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ABSTRACT

A inethod of classification of digitized multispectral
imaces is dJdeveloped and experimentally evaluated on actual
earth resources data collected by aircraft and satellite.
The method is designed to exploit the characteristic
dependence between adjacent states of nature that is
neglected by the nmore conventional simple-symmetric decision
rule. Thus contextual information is incorporated into the
classification scheme. The principle reason for doing this
is to improve the accuracy of the <classification. For
zeneral types of dependence this would generally require
more computation per resolution element than the
simple-symmetric classifier. But when the dependence occurs

"redundance", the elements can be classified

in the form of
collectively, in groups, thereby reducing the number of
classifications required. Thus a potential exists for
increased, rather than decreased, efficiency.

rasically, the method can be thought of as an image

partitioning tfansformation' that delineates (extracts) the

statistically homogeneous groups (samples) of elements and a



sample classifier that classifies them. Various
possibilities are considered for both operations.

The main result is that 2 combination of the two is
found which consistently provided the lowest error rates,
rivaling those obtained when ground observational data was
used to dJdelineate the samples manually. The relative
efficiency of this method depends tlargely on the complexity
of the classification task. For relatively complex
classification, the time saved by sampie classification more
than coinpensates for the extra time required for
nartitioning. DBut for‘relatively simple classification the
simple=symmetric classifier is faster. Of course in the
latter case, efficiency 1is not as great a consideration
since the total CPU time involved is much less than in the

former case.



CHAPTER 1
INTRODUCTION

The general objective of thi; thesis is to advance the
state of the art of pattern recognition as it is applied in
remote sensing technology. This -chapter opens with a
Jdiscussion of pattern recognition and remote sensing systems
that leads up to the specific problem under investigation.
In the process much of the prevalent terminology s
introduced. Other work that is related to this probhlem is

discussed in Section 1.3.

1.1 Pattern Recognition Systems

Man's riost abundant source of information about a scene
is the radiant electromagnetic energy which emanates from
it. The information 1is embodied in the spatial, spectral,
and temporal variations (patterns) of the radiance. The
reneral process of extracting information from patterns
(r;diance or otherwise) 1Is known as pattern recognition.
The most common form of pattern recognition is
“"classification", the assignment of an observed pattern to
one of severa} prespecified categories (classes). This

requires a certain degree of experience; i.e. the

recognition system must know the possible classes and have
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some sort of unique characterization for each one.
Typically this experience is "learned" from representative
"training" patterns (or sets of patterns) that are supplied
as references for each class. In the simplest case, each
set of patterns is a complete characterization of the class
it represents. Then classification is a straightforward
matter of comparison, More generally, a statistical
characterization might be the only adequate approach, and
the training patterns imight be wused to estimate statistical
quantities. Classification then becomes a problem in
statistical decision theory.

Of course it s not always possible to prespecify the
categories that a pattern might belong to. This 1is often
true in scene analysis, where the number of possibilities
can be enormous. Then pattern recognition can take the form
of "“description". In general, pattern recognition can
involve beoth classification and description. A complex
scene composed of relatively simple objects is often
described by classifying the objects and recording their
relative positions and orientations in the scene. This
description might be considered the final result, or it
micht in turn be used to classify the scene itself.

A1l systems that extract information from a scene
consist of a data collection system and a data processor.
The purpose of the data collection systém is to reduce the
scene to a manageable number of measurements (features)

without losing the desired information. Further reduction
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(feature selection) is often possible in the processor. The
choice of features obviously depends upon the information
that is desired, and conversely the information that can be
extracted <depends upon the choice of features. Most
collection systems are similar in many ways to the human
eye, which forms features by "sampling'" the spatial,
spectral, and temporal dimensions, thereby converting a
scene into series of electrical pulses. Spatial sampling
can be accomplished ‘by’forming an image of the scene on an
array of detectors (electrical or chemical) or by scanning
the imagze with an electrical detector. The resolution
element of such a system is the projection of the detector
back through the optical system onto the scene. It is
commonly called a “pixel", short for picture element. The
overall system resolution depends on both the pixel size and
the interval Dbetween samples, which are normally about
equal.

Spectral sampling is accomplished by measuring the
radiance of each resolution element with detectors
(channels) that are sensitive to different spectral bands.
A prism, grating, or interference filter is often used to
separate the radiant energy spectrally before detection.
Temporal sampling is accomplished merely by taking spatial
and spectral samples at discrete times.

Depending on the type of information that is desired,
one can emphasize or de-emphastze a particular dimension by

sampling it relatively many or relatively few times. A
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single black-and-white photograph, for example, emphasizes
spatial information since it is created by sampling only
once spectrally and once temporally. A color photograph
contains three spectral samples and thus emphasizes both
spatial and spectral information. The extent to which a
pattern is sampled falls under the category of "measurement
complexity'". Under-sampling results in loss of information,
but over-sampling results in an excess of data to process.
Technically, the data dimensionally increases faster than
its intrinsic dimensionality.

"Data dimensionalityﬂ refers to the dimension of the
easurement or observation space, in which a sampled pattern
can be considered an observation of a multi-dimensional
random variable. The probability density of this random
variable is a function of N variables (dimensions), where N
is the number of measurements. The "intrinsic"
dimensionality of a random variable (X) is the minimum
dimension that another random variable (Y) can have if X is
uniquely related to Y. Thus it is the minimum number of
measurements that could be wused to convey the same
information as X if the relationship were known.
Over-sampling increases the data dimensionality, but the
individual measurements tend to be more highly correlated
causing the information conveyed per measurement to
decrease.

The information that can be extracted from an image is

also limited by the sophistication of the processor which
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imust handle the data. Just as the necessary measurement
complexity depends on the information being sought, so does
the iethod of processing. The human mind is often an
extremely sood processor, particularly when the information
is of primarily a spatial nature. For this purpose the data
is presented in visual image form, which is known as an
"imasce-oriented" processing system. By contrast, in a
"nunmerically-oriented" system the decision-making element is
a computef, and the visual image plays little or no part.
Advantages of the computerized approach are its high load
(volume) capacity, comparatively low cost under high load,

and capacity to handle high measurement complexity.

1.2 Remote Sensing of Farth's Resources

An important subject before the engineering and
scientific community at the present time is the processing
of scenes which represent tracts of the earth's surface as
viewed from above. A typical scene consists primarily of
regular and/or irregular regions arranged 1in a patchwork
manner and each containing one class of surface cover type.
These homogeneous regions are the "objects" in the scene. A
basic processing gzoal is to locate and classify the objects
and produce a description of the scene in terms of tabulated
results and/or a "type-map". As in other image processing
applications, the locations and spatial features (e.z. size,
shape, orientation) of objects are revealed by changes in

average spectral properties that occur at boundaries. But
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unlike most other applications, the spatial features of an
object often have only a weak relationship to its class.
Research has shown, however, that many classes can be
distinguished reasonably well on the basis of their spectral
features, using statistical pattern classification
techniques. Current research is directed toward use of
temporal features as well, but not in this investigation.
OQur interest is in the numerically-oriented system
approach to processing these scenes. The input to the
system is in the form of digitized wmulti-spectral scanner
(MSS) data stored on magnetic tape. A typical
multi-spectral scanner samples the spectral dimension and
one spatial dimension. The second spatial dimension s

nrovided by the motion of the platform which carries the

scanner over the region of interest, generating a
raster-type scan. The temporal dimension s provided by
rescanning the region at different times.

Computer classification of MSS data is typically done
by applying a "“simple symmetric" decision rule to each
nixel, This means that each pixel is classified
individually on the basis of its spectral measurements

alone. A basic premise of this technique is that the

objects of interest are Jlarge compared to the size of a
pixel. Otherwise a 1large proportion of pixels would be
composites of two or more classes, making statistical
pattern classification unreliable; i.e. the prespecified

categories would be inadequate to describe the actual states



1.2 7
of nature. (For later reference we shall call this "Premise
A".) Since the sampling interval is usually comparable to
the pixel size (to preserve system resolution), it follows
that each object is represented by an array of pixels. This
suggests a statistical dependence befween consecutive states
of nature, which the simple symmetric classifier fails to
exploit. To reflect this property, we shall refer to simple
symnetric classification as "“no-memory" classification.

One method for dealing with dependent states is to
apply the principles of compound decision theory or
sequential compound decision theory. Abend |1]| points out
that a sequential procedure can be implemented relatively
efficiently when the states form a low-order Markov chain.
However the prospect is considerably less attractive when
they form a Markov mesh, which 1is a more suitable model for
two-dimensional scenes. Furthermore, estimation of the
state transition probabilities could be another significant
obstacle to implementation of such a2 procedure. A short
appendix on the compound decision approach is included in
this thesis.

The compound decision formulation is a powerful
approach for handling very general types of dependence.
This suggests that perhaps by tailoring an approach mnore
directly to the problem at hand, one can obtain similar
results with considerable simplification. A distinctive

characteristic of the spatial dependence in MSS data is

redundance; i.e. the probability of transition



¥.2 8
from state i to state j fs much greater if j=i than if j#i,
because the sampling interval is small compared to the size
of an object. This suggests the use of an Yimage
partitioning" transformation to delineate the arrays of
statistically similar pixels before classifying them. Since
each homogeneous array represents a statistical "sample" (a
set of observations from a common population), a '"sample
classifier" could then be used to classify the objects. In
this way, the classification of each pixel in the sample is
a result of the spectral properties of its neighbors as well
as its own. Thus its "context" in the scene is wused to
provide better classification. The acronym ECHO (extraction
and classification of homogeneous objects) designates this
general approach.

A characteristic of both no-memory and compound
decision techniques 1is that the number of classifications
which must be performed 1is much larger than the actual
number of objects in the scene. When each classification
requires a large amount of computation, even the no-memory
classifier can be relatively slow. An ECHO technique would
substantially reduce the number of classifications,
resulting in a potential increase in speed (decrease in
cost). Whether or not this potential is realized depends on
the efficiency of the partitioning operation.

The goal of the current investigation is to further the
development of the ECHO concept. In particular, various

processing options are devised, implemented, and tested on a
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wide variety of data sets. |Input parameters are varied to
determine their effect, and performance comparisons are made

using no-memory classification as a norm.

1.3 Related Work

The recent literature contains numerous references to
imagze partitioning algorithms. Robertson |2| divides them
into two main categories. "Boundary seeking'" algorithms
characteristically attempt to exploit object contrast.
These techniques includg local gradient |3,4], template
matching 150 two-dimensional function fitting |61,
clustering 7 and cradients estimated from
variable-sized neighborhoods |8|. Two of these have bheen
implemented with digitized multispectral imagery.

Anuta |4], investigated & multivariate extension of a
two-dimensional gradient operator. The gradient operator of
a unispectral image maps each pixel into a number which
reflects the average pecsitive difference between that pixel
and its neighbors. The multivariate operator sums these
numbers over all spectral features for each pixel. Since
the differences are generally larger for boundary pixels
than for non-boundary pixels, thresholding this sum (for
each pixel) at the "proper" level provides a boundary
enhanced version of the original image. This technique is
relatively fast, but it has several serious problems.

Sirsk, la s inherently noisy, which s typical of

differentiation techniques. It is also very sensitive to
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the threshold level used. Furthermore the boundaries
derived by this technique often fail to close upon
themselves. For example, a boundary 1line may bLecome
discontinuous or fade out completely, leaving the objects
ambiguously defined. In special cases where the object
shape is restricted |3,9|, the true boundaries can sometimes
ve deduced, but in zeneral they cannot. This may not be a
serious drawback for applications such as image
registration, but closed boundaries are necessary for sample
classification. This particular problem is common to all
the boundary seeking algorithms mentioned above,

Wacker |7] developed an algorithm for MSS data which
performs a cluster analysis (unsupervised classification) of
a small region of the image and then scans the result for
the oresence of a boundary. The estimated boundary
structure for the entire image 1is obtained simply by taking
the union of the boundaries found in all such regions. This
is a inuch more time-consuming process, but it is less noisy
and less sensitive to input parameters. 0f course it
suffers from the same open boundary prob]ém as the other
boundary seeking algorithms.

The other category of image partitioning algorithms can
be called "object seeking" algorithms, which
characteristically exploit the internal reg&larity
(homogeneity) of the objects. As the name implies, an
object seeking algorithm always produces well=-defined

samples (and thus closed boundaries as well), There are two
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opposite approaches to object seeking, which we shall call
conjunctive and disjunctive. A conjunctive algorithm begins
with a very fine partition and simplifies it by
progressively inerging adjacent elements togzether that are
found to be similar according to certain statistical
criteria [10,11}]. A disjunctive algorithm begins with a
very simple partition and subdivides it until each element
sapisfies a criterion of homogeneity. For example,
Nobertson's algorithm |2,12| is based on the premise that if
a region contains a boundary, splitting the region
arbitrarily will usually produce two subregions with
significantly different statistical characteristics.

Early work in the application of sample classification
to MSS data was reported by Huang |13]. His imethod of
"opolling'" requires classification of the individual pixels
in the sample and is thus relatively inefficient. Wacker
and Landgrebe |14] investigated the "minimum distance
approach" using parametric and non-parametric methods. BRoth
studies relied on manual definition of the object
boundaries, based on actual surface (ground) observations,
to locate the samples that were classified.

: We combined PRodd's conjunctive partitioning algorithm
with a minimum distance sample classifier and observed an
improvement In classification accu;acy over conventional
no-memory classification, but processing time was increased
|15]. CGupta and Wintz 16| added a test of second order

statistics to Rodd's first order test, but obtained
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essentially the same results as the first order test ot
rreater cost in processing time. Robertson 2, 12|
implemented a disjunctive partitioning algorithm with the
same minimum distance classifier, He obtained about the
same classification accuracy as conventional no-memory
classification with an order of magnitude increase in
processing time. This points to one essential difference
between the disjunctive and conjunctive approaches. With a
disjunctive approach, every time a region is divided new
sample statistics inust be calculated from raw data. With a
conjunctive approach, every time two regions are merged the
statistics for the resultant region can be obtained mnerely
by "pooling" the statistics of the original two subregions.
This results in a significant computational advantage for
the conjunctive approach.

The current investigation is devoted to further
cevelopnent of the conjunctive approach. A much faster
sample classifier is proposed and tested. his problem is
discussed in Chapter 2. New statistical criteria are
proposed as well as new object seeking logic in Chapter 3,
Extensive test results appear in Chapter L4, comparing
cifferent algorithms against each other and against
conventional no-memory classification, The main result is
that the stability, classification accuracy, and speed of
the ECHO technique have been greatly improved. Compared to
the no-memory classifier, consistently lower error rates are

observed using an ECHO approach, and for a reasonably
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complex classification its efficiency exceeds that of the

conventional method.
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CHAPTER 2

CLASSIFICATION

The motivation for object extraction is to enable
faster and more accurate classification of the pixels within
the object. In Section 2.3 we discuss the classification
algorithms that accomplish this. They are based on a
certain wodel of the objects to be <classified, which s

described next.

2.1 Statistical Model of Multi-Spectral Scanner Data

As we have indicated, a typical scene consists
primarily of objects whose boundaries form a partition of
the scene. The partition is generally unknown at the
outset, but we can at least assume that it 1is relatively
coarse compared to the size of a pixel. Each object in the
scene bhelongs to some class. For representation purposes,
each class is divided into one or more "“subclasses'". They
are also called ?sﬁectra] classes" (as opposed to
“"informational classesf) to indicate that they can Dle
uistinguished spectra’ly although it imay not be useful to do
so. Let uij denote the jth subclass of the ith class. Let

F danote an object (represented by an array of pixels), and

let X denote a pixel in some object. (The underbar is used
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to indicate 2 g-dimensional variable (x_eRq ), wﬁere g
henceforth denotes the number of spectral channels.) Then
Fewij denotes the event that F belongs to the subclass wij'
The a-priori probability of this event is denoted by

P(Fewij ). In accordance with Section 1.2, we Iignore any
statistical dependence of this event on the spatial features
of F. |7 there were a strong, known dependence then it
could be used to help classify F, but that 1Iis not our
intention. A consequence of this assumption is that
P(iewij) = P(Fewij), and we denote both quantities simply by
P(”ij)'

The nixels within a given object of a given spectral
class are completely characterized by their class-
conditional, joint, probability distribution function. For
no=-memory classification, such a complete model is
unnecessary; only the marginal distribution of each pixel is
required. Furthermore, the pixels within a single object
are usually assumed to have a common (i.e. stationary)
marzinal distribution, which is due to the homogeneity of
the types of objects typically encountered in remote sensing
anplications. Although the ,data is digitized, it s
convenient to represent this g-variate distribution by 3
probability density function (pdf)

cont inuous-parameter

i = eW..) or
which, for subclass wij, is denoted by p(X=x1X ¥

i bar indicates condi tional
simply by p(;lwij). (The vertical

probability).
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Two pixels inl spatial proximity to one-another are
unconditionally correlated, with the degree of correlation
decreasing as the distance between them increases. luch of
this correlation is attributable to the effect of dependent

states, discussed in Section 1.2, which is the effect we

wish to exploit. For simplicity we shall iznore other
sources of correlation. Thus we assume that pixels within
the same object are class-conditionally independent; i.e.

cach object is a "simple" sample from one of the spectral
class populations. Then the joint pdf of the pixels can be
expressed as just the product of their warginal pdf's. This
approximation leads to fast, effective (though suboptimal)
processing algorithms, but theoretical bpredictions based on
this simplified model should be interpreted cautiously.
This aspect of modeling 1is discussed at greater depth in
Appendix A.

It is possible to express other statistical
characteristics in terms' of the ones above. If W; denotes
the ith class, then

P(XeH;) = PCU Xel ) =% PCW ;) 2.1.1
J J

where U Jdenotes the union of events. The pdf of X,

conditional on this event, is given by

plxlWy) = _1 2 p(xIW;;)PCW;;) v
J

This equation defines the representation of a class in terms

of its subclasses. The unconditional pdf can be written in
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two ways:

p(x) = T plulid; IPH; ) = B plxIW; )P 2.1.3
[ 1

Within this framework, all that is required to complete
the statistical model for a given scene (or class of scenes)
is to specify the spectral classes that are present and
assign an a=-priori probability and conditional pdf to each.
Of course the true distributions are assigned by nature, and
the accuracy of the model depends on how well we can
estimate them. Fortunately we are wusually able to obtain
estimates of the class-conditional pdf's based on training

samples taken directly from the data set. For this we
usually rely on actual surface (sround) observations or

manual photo=interpretation to locate areas representing

nach class of cover-type. For the purpose of classifier

desisn, we assume that the size of each sample s

sufficiently large that the error in the corresponding

Ilstribution estimate s negligible., The subject of

training is discussed further in Chapter 4.

The distribution estimates can be parametric or
non-paranetric in reneral. It has been found that the
ulti-variate normal (MVN) distribution is a reasonable

wodel for 1SS data |171: i.e. olx|l;;) = N(ity3,Cy50x), where

-1 - % 2.1 .4
MCox) = (12mC] expx=t) 'C (x=M)))

I
—

N(

(tlote that (x-M)' denotes the transpose of vector (x=M). )

it follows that if ﬁawij, .
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')y = ¢

E = Xe=biy o 2
(X LIJ)(; iy Q:;
where F( ) denotes statistical expectation. Thus ﬂij and
Cij are the mean vector and covariance matrix of the
subclass distribution. Note that in order to obtain a

parametric estimate of a MVN distribution, it 1is only
necessary to estimate its first and second order moments.

This is the -approach that we will use.

2.2 Mo=l'emory Classification

In order to introduce certain concepts that will be
useful Jlater, we now review some comnon techniques of
no-memory classification including (in one case) a

discussion of a bound on the probability of error.

2.2.1 Maximum A Posteriori Probability (MAP) Strateg

Let X be a pixel, as before. Under the hypothesis that

!

X W, the pdf of X is p(1=51§_ewi ), which Is given by
cquation 2.1.2. Assuming that this function is accurately
known, the hypothesis is Ysimple'. The soal of

classification is to devise a strategy for choosing cone of
the possible classes (hypotheses) based on x, the observed
value of X; i.e. we must specify a function, W(x), which
maps x into the set of possible classes. We can maximize
the probability of a correct decision by always choosing the
class, W;, which has the maximum a posteriori probability,
P(XeW; 1 X=x). To show this we merely write the probability of

a correct decision in the following form:
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P(L e W(X)) =J'P(g e W(x)I1X=x)p(X=x) dx 2.2.1.1
X eRq
It i's apparent that this guantity is maximized with respect
to the Jdecision function by adopting the MAP decision rule.
To implement this strategy we use the mixed form of Payes
rule to write
P(X=x|X ¢ wi)P(wi)

P(X € H;IK=L) = 202002
p(X=x)

The denominator is independent of i, so we need only to seek
the | which maximizes the numerator. In other words, for a
~iven observation, x, W(x) .is chosen such that

p(X=x|X e W(X)IP(W(x)) = max p(X=x|X e W;IP(W;) 2:2:1 .3
i

This result can also be obtained as a special case of Bayes

Jecision rule for ninimum risk when a "zero=one" 105S

function is assumed (i.e. when the risk equals the
probability of error). Thus it is often referred to as

"gayes classifier'.

9.2.2 Maximum Likelihood (ML) Strategy

Wwhen all the classes are equiprobable, the MAP decision

rule reduces to

plX=x1X € MW(x)) .= max n(X=x|X € wi) 1 e g &

i
fis a function of i, the statistic p(X=x|Xe W;) is called
the likelihood function, so this decision rule is called the

maximum likelihood strategy.
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The ML strategy is usually a reasonable approach cven
when the classes are not equiprobable. In particular, the
’AP strategy tends to discriminate against classes whose
a-priori probability is low; i.e. it encourages a relatively
large conditional probability of error when a '"rare" class
occurs in order to wminimize the overall error probability.
Thus when one is interested jn classifying the less abundant
classes .'(as wef] as the more abundant classes) with
reasonable accuracy, the MAP strategy may not be as
desirable'as one which makes more errors but distributes
them more equitably 'among the classes. With the ML
strategy, the conditional probability of error when the ith

class occurs dependé only on the degree of statistical

“separability" (or "distance") between class i and the other
classes. It is independent of the a-priori probability of
class i.

2.2.3 Generalized Maximum Likelihood (GML) Strateg

Often the a-priori subclass probabilities are unknown.
Then the hypothesis that X € Wi is a composite hypothesis;
i.e. p(g!wi) = Z:Aij p(ilwij) where the coefficients are
unknown. Of :o:rse we know that Aij > 0 and Z:Aij = 1. A
procedure that has been found to be useful ithhis situation
is to form iaximum 1likelihood estimates of the unknown
parameters under each hypothesis. Then the unknowns are

replaced by their estimated values, and a hypothesis is

selected by the ML strategy, We will refer to this
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procedure as the gengeralized maximum likelihood strategy.
The resultant decision rule can be simply expressed in the
following form:

n(xlV(x)) = max max p(ilwij) 2.2.3.1
i J

where V(x) maps x into the set of spectral <classes. Then
t'(x) is simply defined toc be the informational <c¢lass
containing V(x).

Wle note that the CML strategy is equivalent to a ML
strategy over the set of spectral classes. Thus when all
spectral classes are equiprobable, it maximizes the

nrobability of classifying the observation into the correct

one.

2.2.4 Probability of EZrror For The CML Strategy

Let Vi Cenote the igh spectral class, and let E be the
JoR I

event that X is classified into the wrong spectral class.

Then

PCE) = X PCEIX e Vj)P(V;) 2.2.4.1
J

If E;; fis the event that V; procduces a larger likelihood

statistic than Vj, then

PCEIVS) = PO U Ejivy) & & PUEG;IV)) AW

|
i#]) i#)
Thus it is of some interest to investigate the pairwise

error probabilities.

Let Fi;(T) = PCR;;(X) >TIXeV;) = P(Lj;(X) >In(T)[XeV;),

il
where Rj;(X) and L;;(X) are the random variables:
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2.2.u
p(XIV;)
Ri.(ﬁ) = = likelihood ratio 2.2.4.3
’ p(X]V;)
Then P(EIJIVJ) = Fij(l). Unfortunately the conditional

distribution functions of Rij(l) and Lij(l) are not usually
explicitly available. But, if we can find the moment
zenerating function, ¢;j(u), corresponding to the
conditional distribution of Lij(L).given XEV 5, then we can
bound Fij(T) as follows:

Fis(T) < T Tg550u), 0 ¢ 2.2.4.4
Furthermore

Fei () < Y lg (u), ug 1

ij
This is known as the Chernoff bound ]18]}.

By definition:

¢ij(u) = E(exp(uLij(L))IL > Vj) 2.2:4.5
ilhen the subclasses are MVN, the expectation can be

explicitly evaluated |18|. The result is:

$..(u) =
]

10 1% e 1 .
2 exp(-u(l-u)(ﬁi-ﬁ.)'(uC.+(1-u)C.) (H.=11.))
J J i I J

Iqu+(1-u)Cil

2.,2.4,6
Substituting into 2.2.4.4 provides the desired bound. In
particular, for u = .5 we have:
Fis(M < 6 GNT 2.2.4.7

lie note in passing that =-1n ¢ij('5) is simply the Bhatta-

charyya "distance" between subclasses V; and Vj.



2.2.4 25
Combining equations 2.2.4,1, 2.2.4.2, and 2.2.4.7 zives

an expression for a bound on P(E):
PCE . e

) ?P(VJ)§¢U(.5) 2.2.5.8

i#]

By dropping the terms for which V: and V; are in  the same
class, this becomes a bound on the total probability of

RO,

2.3 Sample Classification

For the purposes of this section we can assume that the
partition of the scene is known and we simply want to
classify the objects. (In Chapter 3 we discuss conjunctive
partitioning algorithms for actually estimating the
partition.) We shall treat each object separately, thus

ignoring any contextual information resulting from spatial

relationships of objects. So we observe 3 set (sample) of

g-dimensional random variables, X = (ll,...,in), from a
cominon population, and our goal is to classify them.
2.3.1 Minimum Distance (MD) Strategy
- A Structured Approach to Classification
A structured approach is one in which the basic form of

the processor is simply assumed, perhaps leaving certain

parameters or options to the discretion of the user, A
reasonable procedure is to choose some characteristic that
differs from class to class, measure it for the sample to be
classified, and select the class whose characteristic most

closely matches this observation. Under our assumption of
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simple samples, each class is completely characterized by a
xnown g-dimensional pdf. Therefore, in MD classification,
the n data vectors are used to estimate the pdf of the
population, and the <class is selected whose pdf is closest
to this estimate as measured by some appropriately defined
"distance measure' on the set of density functions. !deally
one would like to choose the density estimator and distance
rieasure in some optimum manner, but in practice the best
suidelines are nrovided by experimental investigations |14].
Note that a possible drawback of the MD strategy is that the
sample size (n) must not Le too small to obtain meaningful
density estimates.

When spatial correlation is introduced into the niodel
(Appendix A), each class is only partially characterized by
a simple g-dimensional pdf. Although perhaps not as
effective as a higher dimensional pdf would be, it is still
a reasonable and valid characteristic for distinguishing
between classes. |In fact if the spatial correlation s
class-invariant (such as that induced by the scanner), the
g-dimensional ndf might be just as effective as the higher

dimensional one.

2.3.2 M.,A.P., and M.L. Sample Classification

In contrast to the MD strategy, the MAP strategy is a
completely non-structured: approach. The <decision rule is
determined solely by the criterion of minimum error rate

with no a-priori restrictions. Of course a gsreater degree
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of statistical information is also required (the a-priori
class probabilities). We can obtain the MAP decision rule by
direct extension of 2.2,1.3 if we consider X as a3
an-dimensional random variable to he classified. Let x be
the set of variates (51,...,An) and the event X=x be defined

as the joint event lizﬁ'

P i=1,...,n. Then, wunder the

hypothesis Xewi, the pdf of X is

1 2 POW. Ip(X=x|W..) AN
PCW.) ] H i

L}

p(X=x|Hi)

i 11
1 PCY. ) p(X_=x_[W..)
PCW.) o= MM

The MAP decision rule can be stated as follows:

P{X=x|UW(x))P(W(x)) = max D(X=xlwi)P(Ni) 25 o202
i

There is no minimum sample size required to implement this
strategy. For n=1 it simply reduces to MAP no-memory
classification (2.2.1.3).

Note that we have represented the joint pdf of a sample
in terms of the marginal pdf of one pixel. When spatial
correlation is present, this is no longer a fully adequate
representation. But as in the case of MD classification, it
still provides a useful statistic for distinguishing classes
while avoiding the complexities of more rigorous
representations.

So far we have tacitly assumed that the decision rule
st assign the same class to all the pixels in the sample.
ith this type of strategy, either all the pixels are

classified correctly cr all are misclassified. Thus the MAP
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decision rule maximizes the average ﬁumber of times that all
the nixels in X are classified correctly. Rut performance
is senerally measured by just the average number of pixels
in X that are classified correctly each time. We can show
that the MAP decision rule maximizes this criterion also.
iny decision rule that we adopt must assign a class to ii
for any event X=x. We denote this mappning by Wi(x). Let
Z(+) Dbe an indicator function, i.e. a zero-one random
variable which assumes the value 1 if and only if the event
specified in the arguement actually occurs. The number of

elements correctly classified in the sample is given by the

random variable

[\

Z(X, ¢W., (X)) 73255
i=1 v
n n
ECN) = . 2 E(Z(X; €W, (X))) = 3 P(X, e W, (X))
-=1 L -=1

M:s

IPQ@i € W (x)1X=x)p(X=x) dx

i=1
xt:an
The integration implied here is a gn-dimensional one. Note
that the event 14 ewi(x) is equivalent to X ¢ Wi(X)’ so all
terms of this summation are identical, with the possible
exception of the decision function. Thus the decision
function which maximizes one term also maximizes the others.
This confirms that the obptimum decision rule assigns the
same class to all the elements of the field. Denoting this

decision function by W(x), we have
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E(N) = rWIP(X € W(x)[X=x)p(X=x) dx 2:352 3k
This, of course, is maximized by the MAP strategy (2.3.2.2).
The ML strategy follows directly from the MAP strategy
by dropping the a=priori probabilities. The result is
p{X=x|W(x)) = max D(X=X|Wi) T 5 P S
!
2.3.3 G.M.L. Sample Classification
We can obtain the GML decision rule by direct extension
of 2.2.3.1., The result is
n(X=x]V(x)) = max mnax p(X=x|Wij) = max p(X=lei)
| : | 2a3:.5.1
/e can also bound the probability of error for classifying

simple samples. The analysis of Section 2.2.4 carries over

directly when X is replaced by X and the moment generating

funetion is recomputed as follows:

R:.(X) = Rs 2 (2 2.5.5v2
;5 (0 ml;[l P (%)
N
X) = X
L5 OO ”2 Ly ()

This is a sun of independent, identically distributed random

variables. Thus

F(exp(uLyy CRIREY;)

n

II E(exp(uLij(gm))lﬁme vj) 2,3.3.3

m=

n
(E(exp(uLiJ(l))lisVJ))

|

(475"

Cquation 2.2.4.7 becomes

n
Fis(T) = PCRy;(X) > TiXeVyd < (47550 VT 2.3.3.4
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It is @ property of mément senerating functions that

¢ij(u) < ¢;j(0) = 1, so this bound is an exponentially
decreasing function of n when ¢ij(‘5) # 1, or equivalently
vvhen the Phattacharyya distance is non-zero. Thus the
nrobability of error for the GML' ' sample classification
strategy is bounded by ba sum of exponentially decreasing
functions of the sample size.

To illustrate fow powerful this bound can be we now
consider a simple example. Suppose that the ith and jth
spectral class densities are as depicted in Fig. 2.3.3.1.
The inean vectors are equal, which results in a high degree
of "overlap". Therefore the DRhattacharyya distance is only
t.11, and ¢ij('5) =/0.8 = 0.8944, The actual conditional
error rate, Fij(l)' for no-memory classification (n=1), is
50%, which represents very poor performance. This implies
that a "polling" <classifier also has a 509% error rate
recardless of the sample size. PBut Figure 2.3.3.2 shows how
the GML performance improves as the sample size increases.
For a sample of just 4O observations the error rate is
practically insignificant. Although we probability cannot
expect such dramatic performance in practice (due to the
idealizations of our model), this still provides a strong
inotivation for our effort to apply sanple classification to

MSS data.

2.3.4 Maximum Likelihood vs. Minimum Distance

Let X = (X3,...,X,) dDe a simple sample from a MVN
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population, and define the statistics

X. |
X, 2.3.4.1

. R . . .
The maximum likelihood estimates of the mean vector and

covariance matrix are:

B=5:/n 2 Bl 2
n
C=1l 2 (X =X =1 = S./n -y p
I ET | ' ~2

The corresponding density estimate is given by equation

2:1.4,
Two nopular distance measures are the Bhattacharyya

distance and the divergence. If Wi is a class with density

'gi;i) then the Bhattacharyya distance between this and

N(M,C;x) is given by

=1
ET(CHC) () ) 23,83

3= .25 ( In J(c+ci)/21% + (n
ICT IC, |

-

and the divergence can be efficiently calculatecd from

D= .5 er(Cleclaceee, (U1, (H-E ")) - 29 2.3.4.4
Computationally, D is faster than B, requiring about 2q(g+2)
rmultiplications nlus 1 matrix inversion per class for each
(§1,§2) pair classified. In addition to this, B requires a
determinant and a logarithm. (This does not include
gquantities such as lgil which can be computed once and

saved,) ‘Yowever P appears to provide an advantage in terms

of classification accuracy, based on experimental evidence
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()

3.0
|14). And its direct relationship to the Chernoff bound
sives D some intuitive appeal as well.

In order for the ML strategy to be computationally
competitive with D and B, the likelihood function iwust be

nxpressed in terms of §1 and §2 as follows:

N
pCxiw.) = JI mi,,ci:X.) 2.3.4.5
j=1 ’
— ~ n - v I ] =1 1 -%
j=1
In p(X|4;) =
n -1 -1 -1
-.5(n Inj2nC;l +,Za<lj'9i Xj -2L'Cq X5 +Mi ey L))
J=
The quadratic term vields
n _ n _ - n
Y x.teily = Poerceilxx ) = ereit Y Xk
j=1 J J j=1 o J J (o j=1 |
SO
In p(XIH.) = =.5€r(CoYs, ) +M.'CIls, = .5nCM."C iM.+1n|2nC. |)
s : A Sl A I R ™

2.3.4.,6

which can ULe computed with just .5q(g+5) multiplications,

once the non-data-dependent quantities have been

initialized. Thus the ML strategy requires only 25%-50% as

many multiplications as D and no matrix inversions or
determinants.

It is interesting to express equation 2.3.4.6 in terms

of !l and C. Substituting for §1 and §2 from equations

2.3.4.1 and simplifying, providés:
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1 1n p(XIU. =" -1 '

: i) SUn2mC, |+ tr( C, 7 (CH (-1 ) (M-M) ") )

vthich we shall denote by Li(ﬂ,C). By adopting the ML

strategy, one is essentially using this aquantity as a

measure of the "similarity" of sample X to class W:, just as
H

n

i ;s n i
and N are used to measure their. "“dissimilarity"

Therefore, ~-L;(}M,C) can be interpreted as a measure of
T :

dissimilarity between the distributions MN(M,C;x) an
%(J;,Q;;A). However it is not a distance measure in the

sense of Wacker and Landgrebe |14|, because it satisfies

none ¢ } : i i i
one of the three basic properties of distance imeasures;

i.e. 1f f(i,3) s a "distance" between distributions
N(E;,Q;;L) and N(ﬂj,gj;i) then
1. fCi,j) » ¢ 2,5.4,8

2. f(i,i) = f{(j,j) =20
3. f(i,5) = £(j,1)
One can force compliance with properties 1 and 2 by adding a

yias term as follows:

dCi, i) = -L;(ﬂj,gj) + LJ(EU'QJ) 2.3.4.9
. s(in LCil + trCCilee; +(y My <EI'T)) -a)
1C;1
which can he recognized as a form of one of the

Kullback=-lLeibler numbers 1191. Since the bias term is

independent of i (the class number), use of this criterion
is still equivalent o the ML strategy, as long 2as IQJI > 0.
*Yso, the gquantity dCi,j)+d(i,1) is equivalent to the

divergence, which satisfies all three distance measure

properties.
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The "L strategy has other compelling properties besides
computational ~fficiency, On theoretical zrounds, for the
idealized conditions we have stated, it is the optimum
strategy (for ninimum crror rate) when the .a-priori class
probabilities are equal, Also, the Chernoff bound for ML
no-memory classification can be extended to provide an error
bound for ML sample classification. Experimentally, under
non-idealized conditions, the ML strategy does appear to be
slightly better than MD (using R) on the whole, although it
is not consistently better. The experimental results appear

in Chapter . Wacker's experimental results for
Vullback=leibler numbers |14] also lend some support to this
observation.

Another important property is that for small sample
sizes the VML strategy does not break down as <o the MD
strategies. For a sample size of 1, it merely reduces to
no-memory classification. Finally, the summation in
equation 2.3.4.5 is distributed as chi-squared with nqg
legrees of freedom when Wy is the correct hypothesis for
sample X. Therefore it can be used to «construct a
significance test of this hypothesis. This is useful for

detecting samples that belong to none of the specified

classes.
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CHAPTER 3

IMAGE PARTITIONING

Once the partition is known, powerful techniques are
available for classifying the individual objects. Thus,
when the partition s unknown, an 1image partitioning
algorithm offers an attractive alternative to no-memory
classification. For reasons ciscussed in Section 1.3, the
algorithms considered here are the type we refer to Aas
conjunctive object-seeking. Vle have previously described
this approach as a progressive merging of adjacent elements
which are found to be similar according to some statistical
criterion. Thus an algorithm consists of statistical tests
applied in some logical sequence. The "logical sequence" is
the subject of Section- 3.1, and the rest of the chapter

surveys some possible test criteria.

3.1 Partitioning Logic

In zeneral it 1is not possible to design an error=-free
partitioning algorithm. First of all, there is a certain
amount of ambiguity in defining the "true'" partition due to
real effects such as pixels that overlap physical boundaries
or ambiguity in the physical boundaries themselves.

Secondly, two main types of decision errors can occur,
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leading to: (1) false boundaries, and (2) wmissed boundaries.
Also the combined effect of these two errors can produce
"approximate" boundaries, which is not actually a
well-defined category due to the ambiguity of the true
partition. Since object size and shape are not used as
classification features, Type-1l errors are generally much
less likely to lead to misclassifications than are Type-2
errors, This philosophy accounts for certain
simplifications in the partitioning logic.

The basic approach that we have adopted (due to Rodd
111]) consists of two "“levels" of tests. Initially the
nixels are divided, by a (hypothetical) grid, into small
=roups of four (for example). At the first level of
testing, each group becomes a unit called a “cell", provided
that it satisfies a relatively inild criterion of
homogeneity. Those croups that are rejected are assumed to
overlap a boundary and their individual pixels are usually
classified by the no-memory method. hese gzroups are
referred to as "“singular" cells. At this level it is
usually desirable to maintain a fairly low rejection rate to
reflect the relatively high a-priori probability of a group
being homogeneous, The goal at this level s essentially
the same as the goal of the boundary seeking techniques
discussed in Section 1.3, i.e. to detect as many pixels as
nossible that 1lie along boundaries without requiring that

the ones detected form closed contours or even be connected.
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It is @ property of moment generating functions that

¢ij(u) < ¢ij(ﬂ) = 1, so this bound is an exponentially
decreasing function of n when ¢ij(’5) # 1, or equivalently
vvhen the Phattacharyya distance is non-zero. Thus the
nrobability of error for the GML' sample <classification
strategy is bounded by va sum of exponentially decreasing
functions of the sample size.

To illustrate How powerful this bound can be we now
consider a simple example. Suppose that the ith and jth
spectral class <densities are as depicted in Fig. 2.3.3.1.
The nean vectors nre equal, which results in a high degree
of "overlap". Therefore the DRhattacharyya distance is only
t.11, and ¢ij('5) = /0.8 = 0.8944, The actual conditional
error rate, Fij(l)' for no-memory classification (n=1), is
50%, which represents very poor performance. This implies
that a "polling" .classifier also has a 50% error rate
recardless of the sample size. But Figure 2.3.3.2 shows how
the cML performance iimproves as the sample size increases.
Fbr a sample of just 4O observations the error rate is
nractically insignificant. Although we probability cannot
expect such dramatic performance in practice (due to the
idealizations of our model), this still provides a strong

inotivation for our effort to apply sanple classification to

1SS data.

2.3.4 Maximum Likelihood vs. Minimum Distance

Let X = (Xy,....Xy) Pe a simple sample from a MVN
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E(M) = n IF’(X e W(x)[X=x)p(X=x) dx 2.,3%230
This, of course, is maximized by the MAP stratezy (2.3.2.2).

The ML strategy follows directly from the MAP strategy
by dropping the a-priori probabilities. The result is
p(X=x|W(x)) = max p(X=x|Wi) 2 e Dw il D

i

2.3.3 G.M.L. Sample Classification

We can obtain the GML decision rule by direct extension
of 2.2.3.1. The result is
n(X=x|V(x)) = m?x m?x p(X=leij) = m?x p(X=x|Vi)

PN T |

Yle can also bound the probability of error for classifying
simple samples. The analysis of Section 2.2.4 carries over

directly when X is replaced by X and the moment generating

function is recomputed as follows:

Ri; () = I Ry (Xp) 2:3.5%2
m=1
N
Lij(,\) = mgl L;j ’_<ﬂ1)

This is a sum of independent, identically distributed random

variables. Thus

n

[T FlexpCul;;(Xn)) 1Xne V5) 2433 o5
m=1

E(exp(uLij(X))IXEVJ)

(ECexpluly; (X)) 1Xev; )"

n
Cquation 2.2.4.7 becomes

Fiy(T) = P(Ry;(X) > TIXeVs) < (455 (5D"WT 2.3.3.4



94,379 26

decision rule maximizes the average ﬁumber of times that all
the nixels in X are classified correctly. But performance
is zenerally measured by just the average number of pixels
in X that are classified correctly each time. We can show
that the MAP decision rule maximizes this criterion also.
Any decision rule that we adopt must assign a class to li
for any event X=x. We denote this mappning by Wi(x). Let
Z(+) be an indicator function, 1i.e. a zero-one random
variable whicih assumes the value 1 if and only if the event
specified in the arguement actually occurs. The number of

elements correctly classified in the sample is given by the

random variable

n
N o= > Z(X, e W, (X)) 2.3.2
i=1 il
n n
EQD) = 3 E(Z(X, eW, (X)) = 2 PlX; eW, (X))

i=1 i i=1
n

= 3 P(_);_i € Hi(x)|X=x)p(X=x) X
i=1

X € an
he integration implied here is a gn-dimensional one. Note
that the event gﬁ ewi(x) is equivalent to X ¢ Wi(X)' so all
terms of this summation are identical, with the possible
cxception of the decision function. Thus the decision
function which maximizes one term also maximizes the others.
This confirms that the obptimum decision rule assigns the
same class to all the elemants of the field. Denoting this

Jecision function by W(x), we have
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of statistical information is also required (the a-priori
class probabilities). We can obtain the MAP decision rule by
direct extension of 2.2,1.3 if we consider X as a
an-dimensional random variable to be classified. Let x be
the set of variates (51,...,An) and the event X=x be defined
as the joint event L1=L., i=1,...,Nn. Then, under the

i
hypothesis xewi, the pdf of X is

1 2 P(W, dpX=x]W..) 253241
PCW.) = I

p(X=xIHi)

3 11
1 P(W. .) p(X =x |¥..)
POW.) ] 1l p=1 MM 1

The MAP decision rule can be stated as follows:

p{X=x|W{x))P(W(x)) = max p(X=x|Hi)P(Wi) 2.5.2.2
i

There is no minimum sample size required to implement this
strategy. For n=1 it simply reduces to MAP no-memory
classification (2.2.1.3).

Note that we have represented the joint pdf of a sample
in terms of the marginal pdf of one pixel. When spatial
correlation is present, this is no longer a fully adequate
representation. But as in the case of MD classification, it
still provides a useful statistic for distinguishing classes
while avoiding the complexities of nore rigorous
representations.

So far we have tacitly assumed that the decision rule
fiust assign the same class to all the pixels in the sample.
“ith this type of strategy, either all the pixels are

classified correctly or all are misclassified. Thus the MAP
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simple samples, each class is completely characterized by a
known g-dimensional pdf. Therefore, in MD classification,
the n data vectors are used to estimate the pdf of the
npopulation, and the class is selected whose pdf is closest
to this estimate as measured by some appropriately defined
"listance measure'" on the set of density functions. I!deally
one would like to choose the density estimator and distance
rieasure in  some optimunm manner, but in practice the best
suidelines are nrovided by experimental investigations |1L4].
Mote that a possible drawback of the MD strategy is that the
sample size (n) must not be too small to obtain neaningful
density estimates.

When spatial correlation is introduced into the niodel
(Appendix A), each class is only partially characterized by
a simple g-dimensional pdf. Although perhaps not as
effective as a higher dimensional pdf would be, it is still
a reasonable and valid characteristic for distinguishing
between <classes. In fact if the spatial correlation s
class-invariant (such as that induced by the scanner), the
g-dimensional ndf might 5Se just as effective as the higher

dimensional one.

2.3.2 M.,A.P. and M.L. Sample Classification

In contrast to the MD strategy, the MAP strategy is a
completely non-structured: approach. The decision rule is
determined solely by the criterion of minimum error rate

with no a-priori restrictions. O0Of course a greater degree
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Combining equations 2.2.4.1, 2.2.4.2, and 2.2.4.7 zives
an expression for a bound on P(E):
PCE) & X PV, X dp;(.5) 2.2.4.8
: ]
By dropping the terms for which Vi and Vj are in the same
class, this becomes a bound on the total probability of

errar.

2.3 Sample Classification
For the purposes of this section we can assume that the

partition of the scene 1is known and we simply want to

classify the objects. (In Chapter 3 we discuss conjunctive
nartitioning algorithms for actually estimating the
partition.) Wa shall treat each object separately, thus

ignoring any contextual information resulting from spatial
relationships of objects. So we observe 3 set (sample) of
q-dimensional random variables, X = (X{,...,X,), from a
comnon population, and our goal is to classify them.
2.3.1 Minimum Distance (MD) Strategy
- A Structured Approach to Classification
A structured approach is one in which the basic form of
the processor is simply assumed, perhaps leaving certain
parameters or options to the discretion of the user. A
reasonable procedure is to choose some characteristic that
Jdiffers from class to'class, measure it for the sample to be
classified, and select the class whose characteristic most

closely matches this observation. Under our assumption of
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2002 0L
p(XIVi)
(X)) = = Jlikelihood ratio 2.2.443
’ p(XIV;)
Then P(E;jlvj) = Fij(l). Unfortunately the conditional

distribution functions of R;j(l) and Lij(l) are not usually
explicitly available. BRut, if we can find the moment
generating function, ¢;j(u), corresponding to the
conditional distribution of L;j(i) given LEVJ, then we can
bound Fij(T) as follows:

Fiy(T) < T Tgj50u), 0 <y 2.2.4.4
Furthermore

Fop(T) < Tl L, ugl

This is known as the Chernoff bound |18].

By definition:

¢ij(u) = E(exp(uLij(l))lL € Vj) 2.2+4.5
!hen the subclasses are MVN, the expectation <can be

explicitly evaluated |18]. The result is:

$..(u) =
iJ

1-u

1e, 1% 1eyl -1
exp(=u(1-u) (M, =1.)" (uC.+(1-u)C; ) (L, -1i.))
J J i T

lqu+(1-u)CiI
2y 2altcb
Substituting into 2.2.4.4 provides the desired bound. In

particular, for u = .5 we have:

Fis(M € 4p5G8T 2.2.4.7

lie note in passing that -1n ¢ij('5) is simply the Bhatta-

charyya "distance" between subclasses V; and V;.
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At the second level, an individual cell is compared to
an adjacent "field", which is simply a gzroup of one or ore
connected cells that have previously been merged. If the
two samples appear statistically similar by some appropriate
criterion, then they too are merged. Otherwise the cell is
compared to another adjacent field or becomes 3 new field
itself. By successively "annexing' adjacent cells, each
field expands until it reaches its natural boundaries, where
the rejection rate abruptly increases, thereby halting
further expansion. The field is then classified by a sample
classifier, and the classification is assigned to all its
pixels.

This approach has the important advantage that it can
be implemented "“sequentially"; i.e. raw data need be
accessed only once and in the same order that it is stored
on tape. This 1is important for practical, rather than
theoretical, considerations. The flow chart in Figure 3.1.1
indicates how it can be done. In this chart, the top of the
scene is referred to as north, and the general processing
sequence is from north to south,.

A possible drawback of the approach described above is
that in certain hypothetical situations, Type-1l errors are a
certainty. For example, a U-shaped object would develop as
two separate fields which expand southward and eventually
meet at the base of the U. Rut since no provision is made

for merging such fields, a false boundary between them will
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Basic Flow Chart for a Two-Level, Conjunctive
Partitioning Algorithm
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result. Such a provision can of course be made, but only at
the cost of additional complexity. This does not appear to
be warranted by the relatively harmless nature of an
isolated Type-1 error. Thus the false boundary actually
results from a design simplification vrather than a true
Jecision error.

Many riodifications (both large and small) to the bpasic
flow chart are, of course, possible. For example, the
Lavel=1 test can be removed from the loop if performed in
advance and intermediate results saved on tape. (This is
particularly useful in a research environment.) Another
modification is described in Section 3.3.3. It involves
comparing a cell to as many as three different fields at

once, instead of one-at-a-time.

3.2 Unsunervised Mocde

In order to implement the sequential approach we must
specify two test criteria corresponding to the two levels.
In this section we consider ways to do this "unsupervised";
i.e. the test criteria are independent of specific knowledge
of the spectral class distributions. Note that our usaze of
this term is analogous, but not identical, to the

conventional usage.

3.2.1 Unsupervised Annexation
Let X = (Ll,.,.,in) represent the pixels in a group of
one or uniore cells which have Dbeen merged by successive

annexations. Let Y = (11,...,1m) represent the pixels in an
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adjacent, non-singular cell. Since both X and Y will have

satisfied certain criteria of homogeneity, we assume that
each is a sample from a MVN population. Let f and g
represent the <corresponding density functions. It is
desired to test the (null) hypothesis that f = g, This is a
composite hypothesis, since it does not specify f and z.
The "likelihood ratio procedure" |20| provides an effective
statistic for testing this hypothesis. Van Trees |21}

refers to it as the "generalized likelihood ratio". Let

HO(x,y) {p(x,ylf,g): g=f, feq}
Hl(x,y) = {p(x,ylf,g): fe@ , geQ, g¢f}

where p(x,ylf,z) is the conditional joint density of X and Y

evaluated at xeR"?  and yeRm? and 2 is a set of MVN density
functions. The assumption of class-conditional independence
enables us to express the joint density of pixels as the

product of their narginal densities. Thus:
n m
o(x,ylf,8) = p(x|f) plyls) = (.rgi(ii))({ghg(li))
= =

The ceneralized likelihood ratio is defined by:

£
sup Ho(X,Y) T3 pLATY el 5,211

| max p(XIf) p(Ylg)
sup Pl(X,Y) =

gefl
gtf

ed" approach to

i partitioning we take @ toO
For an "unsupervis

g
of functions of XeR72

- he following set o
S positive-definlte

a = 1 riC
Q= {N(ﬁ,@;i): MeRY, C symmet ,

te arbitrarily
| - i a ceQ that 1S
: feq there exists
Since for any
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close to {, the condition "z#f" can be dropped from the
denominator of 3.2.1.1. Therefore:

max NCM,C;X) N, C;Y)

A= <1
max N(ly, CysX) M(Hy,CysY)
max M, £ X) H(ﬁy,C;Y) max M(M,C;X) NC(L,C;Y)

max M., CysX) N(ﬁy,Cy;Y) max MNCH,,C;X) N(ﬁy,Q;Y)

= Az . Al
where
n
ne,Cx) =TI, csXg)
e
ll
AL, YY) = NCIL, CoY )
' i=1

and in each case the maximization is with respect to the
mean vectors and covariance matrices.

Anderson |22]| shows that:

Ay = CIar/1sy N2 3.2.1.2
- n m NN D %

Ay = C UM/l ™ 1Ag/ml™ 7 1A/t ) 3.2.1.3

where

I = n + m

e n _ m
X =2 Xi/n Y =2 Xi/m
i=1 i=1
N o _ it - .
Ag = 2 (Xi=X)(Xi-X)" Ay = 2 (Xi=X)(X;-Y)*
' i=1 ' i=1

(In order to assure non-singular matrices with probability 1,
we need n > g < m.) |22]

AA\ = [\ X + A v

Moo= (nX + mi)/ﬂ
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n

By =.§i(x;-u>(x;—m)' = Ay + n(X-1M)(X-M)"
‘=
Hi]

By =.§a(li-ﬁ)(1;-ﬁ)' = Ay + m(Y-M)(Y-1)"
| =

B o= Bx +By = A+ mX-Y)(X-Y)'

S

fnderson also suggests the following modification:

A= dpe,
where X; and XAz are obtained from Ay and Az by replacing the
number of pixels in each sample by the number of degrees of
freedom; i.e. replace n by n-1, m by m=1, and N by N=2 in
formulas 3.2.1.2 and 3.2.1.3. In either case, the

statistics are invariant with respect to a linear
transformation on the data vectors, It follows that their

distributions under the null hypothesis are independent of
the actual MVN population from which the samples are drawn.
The test procedure is to compare A2 with some decision
threshold T < 1, which depends in general upon n and . The
hypothesis is accepted if A » T and rejected if X< T. In
the unsupervised mode, T is determined by specifying the
desired "size" (significance level) of the test, because the

cower of the test is indeterminate. In order to do this,

however, the distribution of A must be tabulated. Under
the null hypothesis A; and ip are independently djstributed
|22], so we can simplify the distribution theory and
accomplish the same objective by the following procedure.

Pick significance levels s4q and S9 such that



s 1% =

s = 1-(1-s9)(1l-s;), where s |is the desired significance
level. Test A; using a threshold T; such that P(A; < T{IH)
= s;, i=1,2, where H denotes the event that the null
hypothesis is true. The null hypothesis is rejected if
cither test produces a rejection. Thus the -effective size

of the test is given by

1= P(xy 2 Ty,22 > TolH) 1- PCxy > T1IH) P(axy > TolH)

1 - (1'51)(1‘52) =S
as deslred. This procedure gives us complete freedom to
pick the ratio 52/51 > 8. As this ratio increases, the

power of the test against the alternative "mx=; Qxfgy"

yl

increases, and the power against the alternative 'uxfgy,

) 1] !
o C,'" decreases.
e now review the distribution theory that is needed to

implement these tests. There is a transformation of A

which, given I, has an F-distribution with g and (N-g-1)

degrees of freedom |23]. It is given by
Fg = (1G] -1)(C-g-1) s ey JL 1
[ Al q

Thus the test for a significant difference between the mean
vectors can be implemented by computing F; and comparing it
to & threshold ty determined by the relation P(Fy; > t1[H) =

S1e Alternatively, it can be shown |18| that

(1ol -1)(H-2) = (N-2)pm(X-Y) ' AL X-Y) = 12 oo 1 5
Al N -

which (given ) has a T2 distribution with N-2 «degrees of

freedom |22]. 12 is Hotelling's zeneralization of the

Student-t statistic, which is comnonly used to test the
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hypothesis that the means of two univariate normal
distributions are equal ziven that the variances are equal.
The following transformation of Ao has the

F=distribution (given H) ]23]:

C o= -2 1n A, 3.2.1.6
g = 29124-7!9-' ] + ] - ]

6(g+1) ln-1 m=1 N-2

M_q_zz{_g__ S S ;
u = 0 * - - g
(n-1)2 (1n-1)2 (N-2)2

¥ = aiar])

2
W= _y+2

ful

(l‘."'\L/v/)G , u >0

v
Z =
(1-z+2/w)C , wu <0
W
Z i u >0
F =
: WZ / u <0
P
v(1-2)

Fo has an F-distribution with v and w degrees of freedom.
Thus the test is implemented by computing Fp and comparing
it to a threshold ty determined by the relation

PCFp > tglH) =-s9.

Nue to the complexity of the test for different
covariance matrices, it may be desirable to rely only on the
Jifference in mean vectors (assuming that a difference
exists). A common approach is to simply assume that all
covariance matrices are equal, thereby eliminating the need

to test the statlstic Fz; i.e. let s9=0. The test of Fl is



nrobably fairly robust under departures Trom this assumption
anyway |23]. An alternative approach, which does not
require this assumption, is to use the Behrens-Fischer

statistic defined as follows [22]:

Z; = Y- X (wm)% , i=1,2,...,m < N, 3.2.1.7
_ in 2
Z = XYZi/m
&

i 0 __ .
b= ALy =B ML =2 (=)
5 L
12 - H(Z-z)'Pgl(z-z)

This has a Tz-distribution with m-1 degrees of freedom, or

equivalently the statistic

F3 = |2§m-92 3.2.1.8
(m-1)a .

has an F-distribution with g and m=-q degrees of freedom
under the hypothesis that ;x=ﬂy. Thus the test is imple-
riented by comparinng3 to a threshold ts which satisfies the
relation P(F3 > t;le=ﬁy) = s,

These awultivariate tests 211 have the same weakness as
'D classification, namely the problem of estimating a MVN
density from & relatively small sample (sometimes known as
the "dimensionality" préblem). This led to the constraint

i

n > 4, a condition which is often not met. Even when the
condition is net, poor estimates can result, leading to
decision errors. One approach to this problem is to reduce

g by deleting Teatures. It is well-known, for example, that

a subset of features used to train a classifier from small
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training samples can sometimes produce better classification
results than the full set |24]. With this approach,
however, one is faced with the problem of choosing the
subset.

Another approach is to base the decision on the gq,
dnivariate, marginal distributions; i.e. simply consider the
data in one spectral channel at a time. This has Dbeen
termed a "multiple wunivariate" (MUV) approach. In each
channel we test the univariate hypothesis that the means and
variances of the two samples are equal. Since the
boundaries may be strong in some spectral channels and weak
in others, we accept the null hypothesis only if the
univariate hypothesis is accepted in all q channels.
Besides avoiding the dimensionality problem, the MUV
procedure requires less computation and simpler distribution
theory. However, it must be pointed out that in situations
where class separability is primarily a multivariate effect,
the MV procedure may be more advantageous.

In order to obtain the wunivariate tests we can follow
the same development that led to the multivariate tests
except that g=1 and Ags Ay A, and B, are just
nne-dimensional matrices (scalars). Thus equations 3.2.1.h
and 3.2.1.5 simplify as follows:

2 N 3-7)2
= = n“d‘z : (X-Y)
Fp =T ( N)“ﬂ 5 3.2.1.9

This has an r-distribution with 1 and (N-2) degrees of

freedom, under the null hypothesis. Equivalently we can say
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that the statistic

Cl=2)nm (X-Y) 3.2.1.10
N

nas a Student-t distribution with N-2 degrees of freedom.

The statistic A, simplifies to

. \/21+K)N-2f(r) ‘ 3l 1
where
K- o= (a=1)/(n-1) ,
ro= K Ax/Ay
N1 )
t(r) = (r+K)N-2

The statistic r has an F-distribution with n-1 and m-1
degrees of freedom, and it is indebendent of F1 under the
null hypothesis |22|. But since f( ¢) is not imonotonic, two
thresholds must be determined in order to implement a test
on this statistic. For a significance level Sp» the
thresholds T' and T" must satisfy

PCr < T' or r > T"[H) = s, 3ok o112
f(T') = f(T™)

Alternatively one could resort to the transformation in

3.2.1'6.

3.2.2 Unsupervised Cell Selection

"Cell selection" refers to the Level-1 test, which is
used to detect <cells that apparently overlap boundaries.
Such cells frequently exhibit abnormally large sample

variances. Thus a possible criterion for a cell is to
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require that the sample variance in each spectral channel
fall below some reasonable threshold. A similar approach is
to'form the ratio of the square root of the sample variance
to the sample mean and compare it to a threshold (which we
shall call "c'"). This criterion has the advantage of being
independent of the scale of the data.

A possible multivariate approach is to place an upper
limit on the sample generalized variance, lﬁy/ml, that any
cell (Y) <can have. This is equivalent to placing a lower
1imit on the value of the statistic pax M(M,C;Y). But again
we mention that the dimensionality Diéglem seriously weakens

the "V approach. It can cause very poor ecstimation of the

seneralized variance and increase the chance of a decision

error.

3.3 Supervised Mode

in this section we <develop a way to ‘"supervise'" the
sequential partitioning process, using the known spectral
class distributions. Our approach is based on the same
composite hypothesis testing procedure as the unsupervised
approach, The effect of the spectral class distributions is
to zreatly simplify each hypothesis, but paradoxically the

rosultant  test criterion ts  much more complicated.

Fortunately, much of the computation can bDe done

"sequentially", i.e. relying on previous saved results.

7.3,1 Supervised Annexation

Let X and Y be samples from a field and an adjacent
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cell as in Section 3.2.1. Ve follow the same development 1as
in that section, except that for a supervised approach to
partitioning we take Q as:

Q@ = {p(x|V;): i=1,2,...,k}

where k is the number of spectral classes. Note that this
is a considerably more restrictive condifion than before.
The corresponding zeneralized likelihood ratio statistic is:

mnax (D(XlVi) D(YlVi))

A = 5:5:1s1

@;3 (p(XIVi) D(YIVJ))

L,

j#i
finte that this is a multivariate statistic without the
constraint m > g that was necessary in the unsuperviged
mode. 'lowever the maxima in formula 3.3.1.1 cannot bDhe
expressed in a simple analytic form as in 3.2.1.1. They can
only be obtained by exhaustive search. Furthermore, the
distribution of 3.3.1.1 is wunknown under either hypothesis,
vecause it depends on the true classes of X and Y. But in
return we gain a statistic which should be more "sensitive"
to the presence or absence of a boundary. This should
produce better performance and nake the specification of a
decision threshold less critical. In fact, the experimental
results in Chapter 4 indicate that the threshold need not be
a function of n, the current size of sample X, in order to
obtain zo0od results. Furthermore, the results tend to be
fairly stable over several orders of magnitude of threshold

variation. Thus we will find it convenient to represent the

decision threshold as
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S ok
T:= 10°t~ ¢t 20 3.3.1.2
Unlike the unsupervised approach, a constant decision

threshold of T=1 does not imply that the null hypothesis is
always rejected. But it does lead to the same final result
when the GML strategy is used to classify the objects. This
is because A can exceed 1 only if X ané Y would be
classified the same by the GML rule anyway. Consequently,
the only practical values of T are those between 0 and 1.
Lacking any distribution theory to provide guidance in
choosing a suitable threshold in this range, we shall rely

instead on an empirical approach.

Calculation of the generalized likelihood ratio
~riterion can be greatly simplified by the following

measures:
1. Change the denominator of A to ma;(p(XlVi)p(YIVJ))., The
L,J
only effect of this change is to cause the value of A to

saturate at an upper 1imit of 1. It does not affect the

value of A when A< 1. Since T is always less than 1,
the change cannot affect any decisions. The

simplification that it affords s that A can now Dbe

written as follows:

max(p(X1V;Ip(Y[Vi))
A F i

|
(max p(X!V;))(mgx p(Yle))
i J

which is simpler to compute.

i T.
9. Compare 1n(p) to 1n(T) instead of A to
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In A = max(In p(X]V;) +1n p(Y]V;)) Bud alicd
i
-max(In p(X|V;)) -max(In D(Ylvi))
i i
Besides converting multiplications into (faster)

additions, the quantity 1In p(YIVi) can be efficiently
computed by formula 2.3.4.6. The quantity In p(X|V;) can
be obtained by other ieans, as we shall see.
Assume for the moment that the log-likelihood function of
X is already available in a storage array G (say); i.e.
GCi) = In p(XIV;), i=1,2,..4,k
and J is an integer such that G(J) = nax C(i). Then

i

compute the first term of 1n(A) using an intermediate

storage array ,7 (say), as follows:

rz(i) = C(i) + ]n D(Y|Vi), i=1,2’--.’k-

and j is an integer such that g(j) = max z(i). So:
i

InCp) = ~(j) =C(J) =max In p(Y|V;)

i
If the indication is to wmerge Y and X, then the new

log-1likelihood function of the field is just the sum of
the log-likelihood functions of X and Y. Therefore we
can simply undate G and J as follows:

i)y =€), i=1,2,.w0K

d =

and the preliminary assumption is justified. Thus we
avoid using formula 2.3.4.6 to compute 1n p(XIVi).

When the point is reached that the field X stops

expanding, it must be classified. This would normally

require the sample mean vector and autocorrelation (or
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covariance) matrix, which would have to be continually

updated as cells are added to the field. Recall however

that the GML'strategy is
n(X|IV(X)) = max p(X]Vi) = max exp(G(i))

[ [
Therefore V(X) = Vo, so no additional updating or

exp(G(J))

computation is required to classify the field ijf the GML

strategy is used.

3.3.2 Supervised Cell Selection

A useful statistic for cell selection s

1

g

NG E!

-1 I = -
QJ(Y) = tr(gj ié&iili') = ZMJ'QJ Xy * mMjugj ;

1

vihere j is such that

In p(Y]V;) = m?x In p(Y|V;) = m?x =.5(m-Inl2nC; 1 + Q;(Y))

The decision vrule is to accept the hypothesis that Y is
homogeneous if Qj(Y) < ¢, where ¢ is a prespecified
threshold. Otherwise the hypothesis is rejected. This
criterion has the particular advantage that it tends to
reject not only inhomogeneous cells, but "unrecognizable"
cells as well, (Unrecognizable cells are those which
represent spnectral classes that the <classifier has not been
trained to recognize,) Another advantage of this criterion
is that its use of the log-likelihood function makes it
especially compatible with the supervised annexation
criterion and the CML sample classifier,
As a final note, the distribution function

P(O;(Y) > clYeV;) is chi-squared with mq degrees of freedom.
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This can be used to provide initial guidance in choosing c.

3.3.3 AMAlternative Partitioning Logic

The 1logic of Figure 3.1.1.1 compares a cell to the
north, west, and east-adjacent fields (if necessary) seeking
a Yaatch". If a match is found, the merge takes place
immediately without regard to whether it is the "best" match
or not. Another approach that is used is to compare the
cell to all three fields at once (if that many distinct
adjacent fields exist) and attempt to determine the best
match. In the supervised mode a match is determined by
comparing the likelihood ratio to a fixed threshold, so a
reasonable definition for the best one is the field for
which this ratio is largest. Normally the east-adjacent
field would not exist at the time the other two comparisons
are nade, so its likelihood ratio is supplied by "looking
ahead"; i.e. the east-adjacent cell is compared to its
north-adjacent field and if they match, the current cell is
compared to their union to obtain the likelihood ratio.

This approach has not been used in the unsupervised
imode, mainly Dbecause of the difficulty of determining the
best match. A logical approach would be to choose the field
fdr which® the null hypothesis is "least rejectable"; e.z
choose the field which maximizes the minimum significance
level at which the null hypothesis would not be rejected,
In other words, if aj; represents the obéeryed value of ),

for the jth field, then the field is chosen for which
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5.3.3
P(x; < xj;IH) is maximum. The diffieulty in actually
2

m
1

in
i=1,
complete distribution function of Aj

is' that the
is available for only a few

doing this
Generally

would be required. it

isolated significance levels.
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CHAPTER &

CLASSIFICATION RESULTS

Experimental-results obtained id"the investigation of

multispectral imace partitioning techniques are presented in

this chapter. Several different data sets of markedly
different characteristics are classified by these
techniques. In mmany respects they represent a cross-section

of MSS data. Both low altitude aircraft data and 930 km
high LAMDSAT-1 data are included. The ground resolution
varies from L4.6m to 30m, and the size of physical objects
varies from just a few pixels to thousands of pixels. Data

representation is & bits for aircraft data and 6 bits for

LANDSAT. Spectral resolution varies from 0.02 to 2.40
micrometers, vhile the number of spectral channels
available wvaries from 12 to &4, The actual number of
channels wuser for analysis varies between 3 and G. The

number of spectral classes representing ground cover types
va}ies from 5 to 17, and the number of informational classes
varies from 5 to 11.

The results are grouped by data set rather than by
analysis techniquevto facilitate the comparison of different

analyses of a given data set. In order to provide a quanti-

tative measure of comparison, only data sets are used for
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which a substantial number of '"test areas" are available.
iy comparing the results of a given analysis on a point-by-
point basis with the desired result in each test area, one
can obtain an estimate of the accuracy (or inaccuracy) of
the analysis. The larger and more numerous these test
areas, the better this estimate will be. Thus one analysis
technique is regsarded as being better than another if it
tends to achieve fewer misclassifications in the test areas.
Relative error rate 1is an important measure of a
classification scheme, but it is not the only consideration.
Obviously speed is a desirable attribute. Althougzh CPU
times are compared in this chapter, it is important to
remember that efficient coding has a lot to do with speed,
and no claim is made that the research programs used here
are optimized. A less tangible consideration is the amount
of effort and experience required to use a particular
analysis scheme. The schemes cons idered in this
investigation were designed with simplicity in- mind,
requiring a minimum of user input. The results in this
chapter will help to assess the degree of experience needed

to. provide this input, and they provide a data base of

cxperience from which to draw.

4.1 Analysis Schemes

Within the framework of Chapter 3, an analysis scheme

is specified by choosing:

1. A Level-1 option and associated parameters
(threshold and cell size)
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2. A Level-2 option and associated parameter(s)
(significance levels or threshold)
3. A sample classifier option.

[t would be a hopeless, and probably pointless, task to try
to investigate 21l the possible combinations of these three
options. Instead the Jless logical combinations were
arbitrarily eliminated in order to concentrate inore effort
on evaluation of the remaining ones. Consequently only
wholly unsupervised and wholly supervised methods are used
for the partitioning phase of processing. (No ‘“hybrid"
combinations of Level-1 and Level-=2 options are considered. )
Thwus partitioning is dJdone in either the unsupervised or
supervised "uode',. Furthermore, in the wunsupervised mode,
no nybrids of MV and MUV tests are used to test first and
second order statistics at Level-2. At Level-1, only the
MUV ratio test (described in Section 3.2.2) is wused in the
unsupervised mode. Although the Behrens-Fischer test
requires only one siznificance level to be specified by the
user, it .tests cnly first order statistics, provides
unattractively few degrees of freedom, and requires a
substantial amount of computation, Consequently it was
eljminated as an option. [ue to the advantages (enumerated
in Chapter 2) of maximum likelihood sample classification
over minimum cistance classifiers, it was the logical choice
for the classifier option. The results of this chapter are
based on the ML strategy. VWhen subclasses are necessary the

zeneralized ML strategy is actually used, although it is
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refered to simply as a ML classifier.

After all the above simplifications, we basically are
left with four schemes to evaluate and compare:

1. unsupervised MUV partitioning and ML sample
classification

2. unsupervised MV partitioning and ML sample
classification

3. supervised partitioning and ML sample classification
4, conventional ML no-memory classification.
Furthermore the <cell size for the first three schemes was
eliminated as a variable by fixing it at a constant 2x2
pixels, which 1is the minimum size that can be used in the

unsupervised mode of partitioning. This choice appears to

nrovide a reasonable compromise between speed and resolution

for MSS data.
A common element of all four schemes is the process of
"training". This is the process by which each main class is

modeled statistically with the aid of data vectors

(patterns) known to Dbelong to that class. If the training
data for a class exhibits a multimodal structure, then it is
usually divided into two or more subclasses, each

corresponding to a mode. This serves two purposes. (1) It

enables each subclass to be modeled approximately by a MVN

distribution which is completely characterized by a mean
vector and covariance matrix. These can be estimated easily
from the data vectors assigned to that subclass. (2) Data
from a single physical object is usually reasonably unimodal

and symmetrical in distribution. O0Often, those objects which
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are multimodal can be divided into a few smaller cobjects
which are wunimodal, Although multimodal training data may
be representative of a particular main class as a whole, it
is not representative of the individual objects which
compose that class. Since it is the individual objects that
must be dealt with, the definition of unimodal subclasses is
a logical step to take. In other words, p(xlwi) (eqn.
2.3.2.1) cannot be expressed in terms of p(x|W;) (ean.
2.1.2). Each component (mode) of p(x|W;) must be known.

The training and test data for a given scene compose a
set of labeled observations which we shall refer to as
"reference data'. There are many possible methods of using
a finite amount of reference data to train a classifier and
estimate its error rate, Theoretically the best training
(i.e. the 1lowest error rate) is obtained by using all the
available reference data for training. If the same <data is
used for ‘testing, this is called the "C-method".
Theoretical and experimental results indicate that, for the
2ayes classifier at least, the C-method produces an
optimistic (negatively biased) estimate of the error rate:
but the bias and variance of the estimate decrease roughly
as the recfproca] of the number of observations used |18].
In contrast, the "U-method" requires test data to be
independent of training data., The most common procedure
(called “sample partitioning") is to use a relatively small
nroportion (p) of the reference data for training and the

remainder for testing. In this case the error estimate is
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unbiased and its variance decreases as the reciprocal of the
number of test data; but the actual error rate tends to be
larger than with the C-methed, and its variance is p'2 times
larger than the error variance by the C-method.

The interpretation of resulits 1is wusually somewhat
easier for the C-method, because the question of whether or
not the training is "representative" of the test data does
not arise. For comparative purposes our interest is in
relative (rather than absolute) pérformance, so the bias
induced by the C-method tends toc cancel out. There is no
reason to believe that the bias would be sizgnificantly
creater for one scheme than for the others.

On the other hand tnhe U-method s routinely wused in
conventional analysis work where absolute performance s

emphasized. Effective representation is obtained in .ost
cases by using a fairly large training data set that
consists of observations drawn from the same general regions
as the test data. For some of the data sets used in our
investigation, reasonably zood training statistics are

available from previous conventional analyses. By using

available training we obtain results with minimum effort,
and the results relate directly to those obtained by

conventional nethods.

For those data sets where oprevious training is
unavailable or inadequate, neither the C-method nor the
y-method is used. Instead, the available test areas are

sampled at an interval sufficient to provide a reasonably
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large training set. lLike the C-method this method is

simple, e produces representative training, and it
i

aliminates human bias in selecting the training set. It

21so induces considerably less bias into the error estimate
than the C-method d¢oes. 0Of course, once the training set is
obtained, feature selection and subclass definition nay have
to be done before training is complete. An example of this

process is described in the next section.

4.2 Run 71052800 - Crop ldentification
MSS data collected over a particular region at a
narticular time and stored on digital magnetic tape is

' 1"

catalogued by run'

number. Run 71052800 is a set of 12
channel data collected cver flightline 221 in Indiana on
hugust 12, 1971 during the 1971 Corn Blight Watch Experiment
125] & The correspondence between channel numbers and
spectral bands 1is indicated in Figure 4.2.1. Chanpels 1-7
cover the visible portion of the spectrum, &=-11 lie in the
reflective IR portion, and 12 is a thermal IR sensor. It is
avident from the figure that there is a considerable amount
of redundancy in the coverage of the visible spectrum. In
other words, the data in channels 1-7 will tend to be
strongly correlated, causing the information in these
channels to be rather redundant, at least more so than in
the IR channels.

The area covered by this run 1is a rectangular strip of

agricultural land about 1.6 km wide and 13.8 km long. It is
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sampled 222 times along its width and 1374 times along its
length. The scanner wvas carried by aircraft at an altitude
of 1524m with an instantaneous field-of-view of three
milliradians.

This data set was chosen for analysis for several
reasons. (1) 2~ large number of test areas, containing
34,855 npixels, were available from a previous crop
identification study  |25]. (2) The complexity of the
classification is hizh , providing an opportunity to see how
well the new techniques perform in such a situation. (3)
The data set contains a combination of some very challenging
classes and intermediate «classes, as well as some easy
classes to identify. The 11 inain classes are: corn, soy,
wheat (mostly harvested), rye, lay, lespedeza (a zrass),
pasture, wooded pasture, forest, idle fields, and non-farm.
The latter two categories tend to be "“catch-all' types which
are characteristically cifficult to identify by conventional
methods. The reason for this will be discussed later.

No previous training statistics were available for this
data‘set, so training data was obtained by sampling the test
areas as per Section 4.1. The resultant ratio of the amount
of test data to the anount of training data is approximately
5:1. The LARS system (LARSYS) STATISTICS processor f26| was
used to compute the statistics of each wmain class, and
SEPARABILITY |26 was used to compute transformed divergence
values for every pairwise combination of main classes and

every combination of G channels. The purpose of this is
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"feature selection'"; i.e. due to high correlation between
channels, it is usually possible to find a subset of the
available channels that discriminates befween the main
classes almost as well as the complete set. Typically only
2 or b eof the 12 available channels are used to analyze
aircraft scanner <data, resulting in a large time savings.
For the present study, on the basis of the transformed
divergence results, the best set of & channels s
{2,4,10,11,12) plus either channel 8 or channel 9.
(Recalling the discussion of Figure u4.2.1, this result is
not surnrising.) Channel & maximizes the average
transformed divergence (averaged over all class pairs), and
channel 9 maximizes the minimun transformed divergence for
any pair of classes. The difference between the two is
slight, so channel 8 was selected arbitrarily. Based on
histograms of the training data it was decided to subdivide
some of the training classes. The LARSYS CLUSTER processor
|261 was used to cluster these classes into 2 or 3 modes and
SEPARABILITY was used tc determine the divergence between
modes. Histograms, cluster quotients, and divergence values
were sxamined to determine if the modes of each class were
distinct, and if two modes were not distinct, they were
recombined (pooled) into a single mode. The final result is
2 subclasses ecach for corn, sovbeans, lespedeza, and idle, 3
subclasses of pasture, and only 1 "subclass' for each of the
remaining c¢lasses, a total of 17 spectral classes. The

LARSYS MERGESTATISTICS processor was used to merge them into
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a single LARSYS statistics deck. Expecting to further
reduce the number of channels needed, SEPARABILITY was again
applied. It was found that although most class pairs can be
Jistinguished on the basis of some set of k or fewer
channels, there is no one set of 4 channels which can
adequately do this for all class pairs. Thus it was decided
to do G-channel <classification. This ended the training
phase of the analysis.

Next the data set was classified by a number of differ-
ent schemes. The LARSYS CLASSIFYPOINTS processor |26] was
used to perform ML no-memory classification. The LARSYS
SAMPLECLASSIFY processor |26] was wused to perform minimnum
distance (Rhattacharyya) sample c]assification of the test
areas. In the Jlatter case the processor is essentially
ziven a-priori knowledge of the boundaries. Max imum
likelihood sample classification of the test areas was
accomplished by modifying the SAMPLECLASSIFY software. To
avoid confusion this processor will be referred to as
“SAMPLECLASSIFY (ML)", and thé minimum distance version will

ve referred to as "SAMPLECLASSIFY (MD)™.

Unsupervised, MUV partitioning and supervised‘
partitioning schemes were implemented using
LARSYS-compatible processors that were developed

specifically for this investigation., The unsupervised, MV

version cannot be wused for this <data set, because it
requires that the number of channels be less than the cell

size, which is not the case. The results of all these
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analyses are presented in the remainder of this section.
Figure 4.2.2 shows classification performances achieved
by  the various processors indicated above. Note that
processor #2 is equivalent to cell selection without
annexation. Thus comparing the results of #2 with the
results of #1 (CLASSIFYPOINTS) gives a good indication of
the effectiveness of Level-1 alone. And comparing the
results of #2 with the results of #3 and #4 indicates the
offectiveness of just the annexation (LlLevel-2) phase of
processing.
Also note that processor #5 should give about the same
results as if the entire partitioning phase were done
flawlessly. Thus one can think of the results of #5 as 2

"aoall. This goal, however, is not a strict

serformance
bound (lore on this later).

Both "average" and "overall" error rates are shown in
Fizure 4.2.2. The former is just a straight average (over
211 classas) of the observed class-conditional error rates.
The latter is a weighted average, where the error rate of
cach class is weighted by the proportion of test data in
that class. These nroportions are given in Table 4.2.1.
Assuming that these proportions coincide roughly with the
actual porportions of the classes in the data set, then the
cverall error rate can be taken as an estimate of the

unconditional probability of error,
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Table 4.2.1 Relative

Influence of Each Class on Overall

Performance - Run 71052800

Hon=Farm
Lespedeza

Pas ture

Hay

Wooded Pasture
Rye

Forest

Percentage of Total
Test Pixels

43.1
22.4

17.6

68
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The class-conditional error rates are given in Figure
L2 5le The results are grouped by class for easy
comparison. Several observations are worthy of mention at

this point.
Observation 1
Roth the

ceffective at reducing

supervised mode has
nerformed better for §
and overall error rates

error rate due to

unsupervised
the error
a fairly
of the
are

the supervised mode

and supervised modes are

rate. As expected, the

consistent advantage. 1t

11 classes, and its average

lower. The actual reduction in

is 10.3% (averagze) and

8.1% (overall).

Observation 2

As one would expect, the relative effectiveness of the
ECHO approach is highly class dependent. The effect varies
from slight degradation Tor some classes to vast improvement
for others.

Observation 3

The classes where tie greatest gains are made are
wheat, wooded pasture, idle, and non-farm. It has already

been observed that the latter

which are typically

CLASSIFYPOINTS. The
tend to have relatively

which overlap

likel ihood level.

reason

with those

Recalling the case

two are "“catch-all" categories

difficult to identify using

for this s that such classes

broad probability density functions
lower

of other classes but at a

of Figure 2.3.3.1, the
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Figure 4.2.3 Performance By Class
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conditional error rate for the "broad" distribution is 50%,
while the conditional error rate for the "narrow"
Cistribution is just 17.4%. |If other classes overlap the
"tails" of the broad distribution, then this discrepancy
cecomes even greater. But when a sample of data from the
proad distribution is made available for classification, it
usually consists of a mixture of values both near and far
from the mean. This makes it possible for the classifier to
determine the correct classification of the sample.

The wooded pasture class also has a relatively broad
distribution due to its composition and spatial texture.
Mote that this does not necessarily imply that wooded
pasture is statistically inhomogeneous or timodal. We refer
to it as a "compound" class. (See Appendix C.) In this
particular case it might at first appear that the method of
using test areas to evaluate performance is biased in favor
of sample classifiers. |n other words, the large error rate
observed for CLASSIFYPOINTS mmay be due to the assignment of
many test points to the <classes forest and pasture, which
may actually be accurate labels for those particular pixels.
This arguement is invalid on several counts. First of all,
the number of test points classified as forest or pasture
accounts for only 12 of the &b percent error rate. The
reduction in error rate brought about by supervised
partitioning is 40 percent, or 3.3 times as great as the

maximum nossible error attributable to this cause.
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Secondly, whenever CLASSIFYPOINTS classifies an area in a
"salt and pepper'" manner, the information is highly
unreliable. If the area actually were that way, Premise A
(Section 1.2) would be violated. Thirdly, even if wvalid
point-by-point classification were possible, most analysts
are not interested in the actual <classification of each
individual pixel. Instead their zoal is to produce a "type
smap" which consists of ~a partition of the region with a
sceneral label assigned to each element of the partition. An
element <containing a nixture of trees and pasture for
example would be labeléed "wooded pasture'.

These points are illustrated in Figures 4.2.4, 4.2.5,
and 4.,2.6. Fizure 4,2.4 shows a section of Run 71052800
(lines 101-300) that has . been classified by CLASSIFYPOINTS.
“ach class has been assigned a zray level and displayed
electronically to form the Iimage. The Yclassification
noise" is readily apparent. In contrast to this, Figure
4.2.5 shows the same section as classified by ECHO
(supervised). The random errors have, for the most part,
been eliminated. This map 1is much closer to the desired
result than is the CLASSIFYPOINTS output. Figure 4.2.6
shows the centers of these two maps in greater detail. Each
class is represented by an assigned symbol (or blank), and
each symbol represents one pixel. The four rectangular
areas are test areas designated as woodéd pasture. This

class is displayed as a blank space to emphasize the
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contrast between it and the others. The diversity of
symbols in the test areas testifies to the inadequacy of
CLASSIFYPOINTS for classifying such textured regions. lMost
of this confusion is avoided by the ECHO technique.

The wheat class too has a broad distribution, probably
due to the fact that the wheat 1is mostly harvested.
ilhatever the cause, it adds further support to the arguement
that classes with broad distributions tend to benefit the
wost by sample <classification. To clarify this point
further, the classification improvement is plotted in Figure
t.2.7 vs. the common logarithm Pf the generalized variance.
In the case of a class with subclasses the average
seneralized variance is used. For this data, the
correlation hetween these guantities is 0.81.

Of course a2 broad distribution does not necessarily
imply that partitioning and sample classification: will
produce dramatic improvements over CLASSIFYPOINTS. For
nxample, another class may have about the same distribution,
in which case no classification scheme can reliably
distinguish between them. Or the class may be so unlike any
other class that CLASSIFYPOINTS leaves no room for
improvement. Also the broad distribution may be caused by
inadequate training (i.=e. not representative), in which case
accurate classification may be impossible until the training
is corrected. Nbviously the mechanisms which affect

classification performance in a multidimensional,
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multiclass, mnmulti-subclass situation are very complex.
Observation 3 provides only limited insight into the overall
process.

Observation 4

The supervised ECHO results for <class idle actually
surpass the performance '"goal'" set by processor #5, A
conceivable explanation for this is that idle test areas may
acfuaiiy consist of several physical objects containing
different subclasses of idle. Since the ECHO processor can
classify such objects separately, it can actually provide an
advantage over SAMPLECLASSIFY (ML) which must classify each

test area as a whole.

Otbservation 5
As expected, nprocessor #2 (Level-1l partitioning) can
provide a fairly significant degree of improvement on its

own. Again the effect is strongly class dependent. The

effect would probably be much greater if not for the

correlation that exists between adjacent pixels.

The main parameter that is required for the supefvised
-jode is the annexation threshold, t. Figure 4.2.8 shows how
the average error varies for seven values of t. Of these,
the optimum value is t=5, although =2all values tried gave
significantly petter performance than CLASSIFYPQINTS. The
Level-1 threshold, being of much ieéser importance, was not
varied in this study. It was previously established at c=

90 by processing a small subregion of the data set several
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times while varying c. This value provides a sufficiently
low rejection rate that the occurrence of singular cells is
limited mainly to patterns resembling boundary lines (as
desired). Thus the classification results are not
necessarily optimized with respect to ¢, but they are
believed to be near that optimum.

Figure 4.2.9 shows the behavior of the overall error
vs. t. It is very similar to the average error except that
the results are shifted downward due to the heavy influence
of the corn class. Its minimum also occurs at t=5.

The analogous results for the unsupervised mode cannot
be presented as casily because the performance is a Tunction
of two wvariables, the significance levels. For the same
reason, the optimum performance cannot be determined as
easily. Tables 4.2.2 and 4,2.3 give average and overall
error rates tor eight different combinations of significance
levels. The Level-1 threshold was maintained at a constant
c= 0,25, Cells found to be singular at this level were
classified as small samples vrather than as individual
pixels; i.e. "cell-splitting" was not in effect. The best
results occur at about s,= ,005 or ,001 and s;= .001.
Fossibly a lower value of sy would produce better results,
but this is beyond the capability of the current processor.

Figure 4.2,.10 shows how the processors compare with re-
zard to both error rate and CPU time. In terms of time, the

unsupervised node is the tastest by far because it performs
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Table 4.2.2

Table 4.2.3

Matrix of Average Error Rates (%) for Eight

Combinations of Significance Levels

- Run 71052800

A °1 .001 .005 .025 .100°
.000 24.6 24,3

.001 21.0 23.4

.005 21.3 21.9 23.9
.025 21.8

Matrix of Overall

- Run 71052800

Error Rates (%) for Eight
tombinations of Significance Levels

> f};\ .001 .005 .025 .100
.000 20.1 20.1

.001 18.7 19.7

.005 18. 4 19.3 20.4
.025 19.5
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the fewest <classifications. CLASSIFYPOINTS is the slowest
because it performs the most. The supervised mode is in
between and provides the lowest error rate.

| One of the factors influencing CPU time is the siée (in
pixels) of an average object, since the larger the objects
the greater the number of pixels that can be classiffed at
one time. A rough indication of this factor is obtained by
dividing the number of test areas into the total numger of
test pixels. As indicated on Figure 4,2.10, for this data
set an aVerage test area (object) is equivalent toc a square,

17 pixels wide.

4.3 Run 72064412 - Classification Of Satellite Data

Three LAMDSAT passes over a region in Indiana on
cifferent dates were combined to produce this data set.
Only data from the first date, August 25,1372, 1is used for
analysis in this study. Four spectral channels are
avéilable on LANDSAT-1., The spectral bands are indicated in
Figure 4,3,1, The instantaneous field of view for the three
visible band channels is 86 microradians. The fegion
covered by the data set is a rectangle 45.1 km wide and 53.1
km long. It is sampled 804 times along its width and 673
times lengthwise, for a total of 541,092 pixels. A 21.4 km
by 43,5 km subregion (containing 210,100 pixels) was
analyzed. This region was previously the subject of a study
of strip mine activity (unpublished). The analyst provided

both training statistics and test areas.” Briefly, the

* Courtesy of John Berkebile, LARS.



87

J3uueds [-IVSANVI 3103 pueg [e13d3ds

pue JIaquny [auuey) u3m3ag 3duapuodsaiio)

[°€°y 2andyg

1 0°1 6° 8* L’ 9° s*
! L L L] Ll L L}
(sa333woadyw)
HIONTTIAVA
- 1 41
i 4 4¢
L 4 -4 €
k 4 47
YIGWAN
TINNVHD




88
4.3

method of training was to perform both a manual analysis of
desiznated training areas, using maps and aerial
photography, and an unsupervised clustering analysis of the
1SS data corresponding to each training area. The manual
analysis was used to associate each cluster class with an
informational <class, and the statistics of the <cluster
classes became the training statistics. Training and test
areas have no pixels in common. The number of test pixels
is 9512, & fairly large number for a LANDSAT analysis. The
main classes are agriculture, forest, recent-mine, pit
(containing various grades of water), revegetated mine,
residential, and clouds. The numbers of subclasses are 3,2,
4,2,1,1, and 1 respectively, a total of 1l4. Test areas were
supplied only for the first 5 of 7 main classes. All 4
channels are used in the analysis.

Figure 4.3.2 shows the average and overall error rates
of the wvarious processcors. The weights for overall error
are listed in Table 4.3.1. The class-conditional error
rates are ziven in Figure 4.3.3. As for Run 71052800, the
number of channels used is too large to permit unsupervised,
"V processing. On the whole, the results appear .quite
similar to those of Run 71052800, in spite of the
considerable differences between the two runs. Both the
average and overall error rates are significantly reduced by
the ECHO techniques, with the supervised mode providing a

ccnsistent advantage over the unsupervised mode.
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Table 4.3.1 Relative Influence of Each Class on Overall
Performance - Run 72064412

Percentage of Total

Class ' Test Pixels
Forest 42,1
Agriculture 24,6
Recent Mine | 1951
Revegetated Mine 11.0

Pit 352
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The behavior of the pit <class is misleadinzg and
requires further discussion. Hormally water is one of the
easiest classes to identify wusing CLASSIFYPDINTS, vet the
17.6% crror vrate is by far the highest of any <class.
Therefore it is apparent that something is wrong with either
the criginal training statistics or test areas. As it turns
out, Premise "A" (Section 1.2) has been violated, and this
has caused the pit test areas to contain many pixels that
cverlap 2o0th pit and mjne or revegetated mine classes.
Consequently the pit class results are not truely indicative
of performance, but they are included here for the sake of
completeness. This accounts for the relatively hizh average
error rate of.the unsupervised mode, which is still lower
than the average CLASSIFYPOINTS error rate. With the
exception of this class, it can again be said that no class
is significantly degraded, while some are greatly improved.

The recent-mine <class is another that bears comment.
Motice that processor #5 performs only slightly better than
CLASSIFYPOINTS. Consequently one cannot cexpect partitioning
to improve the accuracy, since the classifier seems unable
to use the information effectively., The root of the problem
is that about half of the test areas in this class are
actually labeled '"partially revegetated mine", and sonec of
these appear as revegetated mine to the sample classifier.
Appafently these categories are spectrally too similar to

distinguish reliably even on a sample basis. Confusion of
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this sort is also the source of almost all the recent-mine
wisclassifications that CLASSIFYPOINTS nakes, so there s
very little other type of error for the sample classifier to
correct.

The performance of the supervised mode is again plotted
for seven values cf the annexation threshold, t (Figures
L.3.4 and L4.3.5). Azain the optimum value is t=5. Notice
that the overall error approaches both SAMPLECLASSIFY
results guite closely. For this study the Level-1 threshold
was held at a constant c= 55, This choice reflects the
lower number of channels and higher incidence of singular
cells as compared to the aircraft data.

The effect of ¢ was briefly investigated when for t= L,
the values c¢= 55 and c= §0 were compared. The higher value
causes slight improvements in the agriculture and forest
classes and slight declines in the others. The overall
error rate is unchanged however. The effects are not large
enough to be of any serious concern here.

-The performance of the unsupervised nmode is given in
Tables 4.3.2 and 4.3.3 for seven different combinations of
significance levels, Of these, the best combination is s,;=
.001 and s;= .005. The Level=1 threshold was aintained
hetween £.20 and 0.25, and cell-splitting was not in effect,
For comparison, the data was also processed with cell=-split-
ting in effect using the "optimum" s; and s, above. The pit

class performance improved to about the same level as the
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Matrix of Average Error Rates (%) for Seven
Combinations of Significance Levels
- Run 72064412

Table 4.3.2

S 31 .001 .005 .025 .100
.000 13.1 11.8
.001 12.0 10.4 10.9 11.8
.005 11.1

Table 4.3.3

Matrix of Overall

Error Rates (%) for Seven
Combinations of Significance Levels
- Run 72064412

S = .001 .005 .025 .100
.000 12.3 9.5
.001 9.5 7.1 7.9 8.9
.005 8.0




98
L.3

other processors, but this is overshadowed by degraded per-
formance in the other classes. In contrast to this,'a non

cell-splitting version of the superyised mode was tried with

t= L4 and c= 55, and the class-by-class performance was uni-
formly worse than with the cell-splitting version. This
might imply that the supervised Level-1 test 1is more
effective than the unsupervised Level-1 test or simply that
a better Level-1 threshold exists (for the unsupefvised
test) than the one used here. The evidence is inconclusive
on this minor point.

Figure 4.3.6 shows how the bprocessors compare with

regard to both overall error rate and CPU time. As before,

the unsupervised mode is fastest, and the supervised mode is

10st accurate. Due to the greatly reduced number of nixels

per nhysical object compared to aircraft data, the

difference in speed for the three processors is much less

significant,

4.4 Run 71052501 - Forest Cover Mapping
Corn Rlight Watch Experiment flightline 218 is a 1.6 x

16.1 km strip of land in southwestern Indiana. [In contrast

to the relatively flat flightline 221, it is on a "maturely

. ¢ c terized Dy
dissected, westward sloping plateau characteriz

abundant stream valleys and @ well-integrated drainage

system.” '"Most of the land area is in slope, with flat,
i

narrow ridge tops and steep valley walls. 1271

Censequently row Crops (corn .and soybeuns) are 1In the
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minority compared to forage crops. About G60% of the land is
covered by hardwood forest with a few, small stands of white
nine, MSS data was collected over this region on the same
date and by the same means as Run 71052800 and 1labeled
71052501, The region was sampled 1605 times lengthwise and
222 times across its width. |In contrast to 71052800, a sun
angle correction transformation was applied to the data.
This data set was -previously the subject of a forest cover
mapping study [27|, and the analyst's training statistics
and test areas are used in the present investigation. Six
main classes are considered: deciduous forest, coniferous
forest, water, forage, corn, and soy. A composite class
(forest and forage) was deleted - by the analyst, who
recognized the inability of CLASSIFYPOINTS to handle such
cata adequately. Our previous results on wooded pasture
indicate that this would have been unnecessary if ECHO
techniques had been available to him. In contrast to the
previously cdescribed analyses, the training is as simple as
possible, involving no clustering or subclasses. The
available reference data (53,516 pixels) was simply divided
into non-overlapping test and training areas at a ratio of
about 13:1. Based on the transformed divergences, the best
set of 3 channels is (6,10,12), which is used in the present
investigation.

Figure 4.4,1 shows the average and overall performances

of the various processors. The weights for overall
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Run 71052501
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Classification Performance vs. Processing Scheme

Figure 4.4.1
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performance are ziven in Table &4.4.1. The original analyst
nas indicated that these are in roughly the same proportion
as the actual occurrence of the classes in the data set.
Thus the overall error rates are estimates of the actual.
probabilities of error. The class-conditional error‘'rates
are shown in Figure L.,4, 62, Several observations can be
Gade:

Observation 1

Azain the average and overall error rates are
significantly reduced by the ECHO techniques, with the
supervised mode providing the greatest advantage.

Observation 2

This is the only data set analyzed to which the MV
version of the unsupervised mode (processor #3) is
applicable for the number of channels deemed necessary. lts
performance can be described as erratic. |t performed much
Letter than CLASSIFYPOINTS for the deciduous class and uch
Letter than all processors (except SAMPLECLASSIFY) for the
foraze class. However it had an especially difficult time
distinguishing between soybeans and corn.

Observation 3

With the exception of the coniferous class, the super-
vised mode (proces<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>