 2
e ReAD IMIAN VECTORE UF CLASSES 1 AND 2
{c READ COVARIANCE MATRICES OF CLASS 1 AND 2
8%4{*#%***#ii**ll*&}#ilii*%***i**i**li**4#***{*{*&{{#&*&&****'*}
(¢
READ(5, 967)N1
READ (5, 957)N2
67 FOSMAT(13)
READ (5, 130)M1
READ (S, 130)M2
READ (9, 130) SIGMA1L
READ(S, 1Z0)SIGMA2
120 FORMAT(2X, 5E14.7)

R R bt L S S S bt & 2
€ COMPUTE INVERSE 0OF COVARIANCE MATHIX OF CLASS 1

CHEAX BB R T LD B PR AR ER R R RN LT N R SRR RAFHHHER TSR HI R F R F 32 R HHHT



157

FILE: HUGHES FORTRAN A LARS / PURDUE UNIVERSITY

+(1 O/EGVAL1(I)##4)#(B O/N1 +8. O0O/N2 +128. O/ (N1#N2) +40. O/N1#%2
+40 O/N2+#+2 +48 0O/Ni1+®#23 +48. O/N2#+23 4512 O/ (N1*#2#N2)
+512. O/ (MN1#N2##2) +1920 O/ (N1##2#N2##2) +576 0O/(N1%#523#N2)

+576 O/(N2##3+HM1) 42112 O/ (NI1##2#N##3) +2112 O/ (Ni1##35N2##2)
+2204. O/ (N1##3#N2x#3) +4 O#DUSGR21(1)#(4 0O/N1 +8. O/N2

+B O/N1#%2 +40. O/N2+#%2 +64. O/ (N1*NZ) +256. O/ (N1#N2##2)

+96 0/ (N1##2#N2) +4B. O/N2##3 +288 O/ (N1xN2#%x3) +352 0/ (N1 *##2#N2
#42) +38B4. O/ (N1##2#N2##3)) +4 O#D5GHR21(1)#22#(2. O/N1 +8. O/N2
+40. O/N2##2 +24 0/(N1#N2) +48. O/N2##3 +8B8. O/ (N1&#N2*#2)

+96 O/ (N1&N2#%3))))

VSGMA(2)=VSGHMA(2)+4. O*((EGVAL1(I1)#%#4)#(B. O/N1 +8. 0/N2
+128. O/ (N1%N2) +40. O/Ni+##2 +40 O/N2#%2 +483 O/N1##3 +408 O/N2%#%3
+912. O/ (N1#+22%N2) +512 O/ (NI1#N2##2) +1920. O/ (N1#&24MN2#82)
+576. O/ (N1##3+N2) +576. O/ (N1#N2#*#3)
+2112 O/ (N1 ##3xN2*#2) 42112 O/ (NI1##2#N2##3) +2304 O/ (N1##3#N2#*#3
)) +(4. O#EGVALI (1) ##3)# (DSQR21(I1)#(8 O/N1 +4 O/N2 +8 O/N2%#2
+40. O/N1+##2 +64 O/(N1#N2) +256. O/ (N1#¥2#N2) +96. O/ (N2##2%N1)
+48. O0/N1%#%3 +288. O/ (N2®#3+N1) +352. O/ (N1##2#N2##2) +
384. O/ (N2x#Z#N1+#3)) —(4.  O/N1 +4. O/N2 +8. O/N1+##2 +8. O/N2##2
+32 O/(N1%N2) +40. O/ (N1#N2%x2) +48. O/ (N1*#2#N2)
+64 O/ (N1##2%#N2x%2))) +(2. O¥EGVAL1(I1)+¥#2)#(4. O/N1 +4 O/N2
+8. O/ (N1%N2) +(2. O#DSQR21(1)#%2)#(B. O/N1 +2.  O/N2 +40. O/N1#%2
+24. O/ (N1%N2) +48. O/N1%#3 +B8. O/ (N1##2aN2) +96. O/ (N1##3#N2))
—4. O#*DSGAR21 (1) #(2. O/N2 +4. O/N1 +12. O/ (N1#N2) +8. O/N1*#2
+16. O/ (N1##2#N2##2))))

DO 141 J=1,2
IF(A(J). GT. 0. 0)GO TO 979

MEANS(J)=MEANS(J)+A(J)*(1. O+B(J *2

SGMS(J)=SCMS(J)+2. O# ( (A(J)##2)# (1. 0+2. O%#(B(J))I#%2))

974 FORMAT(10X, ‘SGMRB = ‘,F20. 4)

C 36563 3636 36 38 3630 36 38 33036 36 36 36 56 30 6 363636 36 96 3090 3036 3030 90 5 36 303 3 36 90 56 4 30363 30 38 336 303 3 3 96 3 3 30 3
% - -

g CALCULATE MULTIPLICATIVE FACTOR AND NEW W‘AND ?:_

C 36363336 30 36 346 30 30 3030 303038 3 33 36 333 S M I3 B S B SIS M RN AR RNAR

C
7% XZX=CFLOAT(I)

CONST=0 142 O#(XIX=xD) /I8 2Ny

* ok kK X QOO

¥k ¥k x QONCUNDWMN-

143 ASGMS(J)=SCMS(J)+CONST#DSART(VSGMA(J))
192 ALPHS(J)I=((MEANS(J) ##2) /ASGMS(J))—-1. 0
IF(ALPHS (V). GE. 0. 35)GAMAS(J)=1. 0
CS{(J)=(MEANS(J) ) -DSART((GAMAS(J)+1 0)*ASGMS(J))
DELTAS(J)=ASGMS5(J) / (MEANS(J)-CS(J) )
CS(U)=—MEANS(J)-DSART( (GAMAS(J)+1. 0) *xASGrS(J))

IF(A(J). GT. 0. 0)GO TO 142
GO TO 144

142 MEANR(JI=MEANR(J)I+A(J)# (1. O+B(J) ##2)
GMRX(JI=SCMR(J)+2. O# ( (A(J) ##2)3#(1. O+2. O* (B (J) ) ##2))
874 FORMAT (30X, F20. 4)
873 FORMAT (10X, F20. 4)
XZX=DFLDAT(I)
144 ASGMR (J)=5G6MR (.)) +CONST#DSQRT(VSGMA(J) )

193 ALPHR(J)=((MEANR(J)#+2) /ASCMR(J))-1.0
IF(ALPHR (J). CE. 0. 35)GAMAR(J)=1.0
CR(JI=MEANR(J)-D5QRT((GAMAR(J)+1. O)#ASCGMR(J))
LELTAR(J)=ASGMR(J) / (MEANR(J)—-CR(J))

Cl41 CONTINUE

C 3635 35 36 3 35 36 35 3 31 36 36 36 35 36 35 36 3 3 36 36 35 3 3036 3 36 369 36 4 36 30 3636 36 W 330 39 3 3 S0 A B N H B3 KR

CALCULATE PRORABILITY OF ERROR

(o 2 R e S R e s S s 223

[glelp)

SOIIEEI+DLOu(EGVALl(I))+((DD”(I)—DDI(I))##“)/(EGVALI(I)*I 0)
DIST (J)=PSI-(CR(J)-CS(J))
145 CONTINUE

)+
SUKY ) ) ##CAMAR(K) ) #
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FILE: HUGHES FGRTRAN A LARS / PURDUE UNIVERSITY

(o3
CALL LINVZ2(SIGMAL, N, AINV, IDGT, EE1. EE2, WK, IER)
WRITE(6,117)1IER
117 FORMAT(* “, I3)

CHIEFHRBDESHANUSE 2D D035 3 F 33333893 30303530 30 3636 20 36 3 3636 36 3 36 3F 36 3 9% 3 3 % %

C COMPUTE INL/ERGE OF COVARIANCE MATRIX 1 MULTIPLIED

C BY COVARIANLCE MATRIX 2

Coo3t 2 500530 43 30030 00050060060 063000 R0 0 200606 066 U6 02
(&

% CALL VMULSS(AINV, SIGMAZ2, N, PS152, N)

C 3333 3698 33096 236 80 3628 5 2036 2 3036 36 36 35 36 36 30 96 36 30 35 38 36 0 0303596 3 36 36 35 26 3036 20 2 46 9 90 36 26 46 35 3 2 28
COMPUTE EIGENVALUES AND EIGENVECTORS OF (INVERSE(

SIGMAL1)) (SIGMAZ)
€ 3 304 35 46 34 38 96 46 3 35 36 3 35 3 96 3 3638 3636 3530 3 6 56 56 36 3 35 3 35 3 46 36 36 3 038 35 30 63 396 35 3 36 9 363 N B

CALL EIGRF(PS1S52, N, N, 2, EGVALR, EGVECR. N, WR, IERR)
WRITE(6, 117) IERR
WRITE (6, 126)HR(1)

(slplele]

é26 FORMAT(" ‘,Fb.1)
C 3636363536 30 30 2 95 36 342030 48 2 33038 33036 0 3036 3 3030 3030 3036 38 3 36 0636 36 3 30 3 30 3 2 3636 36 90 0 F R 3 F F I
(¢ NORMALIZING EIGENVECTORS (SEE FUKUNAGA,
€ PAGCE 35)
(O e S s e e
C
CALL VCVTSF(SIGMAL, N, SIGM1S, N)
CALL VCVTSE(SIGMAZ2, N, SIGM2S, N)
DO 10 I = 1,N
DO 20 J = 1,N
EGVECT(1,J) = DREAL(EGVEC(J, I))
EGVECS(J, 1)=DREAL(EGVEC(J, I))
20 CONTINUE
NN = N

CALL VMULFF(ECVECT,SIGMXS.I M. NN, 1, N, CC, 1, IEER)
N'IT:(6'126)
C L VMU Fr(yc EGVL&J'&IIMI“‘!K'“IHHIIIIICR)
WRITE(6, 126)I1ER
AA(1, 1) = DSGRT(AA(1,1))
DO 30 K = 1,N
EGVEC(K, I) = EGVEC(K, I)/AA(1,1)

30 CONT INUE

10 CONTINUE

C
C336 3303 0330 R R I H I 242 30 H I 33330 W33 0 330 I J L R E R RN

C
C 363696 35 30 3436 3536 30 3635 36 36 3 38 36 46 35 3 345 96 36 36 30 36 55 3 360 36 £ 3 30 96 36 3 3036 36 3 36 36 35 3 36 3 36 36 36 336 3 4 3 X 2

C CALCULATE NEW MEAN VECTGR DI = EGVEC#MI
C 364 36 3% 35 3638 31 3 36 38 36 3 36 36 30 46 95 3 36 30 36 36 5636 36 36 F0 36 35 36 36 3038 36 30 3 36 35 35 36 0 30 6 3 34 2 I 3 F RN N

[0 CONTINUE

CHFAE U A5 BRI AIHFEEH AU H NN F R LRI H I TR H R R R

C CALCULATE NEW MEAN VECTCRS
O S e 22 22

DO 95 I =1,N
DO 95 J =1,N
DEGVEC(I,J) = DREAL(EGVEC(J, 1))
EGVAL1(I) = DREAL(EGVAL(I))
DDEGVC (I, J) = DREAL(EGVEC(I, J))
D1(I)=5CVEC(J, 1)1&MI(J)+D1(I)
C2(1)=EGVEC(J, 1)#M2(J)+D2(1I)
TRANSTI(I, J)=0. 0
935 CO!HiT INUE
183 FORMAT(SF14.7)
DO 777 1 =1,N
DD1(I1)=DRZAL(D1(I))
DE2(I)=DRzAL(D2(I))

777 CONTINUE
~
c
CRAFRPH AP ERRAR TR R AR ARSI RRH AR RX AR TR H R TR N R HERRER IR AR FRRRRRR

(¢
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FILE: HUGHES FORTRAN A LARS / PURDUE UNIVERSITY

C ORDER THE EIGENVALUES AND EIGENVECTORS ACCORDING TO
g MAXIMUM EIGENVALUE
C 363 4 36 38 3 30 96 3 35 3 3 38 56 30 36 3 90 3 36 90 38 98 36 9 96 36 36 3 4630 38 3 600 36 90 96 35 9 35 35 56 6 06 36 35 36 9 0 6 96 9 0 30 30 3 36 3 M MK
(¢
DO 120 I=i{,N
DO 120 J=1,N
IF(EGVAL1(I)-EGVAL1(J))120, 120, 131
131 TEMP=EGVALi(I)
TEMPP=DD1(I)
TTEMP=DD2(1I)
EGVAL1(I1)=EGVALI1(J)
DD1(1)=DD1({J)
DD2(I)=DD2(J)
EGVAL1(J)=TEMP
DD1(J)=TEMPP
DD2(J)=TTEMP
DO 132 K=1,N
TEMP1 (K)=DDEGVC (K, I)
DDEGVC (K, I)=DDEGVC (K, J)
DDEGVC (K, J)I=TEMP1(K)

132 CONTINUE
120 CONTINUE
C 346 38 3 3 30 3646 30 35 36 35 3636 96 3 3 3 305 50 35 36 36 90 3035 3 31 39 90 3040 0 30 300 30 T 203 2 J 2 H 30U H I3 W H R

Cc
g INITIALIZE ALL PARAMETERS UNDER CONSIDERATION

€ 3636 36 363 36 36 35 36 36 35 30 30 3636 35 36 36 36 36 3 36 90 36 36 30 36 36 36 36 3 3 30 36 36 36 30 9 36 36 3 36 36 36 330 3 96 36 3 3 3 34 363 303 3 AR

WRITE(6, 136)
DO 134 I=1,N
DO 134 J=1,N
TRANS(I,J) DDEGVC(J. 1)
134 CONTINUE

o
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el
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(o] ] N

T~ o (] ] e
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1111 o 1t et bt et et e et
O~~~ Hoon Il

O O bt bt bt bt ot bk 5 S P b

VSGMA(II)=0. 0
135 CONTINUE
8***#&%**ﬁi****&*ii#***#*i**********#***%%%***#l}l{l#f*’***%&*#}{
g CALCULATE PARAMETERS OF GAMMA DISTRIBUTIONS
g*##%*%&*}***%%ﬂ**##%é*h#%%#****&&*&##*%ﬁ#4*&*4**&*#%**&!****#&*!
cle FCRMAT ( + 10X, "FIRST N DIMENSIONS‘, 10X, "PROBABILITY OF ERROR?’)

N
/EGVAL1(T)
DD2(1))/(EGVAL1(I)-1. O)

1,
.0
)_
QL y=1_0
(EGVAL1(I))*(DD1(I)-DD2(I)))/(EGVALI(I)-1.0)
DD1(I)-DD2(1))#x#2

B R R R R R S e e 2

CALCULATE VAR (V') AND VAR (T¥;)

R R E R RN R R AR R E U AR NN R H RN DR R P A BRI Y R FRFHRAERR

aO00000

USGMA(1)=VEGMA(1+4. O#( (2. O/EGVALL1(I)##2)x(4 O/N1 +4 0O/N2
+8. 0/ (N1al2)) —(4 O/EGVAL1(I)+#%3) » (4 O/N1 +4 O/N2 +

8 O/Ni®+7 48 O/NIwu2 +32. O/ (N1&2N2) +43 O/ (NI#N>xa2)

+ 48 O/ (N1##24N2) +64 O/ (NI##2sNlv2 ) + 4 0sDLE21(I) =
(1. 0/N1 42 O/NZ +6. O/ (NI#N2) +4 0,/il##2 +8. O/ (N1#o«#2)))

SLIN) -
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FILE: HUGHES FORTRAN A LARS / PURDUE UNIVERSITY

147 IF(DELTAS(K). EG. 0. 0)GO TO 149
ERROI (K)=((DELTAS(K) /(DELTAS(K)+DELTAR(K) ) ) ## (GAMAR(K)+1. 0))#
1((=C(DIST(K))/DELTAS(K))+1. O+((GAIMAR(K)I4IGAMAS(K) )#*DELTAR(K))/
2&85%8&?;K)+DEL1AS(K)))#*CA%AS(K))GDEXP(DIST(K)/DELTAS(K)
6
149 ERROR(K)=0.0
146 CONTINUE

PERROR = O 5#(1. O-ERROR(1)+ERROR(2))

159 FORMAT (44X, F20. 4)
WRITE (6, 150) 1, PCC
150 FOPMAT(’ ‘, 16X, 12, 25X, F7.5)
151 FORMAT(’ “, 5X,F10. 3.5X.F10 3)
152 CONTINUE
WRITE (&, 155)
155 FORMAT(/)
140 CONT INUE
190 CONTINUE

c
C 36 3 3 3438 3% 3 35 34 38 3 35 35 36 35 36 3 30 35 35 36 2030 362 3634 3 30 36 353 34 30 30 36 3 06 3 53 3 36 3030 36 36 30 3 38 302 3 F AW RN

PRINT TRANSFORMATION MATRIX AND NEW MEAN AND COVARIANCE
MATRICES

336 36 36 34 3 3 36 3 3 3 36 38 3636 36 3 3 30 3F 36 3 3630 3 30 3 336 90 S 30 36 I 36 36 3 3 36 36 3 36 3 4 3636 30 3 3 3 9 6 3363 36 3 3N

Oo00000n

WRITE(L, 919)
919 FORMAT (10X, ‘TRANSFORMATION VECTOR )
WRITE(L, 183) ((TRANS(I,J).J=1,N), I=1,N)
WRITE (6, 9220)
920 FORMAT(//)
WRITE(&, 921)
921 FORMAT (10X, ‘“NEW MEAN VECTORS AND COVRIANCE MATRICES OF CLASS 1
# AND 27)

~N
£
~
()]
U)
Z

10N
e
=
+

SSINEW( I+

746  CONTINUE

748  CONTINUE
NMN=N# (N+
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Appendix F

Description of Data Sets For Experiments
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Training and Test Fields for Aircraft, Simulated

Data Set (Tape 203, file 3)

Training Fields

CLASS CORN
RUN(71053200), LINE(304, 326, 2), COL(109, 133, 2)
RUN(71053%00), LINE(512, 528, 1), C0OL (87,93, 1)
RUN(71053900), LINE(&20, 636, 1), C0OL(107, 123, 2)
RUN(71053900).: LINE(&6956, 676, 2), COL(33, 59, 2)
CLASS FOREST
RUN(71053%00), LINE(798,812,1),C0L(141, 161, 2)
RUN(71053900), LINE(704, 720, 1), COL{(147, 155, 1)
RUN(71053900), LINE(726&, 736, 1), C0OL(81, 95, 1)
Test Fields (Also Area Classified)
TEST CORN
RUN(71053200), LINE(143, 154, 1), C0OL(42, 57, 1)
RUN(71053200), LINE(305, 318, 1),C0L(116, 132, 1)
RUN(71053200), LINE(403, 413, 1),C0L(17,33, 1)
RUN(71053900). LINE(&643, 657, 1), COL. (121, 127, 1)
RUN(71053%00), LINE(&84, 691,1),C0OL(11, 30, 1)
RUN(71053200), LINE(857. 866, 1), C0OL(34, 53, 1)
TEST FOREST
RUN(71053900), LINE(424, 430, 1), C0OL (161,173, 1)
RUN(71053900), LINE(S521, 531, 1), C0OL(142, 162, 1)
RUN(71053900), LINE(711,728,1),C0L(149, 158, 1)
RUN(7103539200), LINE(769, 779, 1), C0OL(127, 148, 1)
RUN(71053%200)., LINE(837, 851, 1), COL(155, 162, 1)
RUN(71053900), LINE(923, 931,1),COL(70, 79, 1)
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Training and Test Fields for Aircraft, Real

Data Set (Tape 203, file 1)

Training Fields

CLASS CORN
RUN(71053900), LINE(304, 326, 2),COL(10%9, 133, 2)
RUN(71053900);LINE(512;528;1)-CDL(87,93:1)ﬁ
RUN(71053900).LINE(620:636,1):COL(107.122:;)
RUN(710539g$):LINE(656:676,2).CDL(33,59.;)
CLASS FORE
RUN(71053900), LINE(798, 812, 1),C0L(141, 161, 2)
RUN(71053900), LINE(704, 720, 1), COL(147, 155, 1)
RUN(71053900), LINE (726, 736, 1), COL (81, 95, 1)

Test Fields (Also Area Classified)

TEST CORN

RUN(71053%200), LINE(227, 247, 1), COL (81, 96, 1)
RUN(71053900), LINE(334, 351, 1), COL (66, 100, 3)
RUN(71053900), LINE(452., 474, 2),C0OL (108, 119, 1)
RUN(71053900), LINE(597,611,1),C0OL(137, 153, 2)
RUN(71053700), LINE(&46, 664, 1), C0OL(101, 128, 2)
RUN(71053%200), LINE(711,721,1),COL (102, 113, 1)
TEST FOREST
RUN(71053900), LINE(241, 249, 1), COL(27, 45, 1)
RUN(71053700)., LINE(509, 527, 1), C0OL (181, 193, 1)
RUN(71053%00), LINE(729, 751, 2),COL(201,217, 1)
RUN(71053200), LINE(7&5, 803, 2), COL(191, 203, 2)
RUN(71053900), LINE(833, 855, 2). COL(151, 171, 2)
RUN(71053%00), LINE(989, 1005.1).,C0L(141, 155, 2)
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Training and Test Fields for Landsat, Multitemporal,

Simulated Data Set (Tape 203, file 6)

Training Fields

CLASS CORN

78843016 25 32 1 33 42 1
78843016 62 &7 1 133 141 1
76843016 % ¥ 1 75 '8 i
CLASS SOYB ° '
788430164 5 12 1 61 77 1
78843016 74 82 1 S51 64 1
78843016 110 117 1 167 172 1

Test Fields (Also Area Classified)

TEST_ CORN
RUN(78843016), LINE(2,12, 1), COL(30, 34, 1)
RUN(78843016), LINE(38, 46, 1),C0OL(18, 26, 1)
RUN(78843016), LINE(55, 58, 1), C0OL(103, 117, 1)
RUN(78843016), LINE(16,22,1),C0OL(123, 127, 1)
RUN(78843016), LINE(70, 73, 1), COL (80,89, 1)
RUN(78843016), LINE(85, 93, 1), C0OL(47, 50, 1)
RUN(78843016), LINE(102, 104, 1), COL (140, 155, 1)
RUN(78843016), LINE(107, 115,1),C0OL (11,15, 1)
TEST SOYBEANS

RUN(78843016), LINE(1,4,1), COL(?1, 100, 1)
RUN(78843016), LINE(16, 20, 1), COL (56,70, 1)
RUN(78843016), LINE(32,34,1),C0L(114, 124, 1)
RUN(78843016), LINE(49,51,1),C0L(113, 125, 1)
RUN(78843016), LINE(76,84,1),C0OL(31, 40, 1)
RUN(78843016), LINE(99, 106, 1), COL (127, 132, 1)
RUN(78843016), LINE(106, 114, 1), COL(53, 59, 1)
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Training and Test Fields for Landsat, Multitemporal,

Real Data Set (Tape 203, file 5)

Training Fields

CLASS CORN

78843016 26 32 1 32 42 1
78843016 91 98 1 7S, 86 1
78843016 62 &7 1 134 141 1
78843016 30 34 1 91 102 1
CLASS SOYB

78843016 5, 13 1 68 78 1
78843016 74 82 1 o1 63 1
78843016 100 105 1 120 132 1

Test Fields (Also Area Classified)

TEST CORN
RUN(78843016), LINE(2, 11, 1), COL(27, 32, 1)
RUN(78843016), LINE(38, 46, 1),C0OL(19, 25, 1)
RUN(78843016), LINE(103, 106, 1), COL(140, 156, 1)
RUN(78843016), LINE(101, 115, 1),C0_(12, 17, 1)
RUN(78843016), LINE(78,864, 1), C0OL(124, 128, 1)
RUN(78843016), LINE(&67,74,1),C0OL (94,98, 1)
RUN(78843016), LINE(35,41,1),C0L(123, 127, 1)
TEST SOYBEANS

RUN(78843016), LINE(41,44,1),C0OL(67,79,1)
RUN(78843016), LINE(7%,84, 1), COL(31, 40, 1)
RUN(78843016), LINE(106, 114, 1), COL(54, 59, 1)
RUN(78843016), LINE(44,51,1),C0L(118, 123, 1)
RUN(78843016),LINE(1,4,1), COL(90, 100, 1)
RUN(78843016), LINE(10%9, 113, 1), COL(132, 147, 1)
RUN(78843016), LINE(44,47,1),COL(155, 161,
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F.5 Training and Test Fields for Aircraft Binary Tree

Example (Tape 203, file 1)

Training Fields

CLASS WHT1

71053200 11 626 626 1 162 162 TNS=
71053900 12 627 627 1 164 164 1NS-
71053700 14 &2 628 1 159 159 INS-
71053900 16 629 629 1 163 163 INS—
71053900 22 635 635 1 167 167 INS—
71053200 3 461 461 i Z1 71 2
71053700 4 461 461 1 79 7S, 2
71053900 4 463 4463 1 75 75 2
71053900 4 621 621 1 167 167 1NS-
71053900 10 624 624 1 159 159 1NS-
71053900 20 633 633 1 161 161 INS-
710537900 21 634 &34 1 163 163 INS-
71053900 27 639 639 1 163 163 INS-
CLASS WHTZ2

71053700 3 314 314 1 163 163
71053200 & 316 316 1 166 166 INS-—
710537200 7 317 317 1 159 159
71053700 8 318 318 1 157 157
71053700 10 319 319 11 S 71 57
71053200 17 24 24 1 167 167
71053200 18 325 325 1 165 165
71053900 21 327 327 1 167 167
71053200 22 328 328 1 158 158
71053200 7 462 462 1 79 79 2
71053200 10 463 463 i 77 77 2
71053700 17 469 469 1 &7 &7 2
71053700 21 471 471 1 75 75 2N5-
CLASS HAY

71053200 2 484 484 1 95 29 2
71053900 1 880 880 1 132 132
71053200 3 882 882 1 126 126
71053700 7 883 883 1 126 126
71053700 14 886 886 1 128 128
71053700 15 887 887 1 133 133
710539200 i8 889 B89 1 134 134
71053900 19 870 890 1 135 135
71053700 20 8791 891 1 128 128
71053700 30 895 895 1 132 132
71053700 i3 488 488 1 41 41 2NS-
71053200 16 490 490 1 43 43 2NS—
71053200 19, 894 894 1 135 135
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CLASS PAS1

71053200 2 402 402 1 157 157 2NS-
71053900 32 417 417 1 1353 1353 2NS—
71053900 34 418 418 1 149 149 2NS—
71053900 1 1012 1012 1 101 101 1NS=
71053900 i 1012 1012 1 102 102 1NS-
71053900 1 1012 1012 i 107 107 INS-
71053700 ) 1014 1014 1 101 101 1NS-
71053900 6 1015 1015 i1 103 103 1NS-
71053200 7 1016 1016 1 102 102 INS-
71053700 10 1017 1017 1 113 113 1NS-
71053900 10 1017 1017 . 1 115 115 1NS—-
71053700 12 1018 1018 1 112 112 1NS-
71053700 15 1020 1020 1 107 107 INS-
CLASS PAS2

71053900 0 418 418 1 147 147 2
71053700 o) 88 588 1 &7 &7 2
71053200 (o) o589 589 1 65 65 2
71053200 (0] 589 589 1 &7 67 2
71053200 o) 589 589 1 &9 69 2
71053700 (0] 089 9589 1 75 75 2
71053200 o) 2993 593 1 71 71 2
71053700 0O 995 595 1 61 61 2
71053700 (0] 995 595 i 7! 7l 2
71053700 0 996 596 1 57 o7 2
71053700 0 596 596 ) 29 o9 2
71053700 0O 596 9596 1 &7 &7 2
71053700 o) 597 597 1 &3 63 2
CLASS SOY

71053700 4 424 424 2 125 125 2NS-
71053700 3 336 336 2 165 165 2NS—
71053700 22 352 352 2 165 165 2NS—
71053700 i 488 488 2 123 123 2NS-
71053900 2 488 488 2 133 133 2NS—
71053200 22 500 500 2 127 127 2NS—
71053700 9 312 312 2 63 63 2NS—
71053900 10 312 312 2 &7 &7 2NS—
71053700 ) 424 424 2 131 131 2NS—
71053700 7 426 426 2 113 113 2NS—
71053200 11 426 426 2 137 137 2NS-
71053700 41 440 440 2 137 137 2NS—
71053700 23 502 3502 2 119 119 2NS-
CLASS CRN

71053900 8 916 516 1 93 93 INS-
71053700 10 o218 518 b 87 87 INS-
71053900 17 221 521 1 93 93 1NS-
71053900 11 623 623 1 121 121 2NS—
71053700 15 625 625 1 123 123 2NS—
71053200 3 656 656 2 a3 53 2NS—
710537200 23 322 322 2 119 119 2NS—
71053700 29 326 326 2 111 111 2NS~
71053900 19 227 527 1 20 20 INS-
71053900 8 660 660 2 39 39 2NS—
710353700 16 664 664 2 45 45 2NS—
71053700 24 668 668 2 55 S5 2NS—
710537200 29 &72 672 2 41 41 2NS-
CLASS FST

71053900 11 731 731 1 85 85 INS-
71053900 13 709 709 1 154 154 INS-
71053200 17 711 711 i 151 151 INS-
710537900 32 718 718 1 147 147 INS-
71053900 3 726 726 1 20 2?0 1NS-
71033200 4 726 726 1 99 99 1NS—
71053700 27 732 732 1 95 95 1INS-
710539200 32 735 735 1 82 82 1NS-
71053900 15 803 803 1 149 149 2NS5—-
71053700 20 805 805 1 145 145 2NS—
71053900 30 809 809 1 141 141 2N5-
710539200 11 709 709 1 151 151 INS—
71053900 28 718 718 i 151 151 I1NS—
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CLASS WAT
71053900 ) 888 888 1 165 165 1NS-
71053200 8 891 891 1 162 162 1NS-
71053200 9 892 B892 1 164 164 INS=
71053900 i 936 936 1 139 139 INS-
71053200 3 938 938 i 141 141 1NS-
71053900 3 238 938 1 143 143 INS—
71053200 & Q39 939 i 143 143 1NS-
71053200 6 939 939 i 146 1446 1NS—-
71053200 8 941 Q41 i 140 140 I1NS-
71053200 10 943 943 1 138 138 1NS-—
710539200 11 Q44 944 i 140 140 I1NS—
710539200 14 947 947 1 141 141 1NS-
71053700 i5 948 948 1 141 141 1NS-

Test Fields (Also Area Classified)
TEST WHEAT
71053900 304 312 i 155 161 3 WHEATCUT
71053200 uus 839 848 1 &7 70 1 WHEATCUT
71053200 Ué 854 861 i 73 77 il WHEATCUT
71053200 uu7 829 851 2 73 91 2 WHEAT
71053900 HH3 619 641 2 151 161 1 WHEAT
71053200 GG2 569 575 1 145 148 1 DATSCUT
71053900 FF? 459 475 2 81 99 1 OATS
TEST HAY
710539200 22 873 887 1 19 67 2 HAY
71053900 L8 899 923 2 85 99 1 HAY
710539200 C4 252 275 2 33 35 1 HAY
71053900 G2 659 661 1 92 96 1 HAY
71053900 Q5 713 715 1 39 50 i HAY
71053200 CCQ 361 387 2 155 145 1 HAY
71053200 B9 313 327 1 173 185 1 HAY
TEST PASTURE
71053900 589 599 1 77 53 i PASTURE
71053900 221 1021 1031 1 103 117 1 PASTURE
71053200 01 731 743 1 31 55 = PASTURE
71053900 12 669 675 1 101 123 2 PASTURE
71053700 T9 1013 1037 2 201 211 1 PASTURE
71053200 HH? 683 693 1 97 129 2 PASTURE
71053900 EES 421 439 2 177 191 1 PASTURE
710539200 220 423 445 2 11 27 1 PASTURE
TEST SDYBEANS
71053900 D& 593 613 i 101 127 2 SOYBEANS
71053900 G4 649 687 2 77 83 b SOYBEANS
71053200 RR2 861 867 1 123 149 2 SOYBEANS
710539200 I1S 649 671 2 177 121 1 SOYBEANS
71053900 oo2 479 519 2 105 139 2 SOYBEANS
71053200 R7 449 475 2 27 9o 2 SOYBEANS
710537200 5 205 231 2 195 211 2 SOYBEANS



TEST CORN
1053200
053900
053700
053200
053700
053700
053700
053700
1053900
1053700
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Training and Test Fields for Landsat, Multitemporal

Binary Tree Example (Tape 203, file 5)

Training Fields

CLASS CORN

78843016 0] 28 28 i 33 33 1
78843016 o) 29 29 i 39 39 i
78843016 o) 30 30 i 37 37 1
78843016 0] 30 30 1 42 42 1
78843016 (0) 32 32 i 34 34 i
78843016 o) 32 32 1 35 39 1
78843016 0 32 32 1 39 35 i
78843016 0 64 64 1 134 134 1
78843016 9) 64 64 1 187 137 1
78843016 0] &5 695 1 141 141 1
78843016 o) 30 30 1 93 ?3 1
78843016 (o) 30 30 1 96 96 1
78843016 (0] 34 34 1 102 102 1
CLASS SOYBEANS

78843016 o) 11 11 1 a2 &9 1
78843016 o) 13 13 1 72 72 1
78843016 o) 74 74 1 =7/ =17/ 1
78843016 o) 74 74 i 63 63 1
78843016 o) 75 75 1 o2 22 |
78843016 0] 76 76 1 26 56 i
78843016 0 76 76 1 61 61 1
78843016 0] 77 77 1 o3 23 1
78843016 (o) 80 80 1 &0 &0 1
78843016 0] 81 81 i o9 o9 1
78843016 0] 82 82 i 58 58 1
78843016 0] 100 100 1 125 125 1
78843016 o) 101 101 1 130 130 1
CLASS ELSE

78843016 o) 21 o1 1 154 154 1
78843016 (0] 52 52 i 154 154 1
78843016 (0) o2 52 i1 160 160 1
78843016 (0] o3 93 1 158 158 1
78843016 (o) 99 05 1 161 161 1
78843016 o) 91 g1 1 180 180 1
78843016 (0] 91 91 1 182 182 1
78843016 (0] 2 92 1 177 177 1
78843016 (o) 4 94 1 178 178 1
78843016 o) 95 99 1 188 188 1
78843016 o) 52 52 1 a9 39 1
78843016 0 1 1 1 20 50 1
78843016 0O 7 7 1 49 49 1
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Test Fields (Also Area Classified)

TEST CORN
RUN(78843016), LINE(2, 11, 1), COL(27, 32, 1)
RUN(78843016), LINE(38,46,1),C0OL(19, 25, 1)
RUN(78843016), LINE(103, 106, 1), COL (140, 156, 1)
RUN(78843016), LINE(101, 115, 1),C0OL(12,17, 1)
RUN(78843016), LINE(78,86, 1), C0OL(124, 128, 1)
RUN(78843016), LINE(&67,74, 1), COL(94,98, 1)
RUN(78843016), LINE(35,41,1),C0L(123, 127, 1)
TEST_SOYBEANS
RUN(788430146), LINE(41,44,1),C0OL(67,79:1)
RUN(78843016), LINE(7%,84,1),COL(31, 40, 1)
RUN(78843016), LINE(106, 114, 1), COL (54, 59, 1)
RUN(78843016), LINE(44, 51,1),C0L(118, 123, 1)
RUN(78843016), LINE(1,4,1), COL(20, 100, 1)
RUN(78843016), LINE(109,113,1),C0OL(132, 147, 1)
RUN(78843016), LINE(44, 47, 1), COL(155, 161, 1)
TEST ELSE

- RUN(78843016), LINE(33,42,1),C0L(137, 141, 1)

- RUN(78843016), LINE(S54, 57, 1), COL(3%, 52, 1)
RUN{78843016), LINE(55, 59, 1), COL(136, 149, 1)
RUN(78843016), LINE(95, 109, 1),C0OL(191, 194, 1)
RUN(78843016), LINE(108, 114, 1), COL(83,8%9, 1)



