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II • MODEL ASSUMPTIONS

There is general
sensing c01lllDunity)
cover a mixture of
density functions

reflectance. The

The Statistical Reporting Service (SRS) of
the U.S. Department of Agriculture uses data
from earth-observation satellites to decrease
the variance of aurvey estimates of crop areas.
This is accomplished by using a regression
estimator in which the enumerated survey item is
the primary variable and some transformation of
the satellite data is the auxiliary variable.
The auxiliary variable currently used by SRS is
the sample-unit aggregation of the results from
discriminant analysis performed on the satellite
data. This study investigates an alternative
auxiliary variable--the sample-unit aggregation
of estimated posterior probabilities. We derive
formulas for the expected variance of the
regression estimator in terms of population
characteristics and information measures for the
two auxiliary variables. The two auxiliary
variables are compared using the developed
formulas.

I. INTRODUCTION

Data Descriptions. Since the mid-1970's, the
U.S. Department of Agriculture's Statistical
Reporting Service (SRS) has been a regular user
of satellite data. SRS uses these data in two
different ways: in construction of area
sampling frames [1,2J and as auxiliary data in
survey estimation of crop areas [3,4,5,6J. The
latter application is the focus of this paper.

The U.S. Landsat satellites provide the
satellite data used by SRS. The current,
Landsat IV satellite contains two different
instruments for collecting earth observation
data. Called the Multispectral Scanner (MSS)
and the Thematic Mapper (TH), respectively,
these two instruments operate on the same basic
principle. That is, over certain intervals of
the electromagnetic spectrum both measure the
amount of energy originating from picture
elements (pixels) on the earth's surface. MSS
measures four spectral intervals; whereas TH
measures seven. Pixel sizes are 0.32 hectares
(0.80 acres) and 0.09 hectares (0.22 acres) for
MSS and TH, respectively.

Annually SRS conducts a June Enumerative
Survey (JES). The JES sample units, called
segments by SRS, are randomly selected from a
stratified area-sampling frame. In agricultural
strata, segments are typically 1 square mile
(260 hectares) in size.

Data Notation. At the pixel level, Z(h,i,j)
denotes the MSS or TH measurement vector for
pixel j of segment i in stratum h. An
information function, g, is a real-valued
function over the Z measurement space.

At the segment level, Y(h,i) denotes the
amount of land planted to the crop of interest
in segment i of stratum h, whereas X(h,i;g)
denotes the auxiliary variable resulting from
the aggregation of g[Z(h,i,j)J over pixels in
segment i of stratum h. The total number of
potential segments in stratum h is denoted by
N(h) and the number of sampled segme~ts by n(h).

At the sample level, Y(h;s) and X (h;g,s) are

the sample means of Y(h,i) and X(h,i;g),
respectively. B(h;g,s) is the sample regression
slope for Y(h,i) on X(h,i;g).

At the stratum level, Y(h) is the total
amount of land planted to the crop of int~rest.
This is the quantity that is estimated. X(h;g)
is the stratum mean-per-segment of the auxiliary
variable X(h,i;g). X(h;g) is known because all
the Z(h,i,j)'s are known. ---

Estimators. In geographical areas where
Landsat data are not available, SRS estimates
Y(h) via a direct expansion estimator, denoted
DE(h), using only ground data. Where both
Landsat and JES data are available, SRS
calculates the following regression estimator:
Reg(h;g) K N(h) [Yih;s) + B(h;g,s) [X(h;g)

- X(h;g,s)]J
The approximate, large-sample variance is
(1) V[Reg(h;g)J; [1-R2(h)J V[DE(h)J,
where R2(h;g) is the square of the stratum
correlation between X(h;g) and Y(h), and
V [DE(h) J is the variance of DE (h) for the same
geographical area.

Statement of the Problem. This paper
investigates how the choice of g, the
information function, affects the variance of
the described regression estimator. We consider
two different information functions: the
classification function, denoted a(.), and the
posterior-probabili ty function, denoted 0(.).
These two functions are described in detail in
Sec tion III. From equation (1) it follows that
the effect of choosing between these two
information functions is characterized by the
following efficacy ratio:

E(h) - R2(h;a)/R2(h;o).
Section V presents formulas by which the
asymptotic value of E(h) can be computed in
terms of population parameters. Section VI
establishes the validity of these formulas, and
Section VII presents the implications of the
derived formulas. In addition to the results of
this paper, Hung [7] describes related work on
this problem.

Use of Models. The direct-expansion and
regression estimators described above are
design-based estimators. Thus no models need be
developed in order to calculate the estimates or
to estimate variances after the survey data have
been collected. Our purpose in using models is
to obtain insight into the choice of the
information function prior to performing the
survey. We develop two interconnected models:
a Landsat reflectance model and a super-
population model for the finite geographical
region of interest. The latter model is
composed of two submodels: a pixel submodel and
a segment submodel.

Landsat Reflectance Model.
consensus (within the remote
that for an individual ground
multivariate normal (HVN)
adequately models Landsat
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We show in the next section that correlations
involving information functions can be expressed
in terms of Fisher information for p.

Marco [9] derives
10· information content in unclassified

data
(1 - b) I p(l-p)

and
Ia - information content in classified

data
kl p(l-p),

We consider two information functions: the
classification function and the posterior-
probability function.

Classification Function. The classification
function is the indicator function for
classification into information class 1. There
are two variants of this function depending on
the decision rule. The Bayes rules classifies
into a spectral class on the basis of the
maximum value of p(i,j)f(Z;i,j); the maximum-
likelihood rule, on the basis of fCz;i,j). Both
rules then classify into the containing
information class.

Of course, any monotone transformation of the
decision criteria can be used to perform an
identical classification. The advantage of the
two step procedure -- first classification into
spectral class, then aggregation into
information class -- is that since the spectral
class distributions are HVN, the decision rules
simplify to a quadratic discriminant. The
winning information class could be determined
directly on the basis of the fCz;i)'s but the
required exponentiations increase the
computational effort and for Landsat data the
increases in classification accuracy are small.

Posterior Probability Function. The
posterior probability function is given by
o(Z)-[pf(Z;l) + (l-p) f(Z;O)] I feZ).

Choice of Information Functions. The
classification function is of practical interest
because of the computational simplicity of the
quadratic discriminant. Also it creates a
classification map which may satisfy non-
statistical, pictorial information needs. On
the other hand, the posterior probability
function is of theoretical interest because in
limiting situations (e.g., M(h,i) always 1 or
c-O) it is known that R*(h;g) is maximized by
g(.)-o(.) [8, pp 264-265].

m
v

and
R*(h;g) • corr*[Y(h,i), X(h,i;g)],

where E* and V* are expectations and variance,
respectively, with respect to the super-
population.

We assume that as i' approaches infinity that
N(i'), n(i'), and N(i') - n(i') do likewise.
Then equation (1) becomes exact and R(h;g)
converges to R*(h;g).

jJlj
h"h' or i"i',

where corr* denotes super-population correlation
and c is a super-population parameter.

Recall that Y(h,i) is the amount of land
planted to the crop of interest in segment i of
stratum h. If the unit of areal measurement is
the size of a pixel, then Y(h,i) is the
aggregation of Y(h,i,j) over j (i.e. pixels).

Other super-population parameters which
describe the segment submodel are the following:

N(i ') number of ~otential segments in
realization i ,

individual HVN distributions in such a mixture
are said to correspond to spectral classes;
whereas the various ground covers are said to
correspond to information classes.

Let f(.;i,j) denote the HVN density for
spectral class j of information class i; f(.;i),
the mixture of MVN densities for information
class i; and f(.), the overall mixture densi ty
for the collection of Landsat data. Information
class 1 is called the target information class
or (in agricultural applications) the crop of
interest. The information classes other than
information class 1 are collectively referred to
as the confusion information class or
information class O.

We assume (spectral class) conditional
independence between the Landsat reflectances of
neighboring pixels. Admittedly, in practice the
reflectance density functions are not known. We
assume, however, that they can be estimated with
sufficient accuracy and precision that density
estimation effects can be ignored.

Super-Population Model. The super-population
model is a sequence of realizations of the
finite, geographical region of interest. These
realizations are generated by pixel and segment
submodels.

For realization i' the pixel submodel
generates N'(i') pure pixels. (A pixel is said
to be pure if it is a member of only one
information class.) The probability that a
pixe 1 is a member of information class 1 is the
same for all pixels in a stratum. This cOllllDon
value is denoted by the super-population
parameters p p(l) I p(O). The
probabi lities of membership in spectral classes
are also identical for every pixel in a stratum.
The notation p(i,j) is the joint probabili ty of
membership in spectral class j of information
class i. (Note: The stratum subscript will be
omitted from model parameters when omission will
not cause confusion.)

The segment submodel then groups together
pixels to form sample units. M(h,i) is the
number of pixels in segment i of stratum h.
Y(h,i,j) indicates membership in information
class 1 (I-yes, O-no) of pixel j in segment i of
stratum h. (For each pixel there are as many
Y(h,i,j)ls as there are crops of interest.
Though only one classification is performed,
each crop of interest is a separate estimation
problem wi th its own information class 1.) The
M(h,i)'s are independently distributed with
respect to each other and with respect to the
Y(h,i,j)'s• The segment submodel assumes that

corr* [Y(h,i,j), Y(h' ,i',j')]
h-h'
i-i ·
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V. MODEL FORMULAS

where
t(h;g) - [1 + (m-l) c]/[l + (m-l)cp(l-p) Ig].

Hence, [R*(h;g)]2 increases with increasing
p(l-p), m, c, and I.

The sign of c determines the rate of change
of [R*(h;g)]2 as a function of increasing I.
Other effects of the sign of c are the
following:

• If c-O, then R*(h;g) - r*(h;g).
• t(h;g) is greater or less than 1 as c is
greater or less than O.
• If c > 0, then t(h;g) decreases with
increasing 1. If c < 0, the opposite is
true.

Let E*(h) [R*(h;a)]2/[R*(h;o)]2 be the
asymptotic limit of E(h),
e*(h) - [r*(h;a)]2/[r*(h;o)]2 and
u(h) - t(h;a) / t (h;o). Then

E*(h) - e*(h) u(h).
The quantity e*(h) is always less than unity.
The quantity u(h) has the following properties:

b J[f(z;l) f(z;O) /f(z)]dz
k p(l-p) (l-d-e)2/q (l-q)
d probability of

misclassification of a pixel
from the target information
class into the confusion in-
formation class

e probability of misclassifica-
tion from the confusion infor-
mation class into the target
information class, and

q pel-d) + (l-p)e
probability of classification
into the target information
class

These two information measures are equal to
zero when f(.;1) and £C.;O) are identical and
are equal to l/p(l-p) when f(.;l) and f(.;O)
have non-overlapping support.

Marco [9] shows that Ia ~ 10. The quantity b
is also the asymptotic error rate for nearest
neighbor classification of f(.;l) versus f(.;O).
The quantity k is called the reliability by
Tenebein [10] and it assumes values in the unit
interval.

Pixel-level correlations. From simple moment
calculations we get the following intra-segment
correlations in order of decreasing absolute
value:

corr*[Y(h,i,j), Y(h,i,j')] • c,
corr*(o[Z(h,i,j)], o[Z(h,i,j')] • c(l-b)

- c pO-p) 10
corr*(a[Z(h,i,j)],a[Z(h,i,j')] • ck

• cp(l-p)Ia for j tj'.
These correlations are for the same random

variable but different pixels. For the opposite
situation let
r*(h;g) corr*(Y(h,i),g[Z(h,i,j)]). For
correlations between different random variables
at the same pixel we obtain

[r*(h;o)]2 - l-b - p(l-p) 10.
[r*(h;a)]2 - k - p(l-p) la'

Since Ia ~ 10, it follows that
r2(h;a) ~ r2(h;o).

Segment-level correlations. If v-O, then
[R*(h;g)]~ - [r*(h;g)]2 t(h;g)

- p(l-p) Ig t(h;g)
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• u(h) is not less or not greater than 1 as c
is greater or less than O.
• u(h) is an increasing function of c and of
m.
• As em approaches infinity, u(h) approaches
l/e*(h); hence, E*(h) approaches 1.

When vtO, the expressions for R*(h;g) become
very involved. The variances and covariances
needed to calculate segment-level correlations
for vtO are given in Table 1. It can be shown
that if c-o but vtO, then R*(h;g) is an
increasing function of v.

VI. SUPER-POPULATION MODEL VALIDITY

Using the derived formulas, segment-level
correlations can be predicted from parameters of
the reflectance and super-population models. We
analyzed an SRS data set to test the validity of
the assumed models, estimate model parameters,
and determine the ability of the models to
predict segment-level correlations.

The analyzed data set consisted of JES and
Landsat data from 1981 for 41 SRS segments.
These 41 segments were contained within a single
Landsat pass 085 kilometers by 350 kilometers)
within Iowa. The Landsat data for pure pixels
of corn, soybeans, paature, and "other" were
decomposed into component MVN densities using
the CLASSY algorithm [11].

Because of the large size of the pixel data
set (31,576 pixels), the remainder of the
analysis was performed in only one agricultural
stratum the largest one, containing 19
segments. The data set was further reduced by
selecting a systematic subsample consisting of
every fourth pixel. (Pixels sorted by Landsat
row and column.) The resulting number of pixels
was 3724 pixels with an average of 196 pixels
per segment.

First, we tested the validity of the super-
population model. Instead of testing the
Landsat reflectance model, we used simulated
Landsat data which were mixtures of generated
MVN variates. Parameters for the simulated
Landsat data were those estimated by CLASSY on
the larger data set. Thus, by analyzing
simulated Landsat data in conjunction with
actual ground data, we were able to examine the
validity of the super-population model alone.

The Bayes-classification and posterior-proba-
bility functions for corn, soybeans, pasture,
and "other" were evaluated for all pixels in
the reduced data set. The psrameters required
by these functions were estimated from the
larger data set.

In addition to the JES assignment of pixels
to segments (which we call Assignment A), two
artificial assignments of pixels were made to
create data sets with different c and v values.
In Assignment B the pixels in the reduced data
set were randomly assigned to one of the 19
segments according to a multinomial distribution
with proportions identically equal to 1/19. In
Assignment C the pixels were assigned
systematically to segments--every 19th pixel to
segment 1, etc.

The parameters m and v were estimated from
segment-size data (with the unit of measurement
equal to the size of a pixel) by the method of
moments. The parameters p and c were estimated



VIII. CONCLUSIONS

D-0.5 and 2.0 for corn and for "other". The
resul ts for soybeans were similar to those for
corn, and those for pasture similar to "other."
These results indicate the following:

The maximum-likelihood classifier has
higher [R*(h;a)]2 values than the Bayes
classifier for D small; whereas, the Bayes
classifier gives slightly higher values for D
large •
• The effect of v (estimated v versus v-O) is
large only in its influence on [R*(h;0»)2 at
small values of D. In this situation,
[R*(h;o)]2 for v estimated is smaller than
for v-O -- so much so, that E*(h) can exceed
1. In all other cases, the effect of v is
small.

E*(h) is an increasing function of v.
Except for the case of the Bayes classifier
at small values of D, E*(h) exceeds 0.90 at
the levels of v estimated for the four crops.

The analyses performed on the Iowa data set
(with simulated Landsat data) and on the two-
class/common-covariance case support the
following conclusions:

1. The postulated super-population model
reliably predicts segment-level
correlations.

2. Using the model formulas with v (segment-
size variability within stratum) set to
zero instead of using an estimated value
has the following effects:
• Small effect in predicting segment-level
correlations under conditions of high
spectral separability.

For low spectral separability, small
effect in predicting R*(h;a), segment-
level correlation between ground-truth and
class ification results, and significant
over-prediction effect in predicting
R*(h;o), segment-level correlation between
ground-truth and posterior probability.

3. The maximum-likelihood classifier has
higher [R*(h;a»)2 values than the Bayes
classifier for low spectral separability;
whereas, the Bayes classifier gives
slightly higher values for high spectral
separabili ty.

4. E*(h), the efficacy ratio of [R*(h;a)]2
(classification) to [R*(h;0)]2 (posterior
probability), is an increasing function of
m (average segment size by stratum), v
(segment size variability by stratum), and
of c (intra-segment correlation). Because
of these effects, low efficacies at the
pixel level are considerably increased at
the segment level. For corn, soybeans,
pasture, and "other" studied in one
agricultural stratum of Iowa, the segment-
level efficacies exceeded 0.90 under a
wide range of conditions of spectral
separability.

from the ground-cover label data also by the
method of moments. The parameter b was
estimated by 1-obs([r*(h;0)]2), where
obs([r*(h·o)]2) is the observed value of
[r*(h;o)]~. This was calculated by tbe pixel-
level product-moment formula for all 3724 pixels
in the reduced data set. The estimates of d and
e were the observed misclassification rates.
Table 2 lists tbe parameter estimates.

Predicted segment-level correlations were
calculated using the estimated parameters and
the moment formulas in Table 1. Observed
segment-level correlations were calculated using
product-moment formulas for the 19 segment
aggregations in the reduced data set. The
observed squared segment-level correlations were
adjusted to unbiasedness under the assumption
that [X(h,i;.), Y(h,i») is distributed
bivariate normal [12].
There was a close agreement between predicted
and observed segment-level correlations. The
coefficients of determination between predicted
and observed values was 0.93 and 0.89 for
[R*(h;a»)2 and [R*(h;o»)2 respectively. When
observed values were regressed on the predicted
values the slopes were not significantly
different from 1.0. The 95 percent confidence
intervals for the corresponding intercepts were
[.02, .22] and [.01, .25] for [R*(h;a)]2 and
[R*(h,o»)2, respectively.

VII. HODEL IMPLICATIONS

Sensitivity Analysis. By evaluating the
model formulas at several different parameter
values, the importance of different parameters
in predicting segment-level correlations can be
determined. This was done to produce Table 3.
In column 3 of the table, the model formulas are
evaluated at the (Assignment A) estimated
parameter values given in Table 2. In column 4,
the same parameter values are used except v-O;
in column 5, c-O; and in column 6, c-v-O. Table
3 indicates the following:

• v has a very small effect on predicted
[R*(h;o)]2 and E*(h) values.

The effect of v on predicted values is
least for large values of [R*(h;o»)2.

E(h) at v-O is a lower bound for E*(h) at v
> O.
• c has a very large effect on the predicted
values.
• E*(h) is an increasing function of cover
the observed values of c.
Two-class/common-covariance case. The

estimated k and 1-b values in Table 2 are larger
than would be encountered in practice. The
reason for this is that only pure pixels were
present in the simulated Landsat data.

Smaller corresponding k and 1-b values can be
determined from the 10 and Ia values given by
Marco [9). These values are for the case of
f(.;l) and f(.;O) both MVN with common variance-
covariance matrix and are tabled by D, the
square-root of the Hahalanobis distance between
the two distributions.

Using m,c,p, and v from Table 2 and also v-O;
k and b based on Marco's I values; and d as a
function of D [13, page 1~]; we evaluated the
model formulas at D-0.5, 1.0, 2.0, and 3.0 for
the four crops. Table 4 lists the results for

IX. RECOMMENDATIONS

On the basis of this study, the
the following recommendations:

1. Because of classification's
level efficacy and low

authors make

high segment-
computational
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effort, classification should be the
auxiliary variable of choice under
conditions. similar to the ones
encountered in this study.

2. If only one classification is to be
performed, the maximum-likelihood
classifier) should be the classifier of
choice for regression estimation. The
reason for this is superior performance
under conditions of low spectral
separabili ty and only slightly inferior
performance under conditions of high
spectral separability.

3. The developed model formulas should be
used as a planning tool in Landsat
investigations. Such use would
indicate potential efficiencies of
Landsat regression estimation.
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Discriminant

Table 1: MomentFormulas

U V Cov(U,V)

Y(h,i) Y(h,i) p[p+(l-p)c]v + p(1-p)m[1+(m-1)c]

X(h,ija) X(h,ija) [q2 + p(1-p)(1-d-e)2c]v
+q(l-q)m + p(1-p)(1-d-e)2cm(m-1)

X(h,ijo) X(h,ijo) p[p + (l-p)(l-b)2c ]v
+p(1-p)(1-b)2[«1-b)-lc)m+cm2]

Y(h,i) X(h,ija) p[q + (l-p)(l-d-e)c]v
+p(1-p)(1-d-e)m[1+(m-1)c]

Y(h,i) X(h,ijo) p[p + (l-p)(l-b)c]v
+ p(l-p)(l-b)m[l+(m-l)cJ
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Table 2: Parameter Estimates for
Reduced Iowa Data Set with Simulated

Landsat Data

m •• 196

v •• 184 (Assignment A)
v •• 288 (Assignment B)
v ••0 (Assignment C)

crop ..L d e ill I-b c(A) dB) dc)

corn .37 .13 .17 .46 .55 .09 .0076 -.0009

soybeans .25 .23 .05 .56 .63 .13 - .0032 -.0047

pasture .17 .32 .16 .21 .29 .15 -.0009 -.0042

other .21 .70 .04 .13 .25 .09 .0020 -.0045

Table 3. Sensitivities of Predicted Values
To Levels of c and v in Reduced Iowa Data Set with Simulated Landsat Data

predicted c, estimated c••o
crop value v, estimated v-O v, estimated v-o
corn [R*(h;a)]2: .93 .94 .64 .46

[R*(h;o)]2: .94 .96 .71 .55
E*(h) .99 .98 .90 .84

soybeans [R*(h;a)]2: .97 .96 .65 .56
[R*(h;o)]2: .98 .97 .72 .63
E*(h) .99 .99 .90 .89

pasture [R*(h;a)]2: .88 .89 .32 .21
[R*(h;o)]2: .90 .92 .40 .29
E*(h) .98 .96 .78 .72

other [R*(h;a)]2: .73 .72 .19 .13
[R*(h;o)]2: .79 .85 .40 .25
E*(h) .92 .85 .49 .52

Table 4. Sensitivities of Predicted Values
to Levels of v and D in

Two-Class/Common-Covariance Case

v·o v, estimated

crop D [R*(h;o)]2 ~I [R*(h;a)]2 E*(h) [R*(h;o) all [R*(h;a)]2
E*(h)

corn 0.5 .51 B .27 .52 .19 B .29 1.49
ML** .43 .84 ML** .39 2.01

2.0 .95 B** .94 .98 .94 B** .94 .99
ML .93 .98 ML .93 .99

other 0.5 .42 B .05 .12 .16 B .05 .32
ML** .35 .83 ML** .30 1.88

2.0 .95 B** .92 .97 .94 B** .92 .98
ML .91 .96 ML .90 .96

Y B ••Bayes, ML ••Maximum Likelihood
** indicates classifier with higher [R*(h;a)]2 for given v and D
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