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Detection and Evaluation of Plant Stresses for Crop
Management Decisions

RAY D. JACKSON, PAUL J. PINTER, JR., ROBERT J. REGINATO. anp SHERWOOD B. IDSO

Abstract—The ability to quantitatively assess crop conditions using
remotely sensed data would not only improve yield forecasts but would
also provide information that would be useful to farm managers in
making day-to-day management decisions. Experiments were con-
ducted using ground-based radiometers to relate spectral response to
crop canopy characteristics. It was found that radiometrically mea-
sured crop temperature, when compared with a reference tempera-
ture, was related to the degree of plant stress and could indicate the
onset of stress. Reflectance based vegetation indices, on the other hand,
were not sensitive to the onset of stress but were useful in evaluating
the consequences of stress as expressed in changing quantities of green
phytomass. Anatomical and physiological changes occur within plant
cells when plants are stressed and increase the amount of reflected ra-
diation. However, canopy geometrical changes may alter the amount of
radiation that reaches a radiometer, complicating the interpretation of
spectral response to stress. Timeliness, frequency of coverage, and res-
olution are three factors that must be considered when satellite-based
sensors are used to evaluate crop conditions for farm management ap-
plications.

I. INTRODUCTION

HE POTENTIAL yield of any crop can be realized

only when water, nutrient, and environmental condi-
tions are optimum, and if disease and insect problems are
minimized or prevented. Whenever plant growth is re-
tarded by less than optimum conditions, the plants are said
to be stressed. The word “stress”, although difficult to
define from a physiological point of view, is commonly
used to signify any effect on plant growth that is detri-
mental. The term ““crop condition” implies an evaluation
of the degree of stress. Visual assessment of crop stress
is qualitative at best, with the terms *‘good’ or “poor™
frequently used to describe crop condition.

The quantification of plant stress using remotely sensed
data was a major objective of several research projects
conducted under the AgRISTARS program. Although the
research goal was to quantify crop stress using satellite
data, it was necessary to conduct a number of experiments
using ground-based radiometers. These instruments were
used over controlled plots with known stress conditions
and with known plant and soil parameters to obtain the
data base required to relate the remotely sensed measure-
ment to a degree of crop stress.

During the course of the experiments it became appar-
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ent that a number of factors can complicate the assessment
of stress when interpreting remotely sensed data. Ob-
viously, some frame of reference is required if a numerical
value is to be assigned to a stress condition. Furthermore,
the spectral response of plant canopies is related to geo-
metrical as well as physiological factors. In some cases,
differences in spectral response of two plant canopies may
be due to feaf orientation, not to different stress condi-
tions. When plants are stressed leaves may droop and curl,
causing geometrical as well as physiological changes that
affect the radiation received by a remote sensor.

The results obtained using ground-based instruments
should prove useful for improving stress assessment tech-
niques using satellite data. A quantitative measure of stress
from space platforms would not only improve our ability
to forecast yields, but would also provide information
which would aid farm managers in making day-to-day
management decisions.

This report discusses some research results concerning
the detection and quantification of plant stresses by re-
mote means, examines some complicating factors in the
interpretation of data, and assesses progress made in
adapting remote sensing technology to provide day-by-day
information on soil and crop conditions for use by farm
operators in making farm management decisions.

II. DETECTION AND QUANTIFICATION OF PLANT STRESS

Thermal-IR techniques can be used to detect and, in
some cases, quantify plant stress. Although plant temper-
atures can indicate the occurrence of stress, they cannot
identify its cause. If transpiration is restricted because of
a deficit of water (water stress) [1], or by the reduction of
the number of conducting vessels by disease or insects (bi-
ological stress) [2], or by high salinity in the soil water
(salinity stress) [3], the net result is an increase in plant
temperature.

When plants are stressed, physiological changes that
take place within leaves may alter their light absorption
and transmittance properties. This, along with plant ge-
ometry changes such as wilting and leaf curl, can affect
the amount of reflected and emitted radiation that reaches
a remote sensor. Often, by the time stress can be ascer-
tained by measurements of reflected solar radiation, visual
signs are evident, and yield reducing damage has already
occurred. Thus, plant temperatures indicate the onset and
degree of stress at a particular time, whereas reflected so-
lar measurements integrate the effects of stress over time.
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A. Water Stress

The potential of using infrared thermometers to mea-
sure canopy temperatures was demonstrated over two de-
cades ago {1], [4]. Since then, four indices, based on in-
frared temperature measurements, have been proposed for
the quantification of plant water stress. They arc: stress-
degree—day (SDD) [5]. [6]. which is the canopy-air tem-
perature difference measured post-noon near the time of
maximum heating; the canopy temperature variability
(CTV) 7], [8], which is the variability of temperatures
encountered in a field during a particular measurement pe-
riod; the temperature-stress—-day (TSD) [9], which is the
difference in canopy temperature between a stressed crop
and a nonstressed reference crop; and the crop water stress
index (CWSI) [10], [11], which includes the vapor pres-
sure deficit of the air in relating the canopy and air tem-
perature difference to water stress. Although these indices
were developed to quantify water stress, they are useful
for evaluating any type of stress that causes a rise of plant
temperature.

In the development of the stress-degree—day, it was as-
sumed that effects of environmental factors (such as vapor
pressure, net radiation, and wind) would be largely man-
ifested in the canopy temperature, and that the difference
between the canopy temperature (7,) and the air temper-
ature (7)) would be a relatively useful indicator of plant
water stress. It was later demonstrated that the SDD was
insufficient to assess water stress in corn [7]. Gardner ez
al. |7] showed that stressed corn plants were below air
temperature much of the time, and suggested that corn
may be more sensitive to water stress than wheat. They
also suggested that canopy-air temperature differences
may be soil, crop, and climate specific.

The basis for the canopy temperature variability (CTV)
index is that soils are inherently nonhomogeneous, caus-
ing some areas within a field to become stressed before
others. Consequently, canopy temperatures would show a
greater variability as water becomes limiting than they
would under well watered conditions. This variability can
be used to signal the onset of water deficits [7], [12].
Gardner et al. [7] found standard deviations of 0.3°C in
fully irrigated plots of corn. In nonirrigated plots, the
standard deviation was as great as 4.2°C. They concluded
that plots which exhibited a standard deviation above 0.3°C
were in need of irrigation.

The difference in temperature between a stressed plot
and a well watered plot (called the temperature stress day
(TSD) by Gardner er al. |8]) can also be used as a water
stress indicator. Clawson and Blad [9] tested this concept
as to its usefulness for scheduling irrigations. Their corn
plots were irrigated when the average of all canopy tem-
peratures measured in the stressed plot during a particular
time period were 1°C warmer than the average canopy
temperatures of the well watered plot. These experiments
indicated that both methods, the CTV and the TSD, could
be used to evaluate water stress.

The crop water stress index (CWSI) is based on the fact
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Fig. 1. Theoretical relationship between the canopy-air temperature dif-
ference and air vapor pressure deficit. Numbers at the end of the lines
indicate the valuc of the canopy resistance (r,) used for the calculations.

that the canopy-air temperature difference is linearly re-
lated to the air vapor pressure deficit (VPD). This rela-
tion, derived from energy balance considerations, can be
expressed as [4], [11]

T T = raRy v+ 1/r)
¢ A pc, A+ (I + r/r)

_ VPD
A+~ + r/r)

(1

where r, and r. are the aerodynamic and canopy resis-
tances (s -+ m "), R, is the net radiation (W - m ), oC,
the volumetric heat capacity of air (J - m™ - C"), v is
the psychrometric constant (Pa - C™ "), and A is the slope
of the temperature-saturated vapor pressure relation (Pa -
ch.

For well-watered plants the canopy resistance (r,) is low
but usually not zero [13]. Assuming that 5s - m™' is rep-
resentative of . at potential evapotranspiration, T, — T,
was calculated as a function of VPD. Results of these cal-
culations are given in Fig. 1. Also shown are lines for r.
= 50, 500, and oo, which correspond to moderate, severe,
and infinite stress, respectively. When r. = oo, (1) reduces
to

r,R

o n

T,

T, = )

which shows that the upper limit of plant temperature is
dependent on the aerodynamic resistance and the net ra-
diation.

The point B in Fig. 1 represents a measured value of 7,
— T,. The points A and C represent the values of 7. — T,
that would occur if the plants were under maximum and
minimum stress. at a particular value of VPD. A crop
water stress index (CWSI) was defined as the ratio of the
distances BC/AC [10], [11]. The mathematical equivalent
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Fig. 2. Canopy-air tcmperature differcnce versus air vapor pressure deficit
for well-watered plots of alfalfa assumed to be transpiring at the potential
rate, and one severely water-stressed plot for which all temperature dif-
ferences were positive.

7(1 + r('/ru) - 7*

CWSI =
A+ y(1 + r/ry)

3
can also be written [11]. The term v* = (1 + r.,/r,)
where r, is the canopy resistance at potential evapotran-
spiration. Equation (3) and the graphical calculation shown
in Fig. 1 have been used by a number of authors to eval-
uate plant water stress in the field [3], [14]-[16]. Idso et
al. [17] obtained data for alfaifa at a number of locations
in the western U.S. (Fig. 2) to demonstrate the basic va-
lidity of the concept.

B. Biological, Salinity, and Nutrient Stress

Insects and disease organisms can affect the tempera-
ture of plants by disrupting the transpiration stream. Dis-
rupting transpiration vessels has the effect of increasing
the canopy resistance, and thus increasing the canopy-air
temperature difference (Fig. 1). Pinter et al. [2] used a
thermal-IR radiometer to measure leaf temperatures of
sugar beets infected with Pythium aphanidermatum. Leaf
temperatures of diseased plants averaged 2.6-3.6°C
warmer than leaf temperatures of healthy plants, yet the
disease could not be ascertained visually without exam-
ining the roots. Temperatures of diseased plants remained
higher than healthy plants even under conditions of water
stress. Results with cotton infected with Phymatotrichum
omnivorum were similar. Sunlit leaves of moderately dis-
eased plants averaged 3.3-5.3°C hotter that those on plants
with no sign of fungal infection. The temperature differ-
ence between diseased and healthy plants was evident 1
day after an irrigation. As soil moisture was depleted, the
diseased plants invariably wilted first.

In arid areas, increased soil salinity is a frequent con-
sequence of irrigation. Early detection of saline areas may
permit preventative measures before the crop is signifi-
cantly damaged. Myers et al. [18] using ground based
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canopy temperature measurements, determined that the
canopy-air temperature difference increased about 11°C
with an increase of salinity corresponding to 16 dS - m~!,
Recently, Howell er al. [3] found that canopy tempera-
tures were as sensitive to osmotic stress as were tradi-
tional measures, but that temperatures provided a better
spatial resolution.

Howell et al. [3] determined the VPD at which cotton
could maintain “unstressed’’ transpiration rates as related
to the soil electrical conductivity in the root zone. They
showed that cotton could maintain “‘unstressed” transpi-
ration only if the VPD was less than 3.5 kPa. For vapor
pressure deficits greater than 3.5 kPa, the plants showed
symptoms of stress although soil water was not limiting.

Laboratory studies of nutrient stress showed that min-
eral deficiencies increased the reflectance of radiation in
the visible wavelengths, whereas effects on near and mid-
dle IR reflectance varied according to the specific mineral
deficiency [19]. Field measurements of corn canopies that
received four nitrogen treatment levels showed that visible
red reflectance increased and the near infrared reflectance
decreased with decreasing nitrogen [20]. The ratio of near-
IR to red radiance was related directly to the amount of
nitrogen applied. Similar results have been reported for
nitrogen deficient sugarcane [21].

C. Comparison of Thermal and Reflective Indices

A number of vegetation indices which are sensitive to
the amount of green phytomass in the canopy can be
formed from bands in the reflected portion of the solar
spectrum [22]. One widely used vegetation index is the
near-infrared red ratio. Fig. 3 shows this ratio as a func-
tion of time during the growing season for two plots of
spring wheat, one of which was kept well watered (wet)
the other given limited water (dry) [23]. Data for the dry
plot are indicated by circles and for the wet plot by x. Two
critical periods, the onset of stress and the maximum al-
lowable stress, can be inferred from the vegetation index
shown in Fig. 3. The well watered plot, irrigated on day
79, maintained a steady growth rate throughout the veg-
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Fig. 4. The crop water stress index (circles) and the fraction of cxtractable
water used (dots) as functions of time for (a) a dry and (b) a wet wheat
plot. The dashed vertical lines indicate the dates when irrigations werc
given.

etative stage. Early in the season no differences were ob-
served between the two plots, but after day 80 the growth
rate of the dry plot began to decrease, as indicated by the
inflection point (INF) in Fig. 3. At that time the rate of
accumulation of green phytomass slowed due to lack of
water in the dry plot. We interpret this as the first previ-
sual indication of stress. Without a well watered plot for
comparison, however, it would be difficult to detect the
onset of stress from a time sequence of the near-IR/red
ratio. Note also that the IR/red ratio for the dry plot
reached a maximum on day 93 (arrow labeled MAX). At
this point the net accumulation of green phytomass, as seen
by the radiometer, was zero. Plant architectural changes
such as wilting may have exposed more soil to the radi-
ometer, causing a further decrease in the ratio. On day 93,
visual symptoms of stress were evident, and the rate of
growth was zero. After day 93, there was a net loss of
green material. We interpret this point as the maximum
allowable stress, because the subsequent growth rate is
negative. After irrigation on day 100 the green phytomass
again increased, attaining nearly the same value as the
maximum reached earlier.

Fig. 4 shows the CWSI and extractable water used
(EWU) [24] for the same two experimental plots. The
CWSI data points are shown as circles clustering around
a line drawn by eye. Smoothed values of the EWU {mea-
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sured with a neutron scattering technique) are shown as
dots. Irrigations are indicated by the vertical dashed lines.
Both the CWSI and the EWU increased with time until an
irrigation was given. At that point the EWU dropped im-
mediately to a low value, then began to increase. The
CWSI decreased, but several days were required to reach
a minimum [25], after which the CWSI continuously in-
creased signifying a stress induced reduction in transpi-
ration [11].

To identify the values of CWSI and EWU which cor-
responded with a reduction in growth rate, we used the
dates when the inflection and maximum points (arrows
Fig. 3) were reached, and read the corresponding values
of CWSI and EWU from Fig. 4. Combining the two mea-
surements allowed the stress limits to be determined for
wheat. The results indicate that, for maximum vegetative
growth of wheat. the CWSI should not exceed 0.28. If the
CWSI exceeds 0.52, net green phytomass can be expected
to decrease. On the other hand, once the CWSI reached a
minimum after irrigation, it continuously increased with
time, indicating a continuous increase in stress. These re-
sults further illustrate that temperature based indices are
sensitive to the onset of stress whereas the reflectance
based indices can evaluate the consequences of stress as
expressed in changing quantities of green phytomass.

D. Effect of Canopy Geometry on Stress Assessment

Reflectance of light from a plant canopy is a complex
phenomenon which depends not only on the reflectance
properties of individual leaves and stems, but also on the
ways in which they are oriented and distributed. Under
stress, it is likely that both of these factors will change.
Laboratory measurements of leaf spectra have shown that
reflectance values in the 0.4-2.5 um region increased with
decreasing leaf water content [26]. Gausman [27] dem-
onstrated this effect using cotton leaves. He found that re-
flectance increased in all wavelengths as the leaves pro-
gressively dehydrated. These results can be attributed to
anatomical and physiological changes within the plant
cells. Crop stress also causes the geometry of the plant to
change (e.g., leaf droop and curl), thus exposing different
fractions of vegetation and soil (both sunlit and shaded)
to the radiometer. Obviously, these changes will also af-
fect a reflectance measurement,

The relative importance of stress induced changes in
canopy architecture was studied on a cotton crop by Jack-
son and Ezra [28]. They measured the spectral response
of a cotton canopy by repetitively traversing a radiometer
over three adjacent rows of cotton. The instrument was a
Barnes Multiband Modular Radiometer (MMR)' that has
seven bands in the reflective solar and one in the thermal
IR. They are: MMRI, 045-0.52; MMR2, 0.52-0.60;
MMR3, 0.63-0.69; MMRA4, 0.76-0.90; MMRS, 1.15-1.30;
MMRS6, 1.55-1.75; MMR7, 2.05-2.30; and MMRS, 10.5-
12.5 pm. MMR bands 1-4 and 7 correspond to the The-

"Trade names and company names are included for the benefit of the
reader and imply no preferential treatment or endorsement by the U.S. De-
partment of Agriculture.
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Fig. 5. Observed changes in cotton canopy reflectance and temperature as
a function of time after plants were stressed by severing the main stem
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stressed
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matic Mapper bands 1-4 and 7, MMR6 to TM5, and
MMRS to TM6.

After an initial sequence of measurements, the stems of
the center row of cotton were cut at a point just above the
soil. Care was taken to minimize disturbance of the can-
opy structure. The cut plants were supported by wooden
dowels that had been inserted in the soil and to which the
stems had been tied the previous day. The subsequent des-
iccation of plants within this row was followed by com-
paring its reflectance and emittance with a control row.

Visual signs of wilting were apparent almost immedi-
ately after cutting. The uppermost leaves began to curl
and droop first, exposing normal appearing leaves below.
Then wilting progressed slowly to the lower leaves. At the
end of the experiment even the lowermost leaves showed
signs of wilt. As a consequence of wilting, the geometry
of the canopy rapidly changed. Prior to cutting the leaves
were predominately horizontal. As wilting progressed the
leaves became more vertical. The laboratory analysis of
Gausman [27] had indicated that reflectance increased in
all wavelengths with increasing water stress due to phys-
iological changes of the leaves. Field results indicate that
the reflectance may increase at some wavelengths and de-
crease at others, depending on the geometry changes that
accompany stress. The data in Fig. 5 show that, for this
variety of cotton, geometry changes play a major role in
determining reflectance properties of canopies. The re-
flectance of six of the seven reflected solar bands de-
creased as the cotton leaves dehydrated and the leaf angles
changed from horizontal to vertical. Our explanation is
similar to that of Holben et al. [29] in that, due to leaf
droop, first surface reflections were scattered into the can-
opy with less radiance reaching the sensor held above the
canopy. For the six bands, geometric effects overshad-
owed the increased reflectance that occurred due to phys-
iological changes.
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Fig. 6. Reflectance factor as a function of wavelength as measured over
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Reflectance in the red (0.63-0.69 pm) showed a net in-
crease. The same geometrical factors were active, but the
physiological changes were apparently greater. Radiation
in this band (known as the chlorophyll absorption band) is
absorbed by green leaves and provides the energy to com-
bine carbon dioxide and water in the complex biochemical
process of photosynthesis. In a recent review, Krieg [30]
concluded that the first effect of a reduction in water avail-
ability would be a reduction in this biochemical process
which would subsequently trigger the closure of stomata
to reduce the exchange of carbon dioxide and water with
the atmosphere. Our hypothesis is that the sudden inter-
ruption of transpiration immediately affected the photo-
synthesis process causing some of the red radiation that
was previously absorbed to be reflected back to the envi-
ronment.

On a percentage basis, the visible bands reacted as rap-
idly to a suddenly induced stress as did the temperature
(Fig. 5). A water absorption band (2.05-2.35 um) de-
creased by 17 percent within 10 min of a suddenly induced
stress, whereas the red band (0.63-0.67 um) increased by
about 12 percent within the same time period. The near-
IR (0.76-0.90 um) showed the least percent change. This
result is contrary to the results of Holben ef al. [29] who
found that the near-IR was the most sensitive to stress. In
general, our results support the statement of Knipling [26]
that the visible reflectance region is as sensitive to stress
as is the near infrared region. However, in the visible re-
gion the reflectance values are sufficiently small that stress
caused changes may not be detectable in an operational
mode.

Although the reflectance factor for water in all TM
bands is low (Fig. 6), the mid-IR bands (1.55-1.75 pm and
2.05-2.35 um) are proportedly sensitive to liquid water in
plant tissues. On this basis, one could assume that these
bands would be useful in detecting water stress in plants.
Yet, even when liquid water is present in a scene, the ge-
ometry of the scene components can be the dominant fac-
tor and can cause confusion in interpreting the data. For
example, the bidirectional reflectance factor was mea-
sured over a water surface containing water lilies (Nuphar
luteum Sibth., & Sm.) and over a stand of the drought
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adapted desert shrub, guayule (Parthenium argentatum
Gray). The water lily leaves covered about 80 percent of
the surface area, leaving about 20 percent water exposed.
The guayule shrubs were about 0.5 m tall, approaching
80-90 percent cover, and in need of water. At first glance
one would think that the reflectance factor for the mid-IR
bands over the water lily would be small due to absorption
by the water surface and the liquid water in the large green
leaves. However, the reflectance factor (measured at nadir)
for water lily was greater than for guayule in all bands
except the red (Fig. 6). The flat water lily leaves caused
radiation to be reflected upward toward the radiometer,
whereas the guayule canopy caused more radiation to be
scattered horizontally than vertically. This extreme case
demonstrates the fact that canopy geometry must be ac-
counted for when interpreting reflectance factor data.

III. REMOTE SENSING AS A FARM MANAGEMENT TOOL

Thermal infrared radiometry is extensively used by re-
searchers for plant water stress assessment and is begin-
ning to be used by farm operators. At present, portions of
fields are surveyed with hand-held instruments that dis-
play surface temperature. The degree of stress is inferred
by comparison with other fields or by combining the tem-
peratures with ancillary data such as air temperature and
vapor pressure. Surface temperatures derived from satel-
lite data have been used for qualitative stress assessment
in a research mode, but operational systems have not yet
been developed. Using ground based instruments to cover
an entire farm is prohibitive from the point of view of time
and manpower requirements.

Reflected solar radiation has been extensively measured
using hand-held and boom-mounted instruments for re-
search purposes. Satellite data are being used for yield
forecasting and qualitative crop condition assessment.
Vegetation maps derived from NOAA’s AVHRR data have
been produced for the continent of Africa [31], and are
routinely produced for the U.S. [32]. This type of infor-
mation is very useful for detecting large scale vegetation
changes but is not sufficient for providing crop condition
assessment at the farm field level. In order to accomplish
the latter, problems of timeliness, frequency of coverage,
and spatial resolution of a space-based system must be ad-
dressed.

A. Timeliness

Timeliness is perhaps the most important requirement
for a farm management remote sensing system. Fig. 7 is
a hypothetical relation that shows how the usefulness of
remotely sensed data decays with time. To obtain maxi-
mum usefulness, the data must be available within min-
utes. This may appear extreme, but farm operations must
be carried out when crop conditions demand. A remote
sensing system that required, say, 5 days after acquisition
for data delivery would be essentially useless for indicat-
ing when to irrigate, because yield reducing damage would
have occurred by the time water could be applied. A re-
mote-sensing system for farm management would have an
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Fig. 8. Relative uscfulness of remotely sensed data to farmers in relation
to frequency of coverage.

optimum data delivery time of minutes, and a maximum
time of a few hours.

B. Fregquency of Coverage

Frequency of coverage is another important aspect. Fig.
8 shows a hypothetical relationship between usefulness and
frequency. For farm management, the maximum useful-
ness would obtain if continuous coverage were available.
During the growing season crop conditions continously
change. In arid areas, irrigation may be required every 7
to 20 days. A system with a 16-day repeat time would
provide little useful information. Also, cloud conditions
may increase the time period between acquistions. Con-
tinuous coverage would be the optimum, with once a day
coverage as a minimum.

C. Resolution

The resolution requirements for a farm management
system are dependent upon the particular application for
the data. For a farm with relatively uniform soils and a
minimum field size of about 40 acres, the 30 X 30 m res-
olution of a sensor such as the Thematic Mapper may be

.
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adequate. However, this is usually not the case. Many
fields are considerably smaller than 40 acres, and soil het-
erogeneity across fields causes plant growth differences.
As an example, during irrigation, areas with low water
infiltration may not have the root zone replenished with
water, whereas areas of high intake would. The irrigation
program for that field would probably be decided on the
basis of availability and cost of water and the current crop.
A farmer may decide to over irrigate the high intake areas
to assure good crop development over the entire field. Un-
der limited water conditions the high intake areas may be
used as the indicator of when to irrigate with the lower
yields on the other areas accepted. Considering a number
of factors, it appears that a resolution of 5 X 5 m would
be optimum, with 20 X 20 m acceptable, if sensor design
constraints will not allow a smaller figure.

IV. CoNCLUDING REMARKS

Methods for detecting and quantifying crop stress using
ground-based instruments are reasonably well developed.
The identification of the cause of stress remains ambigu-
ous. Water stress, being more ubiquitous, is usually the
first suspect when stress is detected. However, nutrient
deficiencies may cause stress symptoms that can be con-
fused with water stress. When stress is caused by more
than one factor, remotely sensed data may not provide
enough information to identify the factors. For example,
spectral detection of nutrient deficiencies have been dem-
onstrated only when they were known to exist. Little, if
any, work has been reported that specifically identified a
nutrient deficient crop when the cause of the stress was
not known beforehand. Similar statements would hold for
biological and salinity stress detection. It is obvious that
additional research will be required to resolve this prob-
lem.

The effect of canopy geometry on spectral response has
been long known, but studied relatively little. A number
of models are available that demonstrate the result of can-
opy architectural changes. However, the measurement of
leaf angles required to characterize the canopy geometry
in a field crop is difficult and tedious. The comparison of
the reflectance values for water lily and guayule discussed
in a previous section clearly demonstrated the importance
of canopy architecture in determining the spectral re-
sponse of crops. This complexity should not be ignored.

Reaching the goal of quantitatively assessing stress from
space platforms will also require continued research. The
problem of correcting for atmospheric effects on remotely
sensed data has, and is being, addressed by several re-
search groups. Until adequate methods for these correc-
tions are made operational, stress assessment from space
will remain largely qualitative.

Finally, the utilization of data from space platforms for
aiding farm operators in day-to-day management deci-
sions has yet to be realized. Although the benefits to ag-
riculture of space technology have been expounded since
the launch of the first Landsat satellite and have been very
beneficial in some areas, they have not yet materialized
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for farm management. No space system is now in place
that can provide data concerning crop conditions with the
frequency of coverage, and resolution in time to initiate
remedial procedures before yields are significantly re-
duced.
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Vegetation Assessment Using a Combination of
Visible, Near-IR, and Thermal-IR AVHRR Data

VICTOR S. WHITEHEAD, WILLIAM R. JOHNSON, anp JAMES A. BOATRIGHT

Abstract—Twelve-hour temperature difference (thermal inertia)
maps generated by rectifying and registering ascending (day) passes
and descending (night) passes of the NOAA-7 Advanced Very High Res-
olution Radiometer (AVHRR) are compared to vegetation index maps
generated from the visible and near IR data from the day pass of that
satellite. There appears to be significant and unique information con-
cerning surface characteristics in the temperature difference data on
the 1-km scale of the AVHRR. A scatter diagram is provided which
shows the pattern of day-night temperature difference compared to
vegetation index for irrigated agriculture, dry rangeland, lakes, wet
areas and burned rangeland. A detailed description of the techniques
employed to provide the day-night temperature maps is provided.

I. INTRODUCTION

OVER THE COURSE of AgRISTARS, research and tech-
nique development were hampered by the lack of an
accurate yet easy-to-use means to rectify and register a
scene viewed from one sensor or one perspective to an-
other view of the same scene obtained through a different
sensor or from a different perspective. In response to this
need, a task was jointly defined by the Early Warning/
Crop Condition Assessment Project and the Foreign Crop
Assessment Project within AgRISTARS to provide an ac-
curate, flexible, and easy-to-use technique to rectify and
register scenes viewed from different perspectives,
through different sensors, at different times, to each other
and to common map projections. The results of this task
[i] made possible the analysis upon which this paper is
based. It has provided the opportunity to view, at a reso-
lution of 1 km, the spatial pattern of day-night tempera-
ture difference that occurs at the surface, (sometimes re-
ferred to as thermal inertia) and to overlay this pattern on
the maps of other surface characteristics. This paper de-
scribes the pattern of day-night temperature difference in
two distinctly different climatic regimes, southeast Texas
in spring and north Texas and Oklahoma in summer; and
it compares the patterns in day-night temperature differ-
ence to that of a vegetative index.

It is the intent of this paper to demonstrate that signif-
icant information relative to vegetation is available in the
day-night temperature difference on a scale of 1 km and
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that this could be provided now on a daily operational ba-
sis.

II. BACKGROUND

Thermal inertia is the resistance of a material to tem-
perature change, an indicator of which is the time-depen-
dent variation in temperature over a full heating/cooling
cycle. The thermal inertia within the interface of the top-
most layer of soil and the air and covering vegetation is
affected by both the relatively permanent characteristics
of the soil, landform and geological setting, and the tran-
sients such as soil moisture, ventilation, vegetative cover
and stress, albedo, and atmospheric radiation properties.
Research in application of mapping thermal inertia using
airborne thermal scanners performed in the late 1960°s
and 1970’s indicated studies of geology, vegetation and
crops, soil moisture and snow mapping would benefit from
this additional dimension in remote sensing information
[5]. During this period considerable research was also
performed on the information content of thermal inertia
relative to crop condition using ground based information
[3]. Following these favorable results and the analysis of
thermal imagery from early NOAA and NIMBUS series
satellites, the Heat Capacity Mapping Mission (HCMM)
was conceived (1974) and launched (1978) in a research
program to address the specific objectives of:

1) producing thermal maps at optimum times for ther-
mal inertia measurements to be used in discriminat-
ing rock types and mineral resource locations;

2) measuring plant canopy temperatures at frequent in-
tervals to determine the transpiration of water and
plant stress;

3) measuring soil moisture effects by observing the
temperature cycle in soils;

4) mapping thermal effluents, both natural and man-
made, and determining thermal gradients in large
water bodies;

5) predicting water runoff by using frequent coverage
of snowfields; and

6) monitoring the effects of urban heat islands on cli-
matology.

The HCMM which operated from April 1978 to Sep-
tember 1980 was an unqualified success in providing the
“proof of concept’’ for these objectives. The HCMM An-
thology [6] provides a comprehensive summary of the

0196-2892/86/0100-0107$01.00 © 1986 IEEE
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TABLE |
CHARACTERISTICS OF AVHRR AnD HCMM RADIOMETER
(From [6].)

Spectral Spatial Ground
Bands Resalution Repeat NEsT Coverage
micrometers K Cycle oK Km
AVHRR 1 U.580 - U.bBU
I4 U.725 - L.1ou
330550 - 5.93U Loy diurnal Y 3U0U
LI VR VIVERE N R YT 0]
2 1500 - 12,000
HOMR 1 ESEEEE N G | Uu.b diurnal, every .b 7o
21Uy - 120 5-16 days

value of thermal inertia data from this system for several
disciplines and gives a representative sample of the some
115 sets of temperature difference and thermal inertia data
that have been processed from the HCMM. The document
also notes several of the shortcomings with the HCMM
data. The HCMM Project Scientist summarized the prime
lessons from HCMM in the following recommendation for
follow on systems:

I) sampling two or more times a day is necessary;

2) more frequent revisits than those of HCMM are
needed;

3) HCMM spatial resolution was marginally adequate
(the text indicates that for some applications higher
spatial resolution is required, but for applications in-
volving regional analysis coarser resolution is ac-
ceptable);

4) HCMM noise equivalent AT was adequate;

5) HCMM calibration was not adequate:

6) scientific data should not be in an operational pipe-
line;

7) thermal flux for the atmosphere needs to be deter-
mined separately from surface features.

The first five of these recommendations are addressed
here by compromising on spatial resolution. Through use
of the NOAA Advanced Very High Resolution Radiometer
(AVHRR) system, which has a spatial resolution satisfac-
tory for some applications, temporal sampling, revisits,
NE AT, and calibration are all improved over HCMM.
The procedure can be implemented now using cxisting real
time AVHRR data to provide day/night and day/day tem-
perature difference mapping. When used with vegetation
index maps generated from the daytime data, a direct link
between vegetation and thermal inertia is established. A
comparison of the AVHRR and HCMM s given in Table
L.

III. AVHRR Dara PROCESSING PROCEDURES

This section describes the procedures used in going from
the standard NOAA AVHRR Local Area Coverage tape (o
the maps of thermal inertia and vegetative index discussed
later. Channels 1, 2, and 4 are used.

The NOAA Polar Orbiter Data User Guide |4] details
the record and file structure of the Local Area Coverage/
High Resolution Picture Transmision (LAC/HRPT) digi-

tized data from the AVHRR on the NOAA series satel-
lites. These data are processed initially to provide percent
albedo values for channels one and two (no sun angle cor-
rection) and radiance values (mW/(m> - sr - em ) for
channel 4. Albedo and radiance values are calculated using
the calibration coefficicnts provided in each logical re-
cord. The radiance values of channel 4 are converted to
brightness temperature by using the inverse of Planck's
radiation equation
CV

T(E) = e
( In (I + C,VVE)

where

T is the temperature (K),

E is the energy value (irradiance at instrument ap-
erture),

4 is the central wave number of channel filter
(C11174),

C; = 1.1910659 x 10> mW/(m> - sr - em Y, and

C, = 1438833 (cm - K).

The channel 4 central wave numbers for NOAA -6, -7, and
-8 are 912.14, 927.22, and 914.305, respectively.

For the data discussed here no atmospheric absorption
or path radiance corrections have been applied. Also, ra-
diation tempertature is equivalent black-body radiation
temperature at the aperture, i.c., emissivity is assumed
unity, which could result in a temperature several degrees
Celsius different than would be observed in siru. This er-
ror is minimized by taking the day-night difference, how-
ever.

A. Imagery Products

All processed imagery has pixel values which range
from zero to 255. Channels 1 and 2 imagery consists of
pixels whose values are ten times the percent albedo, i.e.,
15.6 albedo has a pixel value of 156.

When delta temperature (2 p.M. to a.m. local solar time)
imagery is generated, the temperature difference in cen-
tigrade is computed, multiplied by 5, and added to 50 to
expand the data to fill the dynamic range of the display.
When delta temperatures (day-to-day + 1, or night-to-
night + 1) are computed, the temperature difference in
centigrade is multiplied by 20, and added to 100.

Vegetative Index Number (VIN) Imagery is generated
by subtracting the channel 1 albedo from the channel 2
albedo, multiplying by 10, and adding to 100.

B. ICARUS—Image Correction and Registration Utility
System

ICARUS is a software system implemented in FOR-
TRAN 77 (IBM VS/CMS FORTRAN) which provides the
user with interactively controlled, remote sensor image
data preprocessing capabilities. In this case “preprocess-
ing”" includes geometric correction of systematic distor-
tions and rectification of an image to a basc map projec-
tion.

ICARUS was initially developed to provide a NASA/
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JSC capability to rectify NOAA AVHRR images to usable
base maps. Data from Landsat Multispectral Scanner
(MSS) and Thematic Mapper (TM) sensors can be ac-
cepted. Image data are accepted from user-specified disk
files in band-sequential format, and outputs are written to
another specified file in a similar band-sequential format.

Image data can be accepted in or converted to any of
the following map projections: orbiting scanner (raw
AVHRR data, for example), Universal Transverse Merca-
tor map, Hotine Oblique Mercator map (as used for
Landsat-2, 3 MSS), Space Oblique Mercator map (as used
for Landsat-4, 3, TM or MSS), Albers Equal Area map,
Lambert conformal conic map, Mercator map, polar ster-
eographic map, cylindrical equal-spaced map, or polyconic
map projection.

A centered n row by m column rectangular grid of out-
put space coordinates are mapped, point-by-point, into in-
put image coordinates. The input image locations corre-
sponding to output pixels within a grid cell are determined
by two-dimensional linear interpolation.

Image data resampling can be selected from an array of
two-dimensional technigues: two-dimensional (four-point)
resampling, nearest neighbor (NN), bilinear (BL). frac-
tion NN/BL, cubic (with zero slopes), and cosine bell
(with zero slopes).

In the analysis performed here the Icarus program is
used in the following manner. Earth rotation effects are
corrected based on a nominal circular NOAA satellite or-
bit in a plane of fixed inclination to the Equator. Earth
curvature effects are corrected based on an oblate sphe-
roid Earth model. The image space is related to the Earth
spheroid by a single user-entered tie-point. The uncer-
tainty in the tie-point is about one line and pixel; the plat-
form attitude uncertainty yields about 1500-m uncertainty
in nadir position; and the geometric correction model ac-
curacy is about 1500 m over a 2048 x 2048 AVHRR
scene. (A full scene Landsat MSS or TM image and an
extracted AVHRR subscene near nadir will overlay within
about 1500 m when both are corrected to a common map
base utilizing ICARUS.) '

Once the initial extraction has been performed on the
image, the second phase of Icarus processing begins. This
step involves the point-by-point mapping of a rectangular
grid of output locations into input image coordinates to
register the extracted image to the desired map. The
aforementioned tie-point and scene parameters can be used
to define the orientation and positional displacement of the
imagery relative to the map. At this juncture of the pro-
cessing, the user employs one of the resampling methods
to register the image to the map. During resampling the
precise input image location corresponding to a particular
output pixel location is determined by two-dimensional
linear interpolation among the four mapping grid vertices
surrounding that pixel.

The Albers Equal Area Projection was selected as being
ideally suited for gridding data in a network fashion. By
definition, scenes with the same number ot pixels and
scanlines represent equal areas over the surface of the
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Fig. | y thermal pattern of southeast Texas at about 2
a.M.. April 25, 1983. Brightness proportional to relative equivalent black-
body radiation temperature.

Fig. 2. AVHRR (channel 4) thermal patterns of southeast Texas at about 2
pM.. April 24, 1983. Brightness proportional to relative equivalent black-
body radiation temperature.

Earth providing both scenes are rectified to the Albers
projection and have the same resolution.

C. Analysis

The analysis was performed for two very different cli-
matic regimes, spring in a relative humid area, summer in
an arid area. In the first case April 24, 1983, a 2 A.M.
descending pass and the following 2 p.M. ascending pass
are paired. The scene is the upper Texas coast and much
of east and central Texas. The thermal channel (channel
4) displays a map of the relative temperature pattern at
about 2 a.m. (Fig. 1). In this figure water bodies, lakes
and the gulf, appear brighter (warmer) than the surround-
ing terrain. In Fig. 2, taken the previous afternoon
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Fig. 3. AVHRR (channel 4) day-night therma! difference pattern. Bright-
ness proportional to relative difference.

(2 pM.), a reversal of that pattern is shown. A subset of
the pixels of each view was selected for processing Icarus
by defining four corner points as shown by the boxes in
these figures. Note that the corners of the boxes are near
to but not necessarily at the same geographic position in
the two views. Using the satellite ephermeris data pro-
vided in the header, Icarus was then used to register the
two views to a geographic map base (in this example an
Albers Equal Area Projection was employed). Resampling
was performed by using the nearest neighbor technique.
A single tie-point was selected and the two views regis-
tered and differenced.

The map of day-night temperature difference is shown
in Fig. 3. Temperature differences in the lakes (R-12) and
bays (T-23) are very small, of the order of 1°C. The forest
to the north of Galveston Bay (Q-15) consisting of mixed
pine and hardwood shows a modest 14°-17°C difference.
The prairie to the upper left side of the figure (D-7) shows
a difference of 20°-23°C and the bare soil prepared for
planting in the Brazos bottoms (D-10 to G-15) (ropelike
bright area to left of figure) and the rice land lower right
(W-19) show the greatest differences, 25°-28°C.

Paralleling the temperature difference pattern a mea-
sure of vegetation was derived from the daylight pass by
differencing (channel 2-channel 1) [2]. This difference is
shown in Fig. 4. (The brighter the pixel the more vege-
tated it is.) Here, the bare soil in the Brazos Bottoms and
the rice land appear very dark. Some major transportation
arteries with their development appear in the vicinity of
Houston, bottom center right. Note that the registration
obtained between ascending and descending passes
through ICARUS (Fig. 3) is degraded liitle if any from
that obtained from the simultaneous view (Fig. 4). Com-
parison of values of individual pixels in these figures sug-
gests that for land surfaces higher values of vegetation in-
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Fig. 4. Gray-McCrary vegetation index (AVHRR Channel 2-Channel 1) at
about 2 pym ., April 24, 1983, Brightness proportional to relative vegeta-
tion contribution.
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Fig. 5. Vegetation index, north Texas and southwest Oklahona. as ob-
served at 2 pM., September 3. 1983, White is highly vegetated, black
little vegetation. Clouds. mid-right and lower right. and lakes appear in
black.

dex are associated with lower values of temperature
difference and vice versa as would be expected with the
evapotranspiration of actively growing vegetation.

The second scene, depicted in Figs. 5-7, is north Texas
and southwest Oklahoma during the late summer of 1983.
For reference Oklahoma City is at X-6. Fort Worth at X-
18, Lubbock at C-13 and Amarillo at C-5. The vegetation
index shows high values along the castern edge of the
frame in Fig. 5, and also in the high plains between Lub-
bock and Amarillo along the western edge. Patches of high
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Fig. 6. Temperature difference between 2 PM., September 3, 1983, and 2
A.M., September 4, 1983, generated by differencing the ICARUS prod-
ucts for those times. Scattered nighttime cloud appears in the upper left
in white. Daytime clouds mid-right and lower right in black. White in-
dicates large day/night difference, black small day/night difference.
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Fig. 7. (a) Pattern of 12-h temperature change versus vegetative index on

September 3, 1983, for an agricultural area near Lubbock, TX. (b) For
the Lubbock area and an area near Witchita Falls, TX.
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values appear over the remainder of the scene but in gen-
eral values are low indicating the poor state of vegetation
in the unirrigated rangeland. Note for later discussion, the
pattern of “‘lakes” in the vicinity of Wichita Falls P-13.

Fig. 6 shows the 12-h temperature difference for the
same region. To the east, where the vegetative index is
greatest, relative low values of temperature difference are
observed. In the Lubbock—Amarillo area inspection shows
the same pattern in fine detail indicative of the irrigation
patterns. Referring again to the “lakes” in the Wichita
Falls area, note that while most lakes have both low values
of temperature difference and vegetation index, two of the
“lakes” here show high values of temperature difference,
higher even than the surrounding terrain. It has been de-
termined that these are instead artifacts of range fires that
occurred earlier in the summer (telecommunication with
land owner). A color composite of the two parameters (not
presented) appears to provide more detail than Figs. 5 and
6, taken separately.

A scatter diagram (temperature difference versus veg-
etation index) is provided in which pixel values are plotted
for a highly vegetated, irrigated area near Lubbock (Fig.
7(a)). The orderly pattern of these data demonstrate the
effect of vegetation on the diurnal temperature range, 1.¢.,
the more vegetated a pixel the more evapotranspiration
suppresses the maximum temperature and the smaller the
day-night temperature difference. The outliers to the far
right above the regression line are in a position where
stressed vegetation would be expected to appear, but ver-
ification of the status of this vegetation is not possible
without additional information.

The scatter diagram provided in Fig. 7(b) combines the
pixels from Fig. 7(a) with those from an area near Witch-
ita Falls. Several clusters are apparent. There is a gradual
transition from the pure ‘“‘deep” water pixels in the lower
left to the shallower and more vegetated shore-included
pixels with a vegetation index of about 2 and a tempera-
ture difference of about 14. The burn area shows the larg-
est temperature difference, however, that cluster slopes up
to the left similarly to the Lubbock agricultural area in-
dicating that where vegetation is returning the tempera-
ture difference is suppressed somewhat. The native range
(not circled) does not appear to have any appreciable pat-
tern in vegetation but does show a significant variation in
temperature difference. The significance of this is not
understood but is under study.

1V. CONCLUSIONS AND RECOMMENDATION

There appears to be significant and unique information
concerning vegetation in thermal inertia data on this scale.
The technology to study thermal inertia and its relation to
vegetation cover on a coarse scale (1 plus km pixels) now
exists. The satellites to acquire the data are in place and
are now providing data daily. The software and proce-
dures are formulated and can be made available to inter-
ested scientists. In performing this early study and in the
detailed follow-up now in progress we have found compli-
cations in attempts to track the patterns described here in
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time. This is due in part to changes in atmospheric char-
acteristics that affect the evapotranspiration rate and in
part to the difference in viewing geometry that affects the
vegetation index. These problems are solvable and need to
be addressed before the full potential of this approach to
vegetation condition assessment can be realized. The ap-
plication of this technique to problems such as monitoring
drought and rangeland productivity changes should be at-
tempted once these improvements are made.
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Analysis of Forest Structure Using Thematic Mapper
Simulator Data

DAVID L. PETERSON, WALTER E. WESTMAN, NATE J. STEPHENSON, VINCENT G. AMBROSIA,
JAMES A. BRASS, anp MICHAEL A. SPANNER

Abstract—Remotely sensed data from forested landscapes contain in-
formation on both cover type and structure. Structural properties in-
clude crown closure, basal area, leaf area index, and tree size. Cover
type and structure together are useful variables for designing forest
volume inventories. The potential of Thematic Mapper Simulator (TMS)
data for sensing forest structure has been explored by principal com-
ponents and feature selection techniques. Improved discrimination over
multispectral scanner (MSS) data proved possible in a mixed conifer
forest in Idaho for estimating crown closure and tree size (saplings/
seedlings, pole, sawtimber). Classification accuracy increased mono-
tonically with the addition of new channels up to seven; the four opti-
mum channels were 4, 7, 5, and 3.

The analysis of TMS data for 123 field sites in Sequoia National Park
indicated that canopy closure could be well estimated by a variety of
bands or band ratios (r = 0.62-0.69) without reference to forest type.
Estimation of basal area was less successful ( = 0.51 or less) on aver-
age, but improved for certain forest types when data were stratified by
floristic composition. To achieve such a stratification, sites were ordi-
nated by a detrended correspondence analysis (DECORANA) based on
the canopy of dominant species. Within forest types, canopy closure
continued to be the best predictor of spectral variation. Total basal area
could be predicted in certain forest types with improved or moderate
reliability using various linear ratios of TMS bands (e.g., red fir, 5/4,
r = 0.76; lodgepole pine, 4/3, r = 0.82). Spectral reflectance can be
expected to be a better predictor of sapwood basal area than total basal
area, as evidenced by poor prediction of total basal area in older stands
with large numbers of long-lived individuals such as giant sequoia. An
analysis of forest structure in the Sequoia data suggests that total basal
area will be most successfully predicted in stands of lower density, and
in younger even-aged managed stands.

I. INTRODUCTION

HE USDA FOREST SERVICE has used aerial pho-

tography effectively in forest inventory for many years.
The photographs are used to stratify the forest landscape
by cover type and structural characteristics (stocking den-
sity, tree height, canopy closure) in order to optimize al-
location of expensive ground surveys. Derivation of struc-
tural information from Landsat data offers the potential
for saving costs in large-area surveys. The objective of the
Renewable Resources Inventory (RRI) project of Ag-
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RISTARS was to develop, test, and evaluate methods and
techniques for applying remote-sensing technology to the
inventory, monitoring, and management of forest and
rangeland renewable resources. The capacity to estimate
forest cover type and structural information was also a goal
of other NASA programs that funded the work reported
here: the Domestic Crops/Land Cover project of Ag-
RISTARS, the Landsat Applications Program, the Global
Biology Research Program, and the Terrestrial Ecosys-
tems Research Program.

The inventory procedure of the USDA/Forest Service
Region 5 of California exemplifies the level of structural
detail typically sought [1]. Aerial photography is used to
map forestlands into stands identified by their height,
stocking density, and vegetation type (usually by domi-
nant species). Stand height is estimated in turn from crown
diameter and stocking density. In Region 5, crown diam-
eter is divided into five classes: seedlings and saplings,
poles, diameter up to 12 ft (4 m), small timber (12-23 ft
(4-7 m)), medium timber (24-39 ft (8-13 m)), and, large
timber (over 40 ft (13 m)). Stocking density is usually re-
lated to percent crown closure of commerical conifers in
pure stands and those mixed with hardwoods. The dis-
tinctions are: nonstocked (less than 10-percent crown clo-
sure), sparse (10-19 percent), poor (20-39 percent), not
adequate (40-69 percent), and good (over 70 percent).
This high level of stratification has been shown to reduce
variance and improve efficiency in sampling for volume
and productivity estimates as well as having utility for
multiresource analyses. For example, the California Wild-
life Habitat Relationships Task Force has developed rank-
ings of these strata against the needs of wildlife species
for nest sites, feed, and shelter [2]. For the purposes of
timber inventory, however, fewer strata can still yield good
predictions and efficient designs. Within a regional type,
crown diameters can often be reduced to two classes (large
trees or commercial, and small trees or precommercial)
while stocking density can be reduced to two strata (good
(over 40 percent) and poor (under 40 percent)), or three
(good, not adequate, poor).

While crown closure and crown size (or height) are the
most common measures of forest structure, other struc-
tural variables can also be used effectively to predict spe-
cific functional properties of forest ecosystems. Leaf area
index, the total leaf area or projected one-sided leaf area
per unit of ground area (LAI), has been shown by Gholz
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[4] to be an effective predictor of aboveground net primary
productivity (NPP). The prediction of NPP was obtained
for temperature coniferous forests of the Pacific North-
west having a one-sided LAI range from one to twenty.
Leaf area index is not being used to predict growth by the
Forest Service as yet, probably due to the difficulty in
measuring LAI over large regions. Instead, the strata al-
ready described are used with yield tables to derive growth
estimates. Our own efforts to estimate leaf area index by
remote sensing are cited below.

Earlier experience with Landsat MSS data [5]-112] led
us to develop the hypothesis that the variance in a remote-
sensing image of a forested arca will be due as much to
variation in structural properties of communities (crown
closure, tree size, tree spacing, lcaf area) as to variations
in species abundance and cover type. Indeed, the “noise™
of forest structure can contribute to the loss of classifica-
tion accuracy [13]. As the spatial resolution of sensors is
increased from 60 to 30 m, there should be an increase in
variance as the resolution size approaches the natural fre-
quency of canopy structural characteristics. such as crown
diameter. Therefore, Thematic Mapper data might be ex-
pected to contain increased structural information at the
loss of cover type classification accuracy. For timber vol-
ume estimation, this is an acceptable, perhaps preferred,
tradeoff as structural propertics are more closely associ-
ated with functional variables like net primary productiv-
ity and state variables like volume.

II. SiMULATED THEMATIC MAPPER ANALYSES

A. Forest Structure in Clearwater National Foresi,
Idaho

A region from the Clearwater National Forest in north-
ern Idaho was chosen for analysis in the Renewable Re-
sources Inventory program of AgRISTARS to evaluate
the capabilities of the Thematic Mapper. Simulated TM
(TMS) data were acquired for this mixed-conifer in-
tensely-managed forest. A complete range of regrowth
conditions exists here. Similar results arose from both a
principal components analysis and a Monte Carlo simu-
lation selecting features (channels) that optimize for ac-
curacy of classification of a training data set. A classifi-
cation scheme and appropriate training sites were selected
purposely tc highlight structural features (good/poor
stocking; seedlings/saplings, poles, sawtimber) as well as
the harvesting patterns and other cover conditions in the
area. Channel 4 (760-900 nm), channel 7 (thermal:
10 400-12 500 nm), channel 5 (1530-1730 nm), and
channel 3 (630-690 nm) were the optimal bands, in that
order, to explain scene variance. Training site statistics
were used to classify the scene by maximum likelihood
techniques. Classification accuracy for seven-channel 30-
m TMS data were found to be superior to a four optimum
channel (3, 4, 5, 7) 30-m data set. These in turn consist-
ently outperformed a simulated three-channel MSS data
set. The Monte Carlo technique showed that the classi-
fication accuracy increased monotonically as each new
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channel up to the full seven was added to the analysis.
Virtually no stand dimensional data were available for this
site. Thus further analyses to establish the particular
structural or other variable contributing most strongly to
these results were not possible |14]. This study laid the
groundwork for further research at two new locations for
which carefully measured structural properties were ob-
tained. Results of a study in Oregon have been reported
elsewhere [15]; we discuss below our most recent efforts
in the montane forests of California.

B. Forest Structure in Sequoia National Park,
California

Sequoia National Park, in the southern Sierra Nevada,
represents a particularly complex vegetation mosaic, rang-
ing from chaparral shrubland and broad-leaved forest to
montane and subalpine coniferous forest stands. Most of
the vegetation has not been logged in the past 95 years,
resulting in mixed-age mixed-species stands characteristic
of natural, rather than heavily managed, forest land-
scapes. Airborne Thematic Mapper (ATM) data were ob-
tained over 120 0.1-ha and 3 0.02-ha sites for which
ground data were available in the Park. The ground data
were collected by N. L. Stephenson during 1982-1983.
The data included information on species composition in
the canopy, canopy closure, and basal area by species. We
sought to determine the extent to which the forest struc-
tural variables influenced, and in turn could be predicted
by, the spectral data.

C. Collection and Refinement of Spectral Data

ATM data (flight 83-164) were collected on September
2, 1983, between 11:40 a.M. and 12: 16 pM. (solar noon).
The Daedalus Airborne Thematic Mapper (ATM) was
flown aboard a NASA U-2C aircraft at 19 800 m, along
four N~S trending flight lines of 16.6-km swath width. The
scan angle of the sensor was 43° with 716 pixels per scan
line. Ground resolution with an IFOV of 1.3 mrad at the
mean Park elevation of 2300 m was 23.2 m. The ATM
acquires twelve channels of information of which the seven
simulated TM bands were used: channel | (450-520 nm),
2 (520-600 nm), 3 (630-690 nm), 4 (760-900 nm), 5
(1530-1730 nm), 6 (2100-2300 nm), and 7 (10.4-12.5 um).

Because the sun angle was not in the plane of the flight
line, the proportion of reflected radiation coming from the
ground and from atmospheric backscattering changed with
scan angle. These limb brightening conditions were cor-
rected by a column-averaging program in which values
away from the scanner nadir were corrected for average
deviation from scene nadir values [16].

D. Collection and Refinement of Ground Data

The following information was available for each of the
123 sites for which spectral data were collected: elevation,
slope, aspect, total canopy closure (percent), percent of
canopy dominated by each species, abundance of domi-
nant tree species in each of 12 diameter at breast height
(DBH) classes, and date of most recent fire within the past
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78 years (from Park records). To convert aspect (in de-
grees) to a scalar which varied from +1 for most mesic
aspects (NE) to —1 for most xeric aspects (SW), aspect
in degrees was transformed to sin (aspect +45). The data
on tree diameters was used to construct basal area totals
in each of five size classes: less than 10-cm DBH, 10-20
cm, 20-40 cm, 40-80 cm, 80-140 cm, more than 140 cm.
In the major conifer forests of the park (white and red fir
(Abies concolor, A. magnifica), giant sequoia (Sequoia-
dendron gigantea)), the first two basal area classes would
generally constitute understory saplings.

Several sources of variation in spectral reflectance are
not directly accounted for by such a data set. The leaf area
index is not known, but from studies in Oregon [15] we
know that the TM 4/3 band ratio increases linearly with co-
niferous leaf area index up to a LAI of 7-8. For higher
LAI values (up to 12), the TM 4/3 band ratio gradually
becomes asymptotic with LAI [17]. The Oregon studies
also indicated a linear relationship between LAI and basal
area [15] so that basal area may be considered a crude
surrogate for LAI in our data set for sites with lower basal
area (and presumably lower LAI). The percent of exposed
rock and rock reflectance is not known, but most sites oc-
curred on a single rock type (granite); the other rock type
in the data set is metamorphic rock. Terrain (slope, as-
pect) and solar zenith and azimuth angles together affect
solar irradiance reaching the canopy surface. To the ex-
tent that aspect influences reflected solar irradiance, a high
correlation between reflectance data and site aspect should
appear. Correlations between the sin of aspect +45° and
TM bands were r = 0.01-0.08 for all bands except band
4 (r = 0.15). Aspect was not selected as a significant var-
iable in any stepwise multiple linear regressions involving
TM bands or band ratios, suggesting that sun angle dif-
ferences are not of major significance in this data set.

Additional sources of variation include variability in num-
ber of pixels included in each sample site delineated (mean
of 48; range of 16-146), in the range of forest types in-
cluded within a delineated site, and potential errors in lo-
cation of image sample sites in relation to ground sample
sites. Changes in atmospheric effect (transmittance, path
radiance) with elevation are also uncorrected.

III. DATA ANALYSIS

A. Broad Correlations Between Spectral Reflectance
and Forest Structure

We began our analysis by examining correlations within
the spectral data, and between spectral reflectance and site
variables. All bands except 4 and 7 were highly intercor-
related across the 125 sample sites (r = >0.92). Bands
1, 2, 3, 5, and 6 were also correlated with band 4 to a
similar extent (r = 0.75-0.79). For this reason, an index
of the sum of bands 1, 2, 3, 5, and 6 was tested (TMN4)
for correlation with site variables. Band 7 showed lowest
correlation with other bands (r = 0.46-0.48), and was
most highly correlated with bands 5 and 6 (r = 0.59).
This general pattern of band intercorrelation was also ob-
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served across the Oregon transect although the intercor-
relation to band 4 was much lower (r < 0.2) [15]. We also
examined the behavior of the ratios of bands 4/3, and
5/4. and 2/3, the normalized difference TMND43: (4 — 3/
4 + 3), TMND54: (5 — 4/5 + 4), and the three TM tas-
seled cap axes [18], which use principal component trans-
formations of the seven-band data, based on interpreta-
tions of these bands with crop scenes.

Our initial correlation analysis between spectral and
ground data indicated highest correlations between all in-
dividual bands or band ratios and total canopy closure (r
= 0.62-0.69), with band 4 showing a lower level of cor-
relation (r = —0.44). Elevation of the site was the next
most strongly correlated site variable for all bands or band
ratios (r = 0.62-0.69), with band 4 again showing a lower
level of correlation (r = 0.34). Of the various band ratios
and tasseled cap transformations, no single ratio or index
behaved significantly and consistently better than the oth-
ers.

We next tested the relationship between spectral and
ground data using stepwise multiple linear regression with
forward selection and backward deletion (minimum F-to-
enter 4.0; maximum F-to-enter 3.9), to examine the rela-
tive contributions of the structural variables to overall
spectral reflectance. Table I shows that, with the exception
of bands 4 and 7, individual bands and band ratios per-
formed similarly in being predicted by canopy closure and
elevation alone with R-square of 0.58-0.65, with only 0.01-
0.05 additional R-square contributions made by various
basal area classes to particular bands or band ratios. Bands
4 and 7 alone were poorly predicted by any variable com-
bination (R-square = 0.20, 0.50).

B. The Role of Species Composition

We also examined the extent to which species compo-
sition of sites affected spectral reflectance. In addition, we
wished to examine whether basal area became a more im-
portant predictor of reflectance once variation due to spe-
cies composition was extracted. A floristic classification
of sites would not satisfy these aims, since we would be
unable to trace how changes in abundance within a flo-
ristic class affected spectral response. In order to obtain a
numerical index which varied continuously with floristic
change, we ordinated the sample sites using detrended
correspondence analysis (DECORANA) [19], [20]. DE-
CORANA positions stands along successive independent
axes which maximize floristic variation in sample space.
Units along each ordination axis represent equal incre-
ments of floristic change. DECORANA is a revised form
of reciprocal averaging [21] in which higher order axes are
made independent of the first, and samples are spaced to
achieve an even rate of turnover of species along the axes.
Reciprocal averaging derives, in turn, from principal
components analysis.

We used percent canopy cover contributed by each spe-
cies as measures of species importance for the ordination.
We deleted chaparral and subalpine stands which had no
tree canopy. The first run of the remaining 107 stands was
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TABLE 1
COEFFICIENTS OF DETERMINATION (r) FOR TM SPECTRAL BANDS AND BAND
Rati08s witH CANOPY CLOSURE, TOTAL BASAL AREA. AND Basal Area op
TREES >40-cm DBH
(Significance of difference between vegetation classes, P < 0.01 for basal
area, P < 0.04 for canopy closure.)

A. Corretalion with total basal area in vegetalion classes.

White {ir Wh/sed {ir Red fir Lodgepote Absolute aver- All forest
age of four types
forest types

n- 27 13 17 1 68 103
TMTCt -.28 - -.51 -.82 At -.32
TMTC2 -.03 21 60 .82 42 19
TMTC3 .21 14 57 31 31 3
TMN4 -.21 07 -53 -.82 42 -.30
T™M4/3 -.07 .05 44 .82 35 13
ND43 .00 13 52 84 37 18
™2/3 -.0t .02 .39 73 29 .20
ND54 -.18 -.09 -.50 -.47 3t -.29
TM54 -23 -.k2 -54 -.44 33 -31
™! -.25 -.03 -53 -.83 41 =27
T™2 -.25 -.01 -52 -83 40 =27
T™3 --19 -.07 -.53 -.82 40 -.27
™4 -.29 24 -.37 -.82 43 -3t
™S -.27 -.03 -.53 -.77 41 -.33
T™é6 -.23 -5 -56 -.80 44 -30
™7 -5 -4 7 54 .25 -.31
xr-valuefor .18 09 48 73 37 27
cotumn
X BATOT, 121:32 73215 74:9.5 17:6.8
@2/ha » std. error
B. Correfation with basai area of {arge trees (DBH>40) in veg. classes
™TC! .29 02 -45 -72 37 -29
TMTC2 -.04 17 54 69 36 5
TMTC3 .21 " 50 42 At 28
TMN4 -.24 -.03 -.47 -72 3 =27
T™4/3 -.07 a1 41 71 30 09
ND43 .00 .08 48 72 .32 a7
T™ 2/3 .00 -01 36 .63 23 13
ND54 -18 -.06 -.46 - 54 K -.26
T™M54 -.22 -.09 -.50 -.53 34 -7
™I 25 0p 46 70 35 .24
™2 2% i 16 71 b 28
T™3 -.19 -03 -.46 -.70 35 -.24
™4 -.30 .23 -.31 = 39 -3t
™3 -.27 -.02 -47 -T2 37 -.30
T™6 -.22 -12 -49 -7 .39 -.27
™7 -.22 -.04 -.46 -.48 30 -.28
x/r/ 18 06 45 56 .34 24
x BA40P+. 108433 66:15 67:9 12:6.2
s, m2/nn
€. Correlation with canopy closure in veg. classes
TMTCI -.26 -.67 -.59 -94 6t -.64
TMTC2 57 85 58 .89 72 .61
TMTC3 52 74 61 .51 .60 70
TMN4 -39 -76 -.60 -9t 67 -.66
TM43 42 .82 34 94 63 60
ND43 51 .86 47 94 .70 66
™23 .32 .80 .33 .87 58 62
ND54 -42 -.78 -.45 -.67 58 68
TM54 -.47 -79 -52 -.62 60 -.68
™I ~.31 -.78 -.58 -89 64 -.60
™2 -.33 -74 -.58 -.89 64 -.61
™3 -3% -.80 -.58 -90 67 -.63
T™M4 23 14 =51 -.90 45 -.32
™S -.34 =72 -.59 90 64 -.67
™6 -.50 =72 -.63 -92 69 -.69
™7 -.63 -.30 -75 -72 60 -.65
x/t/for col. 37 .70 55 -85 .59 62
X canclos 60+3.6 41249 41+5.4 1243.3
50, %

Thematic napoer

Legend: ™
TC Tasseled cap transormation

TM43  Ratio of T' bands 4 and 3
ND43  Nermalized differen f Tt bands 4 and 3
TM23  Ratio of ™M Lands 2 and 3
ND54 - Normalized difference of M bands 3 and 4

M54 Ratio of TM bards 5 and 4
1,2,3,4,5,6,7 ™ bznds 1 through 7
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strongly influenced by three monospecific sites of Pinus
balfouriana (foxtail pine). Since ordination is based on
overlap of species distributions between sample sites, the
fact that P balfouriana did not occur mixed with other
species in our sample set led the remaining stands to be
condensed in axis space. The three P balfouriana stands
were therefore deleted. In the ordination of the remaining
104 stands, the first two axes accounted for 82 percent of
the total variance extracted by the first four axes, with
each of the first two axes accounting for an equal propor-
tion of the variance. Fig. | shows the 104 sample sites
plotted along these two axes. Visually identifiable clusters
were circled, and the dominant species within each iden-
tified. Three sites were reassigned to neighboring groups
in which the identity of dominants matched more closely.

The first axis was correlated with increasing elevation
(r = 0.91) from broadleaved valley bottom sites of canyon
oak (Quercus chrysolepis) and bay laurel (Umbellularia
californica) through black oak (Quercus kelloggit) domi-
nated and black oak-mixed conifer sites to white fir, white
fir-red fir, red fir, red fir-lodgepole, and lodgepole (Pinus
contorta ssp. murrayana) sites at successively higher ele-
vations. Along the axis canopy closure decreased (r =
—0.36) from the dense broadleaved evergreen stands to
upper elevation open lodgepole sites. Higher elevation sites
were also generally on shallower slopes (r = —0.31) with
scant understories (basal area classes lcss than 40-cm
DBH, r = —0.33). The second axis captured a second
important elevational trend (r = —0.33 with elevation),
from low elevation western juniper (Juniperus occiden-
talis) and Jeffrey pine (Pinus Jeffreyi) stands to those in-
tergrading with white fir and red fir, progressing to
lodgepole with increasing elevation. These elevational
changes correspond to those found generally in the Sierra
Nevada [22].

Because units along the ordination axis correspond to
equal increments of floristic change, one can measure the
sensitivity of spectral change to particular species or spe-
cies groups by examining the amount of change in a spec-
tral ratio for a given unit of floristic change within a forest
type as delineated in Fig. 1. Fig. 2 shows how spectral
sensitivity to vegetation type changes with forest type. The
spectral sensitivity-to-vegetation index (SSV) is defined as
(maximum-minimum ratio X 100/maximum-minimum
DECORANA axis | score per vegetation type), with
higher index scores indicating greater spectral sensitivity
to floristic variation in canopy cover. Fig. 2 indicates that
the pine communities in particular (lodgepole (n = 1),
Jeffrey pine alone (n = 6), or with red fir (n = 4)) exhibit
a high degree of spectral change with small changes in
canopy cover or composition. The canyon oak-bay laurel
community also exhibits a high SSV index, though sample
size is small (n = 3).

Among spectral ratios, the 4/3 ratio is most sensitive to
vegetation change with the 5/4 and 2/3 ratios being next
most sensitive, the normalized difference ratios the least.
Band 4 is most able to penetrate deeply into the canopy
[23]. The 4/3 ratio would accentuate this difference, the
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normalized difference would lessen it arithmetically. Since
band 5 is a water absorption band the observed sensitivity
of the 5/4 ratio to vegetative change may reflect changes
in canopy moisture content. Band 2 is sensitive to green

wavelengths, which vary little along this gradient domi-
nated by conifers of similar needle coloration.

Finally, we note that when data are combined across
vegetation types, spectral sensitivity to changes in species
composition and cover is lost, indicating the significance
of segregating by forest type in examining spectral vari-
ation. We confirmed this finding by examining variation
in bands and band ratios for all groups combined versus
each forest type separately, using analysis of variance. The
contribution to total variance due to forest type is highly
significant (P less than 0.01, F-test) for all bands and band
ratios, as well as for canopy closure and total basal area.
Thus the contribution of variations in species composition
to spectral reflectance is highly significant, though more
so for some species or species groups than others.

C. Analysis of Forest Structure within Forest Types

Having identified the importance of species composition
to overall variation, we proceeded to examine correlations
between bands or band ratios and forest structure (canopy
closure, basal area) within the four forest types of highest
sample size (the number of sites is 11-27).

No one band or band ratio proved consistently most
highly correlated with canopy closure or total basal area
(Table I). Band 7 was the best predictor of canopy closure
for red and white fir communities (r = 0.63, 0.75); the
normalized difference of bands 4 and 3 (ND43) was the
best predictor of canopy closure in mixed red-white fir and
lodgepole stands (0.86, 0.94), and the latter and the sec-
ond tasseled cap transformation (greenness) were best
overall predictors for the four vegetation types (average
absolute r-value of 0.70 and 0.72, respectively).

Basal area was less well predicted by any band or index
(r = 0.34-0.37 versus 0.59 for canopy closure). As with
canopy closure, basal area was most poorly predicted in
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mation (r = 0.42). When smaller trees (<40-cm DBH)
were excluded, similar results occurred, though overall
predictive power decreased (r = 0.37-0.34), confirming
earlier results on the contribution of smaller trees in gaps
to total reflectance.

The separation of study sites into forest types consist-
ently improved the relation of spectral reflectance to basal
area, resulting in an average increase in r-value of 0.10.
For canopy closure, however, separation into forest types
did not uniformly improve predictive power (average r =
0.62 for all forest samples combined versus 0.59 for the
four forest types of largest sample size). This suggests that
predictions of canopy closure from reflectance data can be
effictently made in mixed conifer forests without reference
to forest type.

Table II highlights the effect of canopy structure on re-
flectance. We note that best levels of prediction of total
basal area, or of large (40 cm + DBH) or medium-sized
(20-40 cm DBH) trees occurred in stands of lodgepole
pine (r = 0.54-0.84 for 4/3, ND43, and 2/3 ratios).
Logdepole communities were by far the least dense of the
four forest types (average canopy closure 12 + 3.3 percent
versus 41-60 percent for other types), so that fewer trees
were obscured and LAI was presumably lower in them.

This result is due to the good cross correlation of Pinus

Fig. 3. Relationship of total basal area to TM Band ratios for stands in
Sequoia National Park. (a) White fir versus TM 4/3. When stands with
>45-percent canopy closure by giant sequoia (boxed points) are ex-
cluded, r-value improves from 0.01 to 0.3}, (b) Red fir versus TM 5/4.
The removal of one stand (boxed point) with > 38 percent of basal area
in large old trees (> 140-cm DBH) improves the r-value from —0.54 to
-~0.76.

contorta basal area to crown closure and the strong cor-
relation of radiance to crown closure for these open stands.

A different explanation may apply to the marked im-
provement in basal area estimation in white fir stands by
the 4/3 or 2/3 ratio when two stands with major contri-
butions to canopy closure (>45 percent) from giant se-
quoia are excluded from the data set (» improves 0.14-0.30
points for total basal area, Fig. 3(a)). It is likely that the
leaf area of the sequoia is more reflective of sapwood basal
area than total basal area in these very long-lived individ-
uals.

Fig. 3(b) illustrates the nature of scatter in the relation
of the  ratio to total basal area in red fir stands. Removal
of a single stand of high biomass concentrated in the larg-
est trees (trees over 140-cm DBH contribute 38 percent of
the total basal area in this stand) increases the correlation
fromr = —0.54 to r = —0.76. The reason for this is again
presumably that leaf biomass is much more strongly re-
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lated to sapwood basal area than total basal area, so that
estimates are poor in stands with large old trees.

Our analysis of these four forest types, then, has shown
that when stands dominated by large, old trees are de-
leted, the 5/4 ratio or the normalized difference of 4 and
3 are capable of estimating total basal area with r values
of 0.84, —0.76, 0.34, and 0.13 for lodgepole, red fir, white
fir, and mixed fir communities, respectively.

The prediction of basal area by size class improved in
larger size classes, but the contribution of the 20-40-cm
DBH was not insignificant, as noted earlier. In the case of
mixed red-white fir communities, the 20-40-cm size class
was predicted markedly better than larger size classes (r
= 0.28 versus 0.13 for the 40-cm-plus class). Given that
this improved prediction was true even for the 2/3 ratio, in
which reflectance is occurring from the upper canopy sur-
face, such results suggest that mixed fir communities in
our sample have more small firs in canopy gaps. Fire ages
for the three fir community types are comparable (within
one standard error of each other’s means) so that differ-
ences in age since fire do not effectively explain the in-
creased exposure of smaller trees. Parker’s [24] study of
mixed white and red fir stands in Yosemite National Park
in the central Sierra Nevada suggests that mixtures of the
two firs are maintained by periodic gap creation in which
red firs typically reproduce more prolifically. Our data are
consistent with the notion that canopy gaps are more com-
mon in the mixed fir stands, permitting exposure of smaller
trees to aerial view. Information on height/DBH distri-
bution and historical data on storms and windthrows would
help test this hypothesis.

The mixed fir forest type illustrates the difficulty of es-
timating basal area in stands of spatially variable LAIL
Clusters of older trees, with LAI values exceeding satu-
ration levels for spectral reflectance, and with substantial
heartwood not reflected in leaf mass, will be severely
underestimated, while younger trees in canopy gaps may
be effectively estimated.

Of the five band ratios examined for predictive power,
the normalized difference of the 4/3 ratio (ND43) per-
formed best for both basal area and canopy closure in white
fir and lodgepole community types, and was slightly better
than the 4/3 ratio in this regard. The 5/4 ratio performed
better than the 4/3 and ND43 ratio for red fir stands, and
no ratios performed adequately for our mixed fir data. The
normalized difference of 5 and 4 (ND54) generally offered
no improvement over the 5/4 ratio. Hardisky et al. [25]
recently reported that ND54 performed better than ND43
ratio in low biomass stands of Spartina salt marsh, and
ND43 in high biomass stands. Our results, with forest
species rather than grasses, indicate that the performance
of the two ratios is not consistently related to biomass (as
measured by basal area or canopy closure). Other factors,
such as species-specific differences in canopy moisture,
green coloration, and leaf area index may improve predic-
tion or influence the choice among these ratios in partic-
ular cases. Further research with more community types
and larger samples sizes are needed.
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V. DiscussioN

The research on forest structure using TM data is an
outgrowth of earlier work with multispectral scanner data.
Increased spectral noise with increased spatial resolution
indicates that the ‘““noise”” is related to variations in struc-
tural properties of forest communities. Its sensitivity to
forest structure makes TM data useful.

The unmanaged mixed-species mixed-age composition
of the Sequoia forest landscape makes it particularly re-
sistant to broad generalizations regarding the relationship
of spectral reflectance to forest structure. As a single var-
iable, canopy closure was most closely related to spectral
response. This relationship was robust as forest type
changed. Elevation proved a useful predictor as a surro-
gate for changes in floristic composition, as confirmed by
ordination. Basal area can be predicted from the 5/4 ratio
with r-values up to —0.76 for red fir and from ND43 with
r = 0.84 for lodgepole pine, but only 0.34 for white fir
stands. No ratio or band was highly correlated with stands
identified as mixed white-red fir. These differences are not
related to total basal area or stratal distribution of basal
area. Other factors (leaf area index, moisture content of
foliage, green coloration) will need to be tested before firm
conclusions about these ratios can be made for these co-
niferous forests. In general, mixed-aged unmanaged
stands with many older trees of high LAI and heartwood
accumulation will prove more resistant to basal area esti-
mation than younger even-aged managed stands. The 5/4
and 4/3 ratios may prove more successful in estimating
sapwood basal area than total basal area in older stands.

What we have learned from our study of canopy closure
and basal area will be of use when we turn in future to
prediction of LAI from spectral data in the Sequoia data
set. It will be important to recognize those forest types
where substantial contribution to total LAI from forest un-
derstory are being obscured, since saturation effects at
higher LAl values can be expected. Spectral variation be-
tween forest types may remain significant, to the extent
that basal area and LAl are correlated. Red fir and
lodgepole pine communities may prove particularly vari-
able spatially in LAI based on their high spectral sensitiv-
ity index values.

While reliable prediction of total basal area or basal area
classes from spectral data is unlikely to be feasible in all
vegetation types for unmanaged forests such as those in
Sequoia National Park, we have increased our understand-
ing of variables contributing to spectra! reflectance in these
communities. We recognize canopy closure as important
independent of vegetation type. The accuracy of predic-
tions of basa! area will likely vary with canopy density and
closure: denser stands, and older stands with substantial
heartwood, will prove more refractory to basal area esti-
mation. Downweighting of smaller basal area classes in
sites of high canopy closure is only of limited value. The
value of LAI as an integrator of these subtleties in stand
structure remains to be more fully tested in future re-
search. Because spectral reflection is a direct response to
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leat mass rather than wood mass, there is reason to expect
improved predictions of LAI over those for total basal area.
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A Correlation and Regression Analysis of Percent
Canopy Closure Versus TMS Spectral Response
for Selected Forest Sites in the San Juan
National Forest, Colorado

M. KRISTINE BUTERA

Abstract—This investigation tested the correlation of canopy closure
with the signal response of individual Thematic Mapper Simulator
(TMS) bands for selected forest sites in the San Juan National Forest,
Colorado. Ground truth consisted of a photointerpreted determination
of percent canopy closure of 0-100 percent for 32 sites. The sites se-
lected were situated on plateaus at an elevation of approximately 3 km
with slope < 10 percent. The predominant tree species were ponderosa
pine and aspen. The mean TMS response per band per site was calcu-
lated from data acquired by aircraft during mid-September, 1981. A
correlation analysis of TMS response versus canopy closure resulted in
the following correlation coefficients for bands 1-7, respectively: —0.757,
—0.663, —0.666, —0.088, —0.797, —0.597, —0.763. Two model regres-
sions were applied to the TMS data set to create a map of predicted
percent forest canopy closure for the study area. Results indicated per-
cent predictive accuracies of 71, 74, and 57 for percent canopy closure
classes of 0-25, 25-75, and 75-100, respectively.

I. INTRODUCTION

HIS WORK was undertaken to test the capability of

the Landsat Thematic Mapper (TM) sensor and to de-
velop analytical methods for using these satellite data. This
investigation uses Thematic Mapper Simulator (TMS) data
acquired by aircraft to evaluate the usefulness of the data
for predicting percent forest canopy closure. It is assumed
that the results of this investigation will be directly appli-
cable to TM data analysis.

Previous work in the analysis of TMS data related to
forest canopy is limited. Using portable radiometers with
wavelength intervals equivalent to those of the TM, some
investigators have concluded that TM band 4 or the ratio
of band 4/band 3 is optimum for biomass surveys [2], [7],
[9]. Biomass may be considered an indicator of canopy
closure. However, these studies dealt with grass rather than
forest as a target, the latter being distinguished by the
presence of woody tissue which has a confounding cffect
on the interpretation of spectral response.

Dottavio [3] examined the effect of forest canopy clo-
sure and other environmental variables on incoming solar
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The author was with the NASA National Space Technology Laborato-
rics, Earth Resources Laboratory, NSTL Station, MS 39529, She is now
with the Science Applications International Corporation, Washington, DC
20024.

IEEE Log Number 8406236.

radiation using a three-band field radiometer with wave-
length intervals corresponding to TM bands 3, 4, and 5.
She concluded that percent canopy closure was the most
significant variable affecting incoming solar radiation, with
r values of 0.84, 0.81, and 0.73 for bands 3, 4, and 3, re-
spectively. She noted than linear models based on the
above results performed less well in the midranges of can-
opy closure. These conclusions were limited, however, to
field measurements obtained only for canopy closures
ranging between 60 and 97 percent and at O percent. The
results of this study were based on field radiometric mea-
surements of incoming solar radiation below the canopy
and therefore do not represent the same kind of reflectance
measurements which would be made by an aircraft or sat-
ellite-borne sensor as it samples reflected energy above
the canopy.

A more recent study by Dottavio and Williams [4] uti-
lized aircraft-acquired TMS data, although the investiga-
tion did not examine forest canopy closure. Rather, the
study analyzed TMS and Landsat Multispectral Scanner
(MSS) data to evaluate the ““future” versus the present
capability to map specific forest cover types. For almost
all of the TMS data-derived classes, a subset of bands 2,
4, and 5 resulted in greater classification accuracy than
did the full complement of TMS bands. Anderson [1] also
analyzed aircraft-acquired TMS data for forest inventory,
but did not address canopy closure. In a comparison of
classification accuracy for mixed forest, pine forest, and
river bottom forest, he concluded that the choice of chan-
nels had a significant effect and that the same channels
were not the most desirable for all three types. His anal-
yses produced classification accuracies greater than 90
percent.

Percent forest canopy closure is an indicator of forest
biomass, in general, although the quantitative relation-
ships between percent canopy closure and forest biomass
parameters are not well established. A determination of
canopy closure, in addition to its significance to biomass,
is also relevant to wildlife habitat assessment, watershed
runoff estimation, erosion control, and other forest man-
agement activities. The objective of this investigation was
to analyze the correlation between percent canopy closure

U.S. Government work not protected by U.S. copyright
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and individual TMS band response for TMS data acquired
over the San Juan National Forest, Colorado. in September
1981. Regression models were then developed from the
correlation results to create predictive maps of percent
canopy closure. The following text describes the methods
used and results obtained.

II. StupYy AREA

The study area for this investigation is an area of 26,
375 ha in the San Juan National Forest in southwest Col-
orado. Elevation ranged from 2.4 to 4.0 km, although par-
ticular sites of interest were located on plateaus at an el-
evation of about 3 km. Areas of bare rock commonly occur
within the study area. Annual precipitation varies with el-
evation and ranges from 30.5 to 127 cm per year. Predom-
inant forest tree species include ponderosa pine (Pinus
ponderosa, Dougl.), aspen (Populus tremuloides,
Michx.). Engelmann spruce (Picea engelmannii, Parry),
subalpine fir (Abies lasiocarpa, Hook), Douglas fir (Pseu-
dotsuga menziesii, Franco), gambel oak (Quercus gam-
bellii, Matt.), and Juniper (Juniperus Scopulorum, Sarg.).
The study area is a part of the U.S. Forest Service’s south-
ern San Juan Mountains Planning Unit, the subject of a
previous investigation to evaluate U.S. Forest Service
lands using Landsat MSS data [6].

III. AcquisiTioN OoF REMOTELY SENSED DATA

The TMS maintained and flown on an aircraft by the
NASA National Space Technology Laboratories (NSTL)
has a field of view +50° of nadir and an aperture of 2.5
mrad, which results in a spatial resolution of 30 m X 30
m for a pixel at nadir if the data are collected from an
altitude above the ground of 12 000 m. Spectral resolution
for TMS and TM bands, in micrometers, is as follows:

1 2 3

Study plots approximately 10.12 ha (25 acres) in size
were selected for vegetation type and canopy closure of
overstory, as determined by air photointerpretation. Only
plots characterized by a spatially uniform distribution of
cover were selected. The intent of the approach was to
ascertain if a significant relationship existed between per-
cent forest canopy closure, ignoring in this study the effect
of varying proportions of indigenous species in the can-
opy. and spectral response for this environment. Future
analyses will be directed at stratifying the species.

However, to reduce the effect of surface elevation, the
sites uséd in the analysis were chosen from relatively flat
mesa formations. A flat area was defined as having no
greater than 10-percent slope as measured from a USGS
topographic map with a scale of 1:24 000. “Flat” ho-
mogeneous plots were identified by using Mission 221
photography and topographic information. The plots were
also selected to represent a full range of canopy closure
(0-100 percent). Thirty-two such plots fell within the TMS
coverage of the study area (£30° from nadir). The poten-
tial number of plots with the required characteristics lo-
cated within the TMS coverage was a limiting factor in
the analysis.

Enlarged prints were made from the original 3.54-cm
(1:70 000 scale) Mission 221 photography. Only frames
003, 004, and 005 were used and these were printed at a
final scale of approximately 1:20 000. A Bruning area-
graph chart no. 4849 dot grid reduced four times was used
to determine percent canopy closure with a measurement
precision of about 97 percent, according to the manufac-
turer of the chart. The percentage of dots that overlaid tree
canopies in each plot was considered to be the percent
canopy closure.

Photography acquired at a scale of 1:80 000 during a

4 5 6 7

TMS 0.46-0.52 0.53-0.61 0.63-0.69 0.77-0.90

™

The TMS data were collected by the NASA/NSTL air-
craft on September 18, 1981 at 11:30 a.M. local standard
time, from an altitude of 12 km above mean terrain ele-
vation. Aircraft Mission 221 was flown along a north-
south line approximately 27 km in distance. Color in-
frared photography was simultaneously acquired using a
Zeiss RMK16/23 gyrostabilized camera. The photography
collected by a U-2 aircraft, referred to later in the text,
was acquired in September 1980 for an area overlapping
this study area.

IV. GrouND TRUTH DATA ANALYSIS

The TMS data at the full scan of +50° of nadir covered
approximately 26 375 ha of ground surface. Because of
spatial and spectral distortion caused by variations in il-
lumination and pixel geometry at increasing look angles,
only data +30° from nadir were considered in this anal-
ysis.

1.52-1.69 10.4-12.3 2.04-2.24

0.45-0.52 0.53-0.61 0.62-0.69 0.78—0.91 1.57-1.78 10.4-11.7 2.08-2.35

U-2 mission in September 1980, a year earlier, was pre-
pared in a similar manner. Of the 32 plots, 13 were cov-
ered by the U-2 photography. A dot count was performed
on these to determine percent canopy closure for compar-
ison with results derived from the Mission 221 photogra-
phy acquired during the TMS overfiight.

As a check on the photointerpretation, a field mission
was conducted to collect data on each plot regarding the
overstory and understory vegetation, i.e., percent canopy
closure and species, April 14-18, 1982. Observations were
also made on the soil surface material and general terrain.

V. TMS Data PROCESSING

The TMS 8-bit digital data were processed through var-
ious algorithms incorporated in ELAS, a comprehensive
computer software system developed by the Earth Re-
sources Laboratory [5]. All computer processing was per-
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formed at ERL on a 32-bit minicomputer configured with
adequate memory, associated peripherals. and image dis-
play devices. All data processing programs cited in this
report are parts of the ELAS system.

Each channel of TMS data was reviewed in black and
white on an image display device to evaluate data quality.
As geometric distortion in the data +30° from nadir was
minimal, no geometric corrections were applied. Chan-
nels 1-7 exhibited several bad scan lines in the data. most
probably caused by detector noise or interference from air
traffic communication. Data from all channels exhibited a
gradient of values across the scan caused by shadows in-
duced by a sun angle which was oblique to the north-south
flight line at the time of data acquisition. Several standard
ELAS computer algorithms were employed to normalize
the scan angle variations within the TMS data in each
channel and to remove detector noise. Image analysis of
the corrected data verified the improvement in image
quality.

In the next step, the 32 plots of photointerpreted percent
canopy closure were located in the TMS data. This was
accomplished by referring to the photo maps and inter-
actively outlining the boundaries of each plot on a black
and white image of channel 2 of the TMS data using a
cursor on an image display device. Reflectance data were
extracted for the areas on the ground defined by the
polygons and subjected to statistical analysis. The output
data included the means, standard deviations, coefficients
of variation, and covariance matrices for reflectance data
in the seven channels for all the polygons.

VI. CORRELATION AND REGRESSION ANALYSIS

For each polygon, a data table was created containing
the reflectance statistics per channel and the percent can-
opy closure as determined by the photointerpretation of
the TMS overflight photography. Since the canopy vari-
able was expressed as a binomial proportion, the percent
canopy closure data were transformed to better approxi-
mate the variance expected in a normal distribution by
using the following formula:

P, = arcsin \/Fu (1
where P, is the transformed percent canopy closure and P,
is the actual percent canopy closure.

The arcsin transformation of the variable supported the
testing of the significance of the models. A linear corre-
lation and regression analysis was performed on P, as a
function of TMS reflectance for each channel.

VII. REsuLTs

A. Preprocessing

As stated carlier, the analysis of the TMS data was re-
stricted to +30° of nadir, equaling 418 elements per scan
line. The dimension of an clement at nadir for all 7 chan-

nels was approximately 30 m x 30 m. (The resolution of
TM band 6 is actually 120 m.)

—
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TABLE 1
STASTICAL ANALYSES OF MISSION 221 TMS DATA. MEANS. STANDARD
DEVIATIONS, AND COEFFICTENTS OF VARIATION FOR THE DATA SE1
WHEN A) UNCORRECTED, B) CORRECTED FOR THE SUN ANGILL
Errect. anD C) CORRECTED FOR SUN ANGLE AND NOISE

A. Statistical Analysis of Mission Zil THMS Data
{Uncorrected)

CH1 CH2 CH]} CH4 CHS CHé CH?
MEAN 56.34 66.20 59.88 |121.74 33.34 [89.00 25.37
STD. DEV 8.85 13.83 18.76 27.52 11.71 |26.30 10.71
COEF. OF 0.16 0.21 0.31 0.23 0.35 0.30 ¢.42
VAR. ’
B. Statistical Analysis of Mission 221 TMS Data
Corrected for Sun Angle
MEAN 55.84 65.66 $9.32 [121.15 32.79 |88.39 24.83
STD. DEV 7.18 10.63 15.37 25.58 10.41 }22.02 9.81
COEF. OF 0.13 0.16 0.26 0.21 0.32 0.25 0.40
VAR.
C. Statistical Analysis of Mission 221 TMS Data
Corrected for Sun Angle and Noise in Channels 1 and 7
MEAN 55.81 65.66 59.32 |121.15 32.79 |88.39 24.81
STD. DEV 7.18 10.63 15.37 25.58 10.41 | 22.02 9.63
COEF. OF 0.13 0.16 0.26 0.21 0.32 0.25 0.39
VAR. ’
TABLE 11

PAIR-WISE CORRELATION MATRIX FOR CHANNELS 1-7 0F ENTIRE MISSION
221 TMS Darta Sk
(Corrected for sun angle effect and noise in channels 1 and 7.

1 2 3 4 5 6 7
1 1.00
2 0.93 1.00
3 0.95 0.95 1.00
4 0.45 0.55 0.40 1.00
5 0.90 0,85 0.88 0.53 1.00
[ 0.68 0.68 6.70 0.38 0.25 1.00
7 0.97 0.90 0.95 0.39 0.93 6.81 1.00

The data were corrected for scan angle variations in all
channels and noise in channels | and 7. as mentioned. Ta-
ble I presents the means, standard deviations. and coeffi-
cients of variation for the uncorrected and corrected data.

A correlation matrix, based on the corrected TMS data.
shows the relationship between all band pairs (Table 11).
TMS band 4, the near IR band, correlates less well with
all other bands than does any other individual band. in-
dicating that it may be a unique discriminator. However,
TMS band 4 did not perform well as a discriminator of
biomass in this investigation, as discussed in a subsequent
section of this paper.




BUTERA: ANALYSIS OF CANOPY CLOSURE VERSUS TM& SPECTRAL RESPONSE

TABLE 111
SUMMARY OF GROUND TRUTH DATA FOR SAN JUAN NaTiONAL FOrEST, CO,

STupy

Site

(Percent canopy closure was derived from interpretation of Sept. 1981 and

Sept. 1980 color IR photography and
cation is also indicated.)

field observations. Species identifi-

— ——

— —

§ Canopy Closure Derived Prom Photographic
and Field Ground Truth

Species ldentification

— ]
PIELD OBSERVAT!
pLoT ¢ nx 221 U=-2 MISSION OF UPPER CANOPY [IOVERSTORY UNDERSTORY 9322!2
(25-ACRE SITE) |[[Sept. 1981 Sept, 1980 April 1962)
1 12.5
3 97.1 $7.42 100 none, No tter
regeneration)
k) 5.8 *Ponderosas pine
4 J.1 L) Englemann spruce/ tnglemann spruce/ grasses/exposed
Ponderosa pine/ Ponderosa pine/ soil
aspen aspen
L] 5.5 7.4 ] “(None] {None ) neadow/brush
[1 4.9 7.5 0 Aspen regeneration {None) grazed qrasses/
T4-8 exposed soll
y 0,0 0,0 ¥{None None grasses
L] 0.0 0,0 0 None None grasses/locbs
) 0.0 0,0 1] Nons None brush/grasses/
forbs
10 1.8 2.1 3 Ponderosa pine Aspen grazed qrasses/
exposed soil
11 12.0 12.4 ~ 10 Ponderosa pine gambel oak grasses/focbs
12 4.1 “Ponderosa pins
1) J9.% ¥Ponderosa pine
14 88,2 *Pcndecosa pine
13 T7.1 "Ponderosa plne
16 75,5 YAspen
17 0,0 ) None) None gqrazed grasses
18 0.0 ] None} None grazed grasses
15 100.,0 100.0 100 Englemann spruce/ None litter
sub-alpine fir
20 97.4 "Englemann spruce/
sub-alpine fir
21 21,4 12,0 YAspen
a2 17,7 YPonderosa pline
23 45,0 YPonderosa plne
14 76.5 60 Ponderosa pine {None) ganbel ocak/
Tltter
45 55.4 "Ponderosa pline
{6 37,2 43 Ponderosa pine rasses
27 91,9 73.6 onderosa pline
__ 18 9%.%5 35 . ¢ 100 Aspen aspen litter
r hodal
13 95,1 39 .1 TAspen {eegoneretien
g? 79,5 Aspen
>0.8 Aspern
32 43,5 44,0 20 Pondeross plne gamdel oak grasses/
exposed 80
T3I 0.1 70 Ponderosa plne (%W—QET%W—L
exposed eoll
| L) 1) Fondeross plns T T T TTTY AN
35 13,9 (1 9% ) N |["Pondercsa pine sxposed soil
36 54.5 1l "Ponderosa plng

.uppor canopy epecies determined by
phote=interpretation, Wo filed observations were
made,

B. Ground Truth

Table HI displays the results of the percent canopy clo-
sure determination from 1) photointerpretation of the TMS
overflight Mission 221 photography, 2) photointerpreta-
tion of U-2 photography, and 3) field observations. Of
those plots located on both photographic data scts. the
mean difference between the percent canopy closure de-
terminations was 3.1 percent. The field observations (April
1982) of a subset of the plots indicated close agreement
with the photointerpreted results. Thus, the sum of these
results lends confidence in the accuracy of the photointer-
preted determinations of percent forest canopy closure
used as the ground truth data. However, the midrange cat-

cgory of canopy closure (25-75 percent). was unavoidably
underrepresented in the ground truth sampling.
Ponderosa pine, aspen. and gambel oak were the dom-
inant tree species in the plots. The extent to which the fall
color change might have influenced the spectral properties
of the aspen and oak was considered minimal for the date
of TMS data acquisition. Most of the plots did not exhibit
an understory oi trees, although most were covered by dry
grasses or forbs, and one-third included exposed soil.

C. Correlation and Regression Analysis

The mean spectral response per band per plot was cal-
culated and analyzed against the transformed ground truth
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TABLE 1V
RESULTS OF LINEAR REGRESSION ANALYSIS OF PERCENT CANOPY CLOSURE AS
A FUNCTION OF TMS REFLECTANCE FROM MISSION 211 DATA
(Canopy closure data were transformed using arcsin square root function to
create a normal distribution.)

™S 2
CHANNEL r r »n b
1 -0.764 0.584 +=3.695 239.591
2 -0.682 0.465 ~2.188 175.172
3 ~0.661 0.437 ~1.509% 124.360
4 -0.142 0.020 ~0.246 66.93]
5 -0.807 0.651 -2.363 114.685
[ -0.574 0.329 -D.887 116.067
7 ~-0.763 0.582 -2.588 99.842

r = correlation coefficient
m = slope

b = intercept

data (P,) for the 32 plots. Table IV shows the results of
the linear correlation and regression analysis. The corre-
lations were all negative, with the strongest coefficients
occurring for TMS bands, 1, 5, and 7, all bands with spec-
tral coverage not provided by the Landsat MSS.

The linear regression model for TMS band 5:

arcsin \/percent canopy closure

= 114.69-2.363 (TMS 5) )

was applied pixel by pixel to the entire TMS data set, al-
though only predictions of percent canopy closure for areas
of topographic slope < 10 percent were considered valid
based on the ground truth data from which the model was
developed. The r* value indicates that 65 percent of the
variance in percent canopy closure is explained by the
regression on TMS 5 response. The regression was found
to be significant at the 99.99-percent level. Table V sum-
marizes the predictive performance of the band 5 model
for the 32 plots categorized in percent canopy closurce
ranges of 0-25, 25-50, 50-75, and 75-100, where the per-
cent accuracy of prediction was 67.6, 29.2, 37.5, and 48.7,
respectively. Combining the midlevel classes into one
range of 25 to 75 percent resulted in a predictive accuracy
of 73.9 percent for that range.

A multiple regression model was developed from co-
variance data and applied pixel by pixel to the TMS data.
The model combines TMS bands 3, 4, 5, and 6 in the fol-
lowing relationship:

arcsin \/percent canopy closure
= 38.359 + 1.533 (TMS 3)

+ 0.427 (TMS 4) — 4.614 (TMS 5)

+ 0.15 (TMS 6). (3)

In the development of this model, randomly selected
combinations of the independent variables were tested.

——
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TABLE V
SUMMARY OF PERCENT ACCURACY OF PREDICTION OF CANOPY CLOSURE
UsING TMS S5 MonEL

& CANOPY CLOSURE CLASS A ACCURACY OF PREDICTION

0 - 25 67.6
25 - SO 29.2
$0 - 75 37.8
75 - 100 48.7
¢ - 25 67.6
25 - 75 73.9
75 - 160 48.7
0 - 50 7.5
50 - 100 88.1
0 - 100 100.0

TABLE VI
SUMMARY OF PERCENT ACCURACY OF PREDICTION OF CANOPY CLOSURE
Using TMS MuLrisann (3, 4. 5. 6) MobeL

S CANOPY CLOSURE CLASS A _ACCURACY OF PREDICTION

0~ 25 71.2
25 - S0 29.2

50 - 75 35.1

75 - 100 57.2

0 - 25 71.2

25 - 25 €0.7

75 - 100 57.2

¢~ 50 80.4

S0 - 100 82.2

Equation (3) represents the multipie regression model with
the best Wilk’s Lambda statistic, indicative of significance
at the 99.99-percent level, for the models tested. Table VI
summarizes the predictive performance of the multiband
model for the 32 plots categorized in percent canopy clo-
sure ranges of 0-25, 25-50, 50-75, and 75-100, where the
percent accuracy of prediction was 71.2, 29.2, 351, and
57.2, respectively. The midciasses regrouped to a range of
25-75 percent canopy closure resulted in an accuracy of
60.7 percent for that range.

VIIl. DiscussioN

This study tests for a given set of conditions the relation-
ship of plant matter to spectral response for bandwidths
analogous to those of the TM. Specifically, a response in
TM 3 is believed to be related to chlorophyll absorption,
TM 4 to reflectance and transmittance of the internal leaf
structure, and TM 5 and TM 7 to leaf water absorption
[8].

In the analysis of the TMS response from each field plot
in this study, it is recognized that neither species nor back-
ground is a controlled variable. Nevertheless, some statis-
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Fig. 1. Generalized spectral response curves for vegetation and soil (after
[9, Figs. 5-10 and 5-13]). These curves provide an understanding con-
ditions of high spectral contrast that can occur between background and
target.

tically significant results occurred that can be supported
by reasonable biophysical explanations.

An analysis of the correlation results for percent canopy
closure versus TMS spectral response must address the
integrated effect of target and background on reflectance.
In this investigation, the correlation between canopy clo-
sure and spectral response was negative for all bands, in-
dicating that the mean response decreased as canopy clo-
sure increased. If one considers the background of dried
grasses or exposed soil, it may be hypothesized that these
elements contributed relatively higher refiectance values
than did the forest canopy to the overall scene. Plots with
a greater percentage of canopy closure, then, also had a
lesser percentage of the more highly reflective ground
cover contributing to the spectral signature. Indeed, pub-
lished spectral refiectance curves for vegetation and soil
support this idea (Fig. 1). In the figure, reflectance curves
for low-moisture-content vegetation and dry sand are both
higher than for turgid vegetation.

The absolute correlation coefficient was higher for the
relationship between TMS 5 and the transformed percent
canopy closure than for any other band. Again referring
to general reflectance curves for vegetation and soil in Fig.
1, one may infer that for the interval 1.52 to 1.69 um cor-
responding to TMS band 5, it is possible that the distance
between curves of turgid vegetation and a background of
soil and senescing grasses might be maximized. No data
were acquired representing the individual tree canopy and
background spectral contributions to substantiate this hy-
pothesis, however.

The low correlation between canopy closure and TMS
band 4 was surprising in that this band is assumed to relate
to internal leaf structure, which implies a relationship to
biomass, at least in the case of herbaceous material. Fig.
2 displays relative signal response curves for three ground
truth plots with 0-percent canopy closure and three ground
truth plots with nearly 100-percent canopy closure, dem-
onstrating the lack of discrimination in TMS band 4 with
respect to the true canopy variable. It is possible that for
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the particular conditions of the forest target and back-
ground soil and grasses in this study, reflective responses
measured for the spectral coverage represented by TMS
band 4 may have been relatively equal. Fig. 2 clearly dem-
onstrates the greater separability between curves of 0- and
100-percent canopy closure for TMS bands 1, 5, and 7.

Regression models to predict canopy closure from spec-
tral response were developed from the results of this study
and applied to each pixel to gain an understanding of the
performance of the models and manipulations that could
be executed on the imagery.

In development of the regression models to predict can-
opy closure, the influence of topographic slope as a vari-
able was intentionally minimized. Vegetation species as a
variable was minimized to some extent, but not elimi-
nated, as the area considered for the analysis was domi-
nated by ponderosa pine and aspen with lesser coverage
by Douglas fir, Engelmann spruce, and gambel oak. Thus,
it can be said that valid application of the models to predict
percent canopy closure for this environment allows for as-
sociations of species and is not restricted to a monospe-
cific condition.

A recommendation for the most accurate technique for
prediction of percent canopy closure based on the results
of this investigation can be derived by examination of the
prediction accuracies summarized in Tables V and VI. It
is apparent that these accuracies are lower for the middle
classes of canopy closure, i.e., 25-50 and 50-75 percent.
Dottavio [3] also noted greater difficulty in estimating
canopy closure for the midranges using her incoming solar
radiance technique. Regrouping the middle classes into
one range class of 25-75 percent raises the accuracy, al-
though the utility of such a broad class may be questioned.

Using only the techniques evaluated in this investiga-
tion, a combination of the results from the application of
the single-band and multiband models is recommended.
The optimum overlaying of the two data sets would in-
clude pixels with estimates from the band 5 model only for
the 25-75 percent canopy closure class and pixels with
estimates from the multiband model for the 0-25 and 75-
100 percent classes. By combining results of the two
models predictive accuracies for canopy closure classes of
0-25, 25-75, and 75-100 percent would then be 71.2, 73.9,
57.2 percent, respectively.

This investigation focused on correlation analysis and
regression model development to predict percent canopy
closure from TMS spectral response. A follow-on effort
should include an evaluation of other techniques, such as
feature extraction, canonical correlation, and brightness/
greenness component analyses. It should also include con-
trol of obvious variables such as number of species, their
distribution within a plot. and the background material.
As well, the performance of the models should be evalu-
ated on an independent data set.

IX. CoNCLUSIONS

Based on the results of this study, the following conclu-
sions were reached:
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Fig. 2.

Graph of relative reflectance versus TMS channels for Mission 221

data. Graphs demonstrate discrimination capability of TMS 5 for canopy
closure. (CO test site. Sept. 18, 1981.)

TMS bands 1, 5, and 7, essentially wavelength intervals
not covered by the Landsat MSS, proved most significant
in relating percent forest canopy closure to spectral re-
sponse.

The negative correlations resulting from the analysis of
percent canopy closure and TMS spectral response for all
bands were probably caused by a spectral contribution
from the background (dry soil, senescing grasses) with
higher reflectivity than that of the forest canopy.

The results of this investigation were specific to eco-
system type, time of year, and absence of slope.

For a given ecosystem, the best predictive model is de-
veloped when conditions of greatest spectral contrast be-
tween background and forest vegetation occur.

The techniques developed and conclusions reached in
this TMS study are applicable to the utilization of TM data.
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Use of Remotely Sensed Data for Assessing Forest
Stand Conditions in the Eastern United States

DARREL L. WILLIAMS anp ROSS F. NELSON

Abstract—The resuits of three interrelated research activities con-
ducted by Goddard scientists in support of the AgRISTARS Renewable
Resources Inventory (RRI) project are summarized. The central theme
of the research conducted at Goddard was the development of tech-
niques for the detection, classification, and measurement of forest dis-
turbances using digital, remotely sensed data. Three study areas lo-
cated in Pennsylvania, North Carolina, and Maine were investigated
with respect to: a) the delineation and assessment of forest damage as-
sociated with two different forest insect defoliators, and b) an assess-
ment of the improved capabilities to be expected from Landsat The-
matic Mapper (TM) data relative to Multispectral Scanner (MSS) data
for delineating forest stand characteristics. Key results include the de-
velopment of a statewide MSS digital data base and associated image
processing techniques for accurately delineating (approximately 90 per-
cent correct classification accuracy) insect damaged and healthy forest.
Comparison of analyses using MSS and TM Simulator (TMS) data in-
dicated that for broad land cover classes which are spectrally homo-
geneous, the accuracy of the classification results are similar. However,
TMS data provided superior resuits (20 percent overall accuracy in-
crease relative to MSS results) when detailed (Level 11I) forest classes
were mapped. These studies also illustrated the utility of having at least
one band in the visible, near infrared, and middle infrared portion of
the electromagnetic spectrum for assessing specific (Level III) forest
cover types.

I. INTRODUCTION

HE RENEWABLE Resources Inventory Project was

one of eight research and development projects within
the joint program for Agricultural and Resources Inven-
tory Surveys Through Aerospace Remote Sensing (Ag-
RISTARS). The goal of the RRI project was ““to develop,
test, and evaluate methods for applying new remote sens-
ing technology to the inventory, monitoring, and manage-
ment of forest land and range land renewable resources™
[1]. The RRI project, implemented and managed by the
U.S. Forest Service, was conducted as a team effort in-
volving researchers from four NASA Centers and the U.S.
Forest Service.

Researchers in the Earth Resources Branch at the NASA
Goddard Space Flight Center in Greenbelt, MD, con-
ducted research in support of the RRI project during fiscal
years 1980-1982. Goddard had lead role responsibilities in
support of RRI Problem Area 4—Detection, Classifica-
tion, and Measurement of Forest Disturbances. The RRI-
related research effort at Goddard was partitioned into the
following three tasks.

Manuscript received February 15, 1985.

The authors are with Earth Resources Branch, NASA Goddard Space
Flight Center, Greenbelt, MD 20771.
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1) Sensor comparison study—The potential utility of
Landsat Thematic Mapper data for forest resource
mapping was examined relative to capabilities af-
forded by Multispectral Scanner data.’

2) Forest disturbance assessment—Techniques were
developed and tested to facilitate the use of remotely
sensed data to detect, classify, and assess the areal
extent and severity of natural or man-induced dis-
turbances of forest land, such as insect damage and
clearcutting.

3) Landsat forest change detection technique develop-
ment—Methods for the detection, classification, and
measurement of forest change phenomena 5 acres or
larger in size were refined using Landsat MSS data.
(Note: The Forest Service was conducting a parallel
effort to identify changes one to five acres in size
using aerial photography.)

Goddard’s activities were centered on three sites lo-
cated in the eastern U.S.: North Carolina, Pennsylvania,
and Maine. These sites covered four different major forest
cover types found in the U.S., namely, southern pine, Ap-
palachian and northern mixed hardwood, and northeastern
spruce-fir (boreal) forests.

The analyses conducted on each study site had different
objectives and utilized data from different instruments. In
order of presentation, the studies involved: a) the use of
MSS data to assess forest disturbances associated with
gypsy moth (Lymantria dispar) defoliation in Pennsylva-
nia, b) the analysis of TMS data, followed by comparisons
to MSS capabilities for forest cover type mapping in North
Carolina, and c) an assessment of the utility of simulated
TM data for forest cover type mapping, as well as an as-
sessment of the ability to delineate forest damage associ-
ated with another defoliator, the spruce budworm (Chor-
istoneura fumiferana, Clem.) in Maine. Summaries of
each of these research activities are provided in the re-
mainder of the text. The summaries are relatively brief
and oriented toward reporting results. A list of references
which provide more detailed descriptions of the study
areas, data collection activities, and analysis techniques
are included at the end of each summary section.

'At the time this research was being conducted. the TM was a “planned™
sensor, and was not in orbit. Therefore, there was considerable interest in
obtaining advance knowledge of what to expect {rom data provided by this
new instrument.

U.S. Government work not protected by U.S. copyright
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II. AN MSS DicrtaL DATA BASE To DETECT FOREST
DISTURBANCE (PENNSYLVANIA)

A. Background

In the mid to late 1970’s, procedures were developed at
Goddard which proved useful for delineating gypsy moth
defoliation damage over relatively small areas (i.e., less
than one Landsat scene) using Landsat MSS data. These
procedures involved: a) the use of multitemporal Landsat
data acquired ‘‘before” and ‘‘after” peak defoliation to
facilitate the detection of change associated with the defo-
liation, b) the use of a simple band ratioing technique to
assess the severity of defoliation, and c) the use of a dig-
itally derived forest/nonforest mask to eliminate errors of
commission with nonforest cover types when applying for-
est change detection techniques. The applicability of these
procedures to large areas encompassing the equivalent of
several Landsat scenes needed to be tested. Under RRI,
these procedures were integrated to form an automated
system for making annual assessments of the areal extent
and severity of gypsy moth defoliation for the entire state
of Pennsylvania using Landsat MSS data.

B. Data Base Characteristics

The assessment of insect defoliation damage over an
area as extensive as Pennsylvania using Landsat MSS data
required the processing and storage of tremendous quan-
tities of data. The state is covered by portions of 10 Land-
sat scenes, with each scene containing approximately 7.5
million picture elements (pixels). Therefore, a system
which could accommodate efficient digital processing as
well as storage and retrieval of these data had to be de-
veloped.

A data base was created which incorporated Landsat
data, thematic information, and digital data products. The
data base was registered to the Universal Transverse Mer-
cator (UTM) map projection and output in a grid format
consisting of 57-m? cells.? The data base, which resides
on an IBM 370/3081 computer at the Pennsylvania State
University Computation Center, includes a number of
“layers’” of thematic information as depicted in Fig. 1.

C. Analysis Procedures

Personnel of the Office for Remote Sensing of Earth Re-
sources (ORSER) at the Pennsylvania State University de-
veloped a series of computer programs to facilitate the
storage, retrieval, and analysis of data within the data
base. With these programs, the user can step through a
series of procedures to produce a defoliation assessment
image over any portion of the state. The steps involved in
a typical analysis scenerio follows.

1) Acquire the most recent MSS data and register it to
the data base. This step requires a remote-sensing
analyst familiar with image processing software.
Steps 2 through 6, however, may be performed by
nonremote-sensing personnel.

Fifty-scven meters is the nominal pixel size of processed MSS data. The
instantaneous field-of-view of the MSS is approximately 80 m.

LONGITUDE 78° W
/

7/
7/

‘ UTM Maz Projection

Gounty Boundaries

/‘7\ UTM ZONE17 < UTM ZONE 18

Forest Distrizt Bourdaries

Landsal Digital Mosaic, 1976-1979 Data
Depicung Healthy Forest Conditicns

Forest/Non-Forest Mask

Landsat Data Depicting Defohation
Conditicns

J Addit onal MSS Layers or Otner

Map Registered Informat.on as Destred

Fig. 1. Characteristics of the Pennsylvania Statewide Digital Data Basc.

2) Select the area of interest. County and forest disirict
boundaries are available in the data base. In addi-
tion, the user may specify any arbitrary subsection
of the state.

3) Apply the forest/nonforest mask. Previous work at
Goddard had shown that some agricultural areas are
spectrally similar to defoliated forests. To overcome
the associated errors of commission, nonforest areas
are digitally masked and dropped from considera-
tion. The forest/nonforest mask is an integral part of
the digital data base and was developed from Land-
sat data depicting healthy forest conditions in Penn-
sylvania between 1976 and 1979. This mask would
have to be updated periodically to reflect changes
due to forest harvesting activities, regrowth, etc.

4) Calculate the MSS Band 7/Band 5 ratio. This ratio,
comprising the near infrared spectral response in the
numerator and the red response in the denominator,
has been shown to be proportional to the amount of
green biomass in the sensor field-of-view [23]. As
the amount of green vegetation increases, the 7/5
ratio increases. Defoliated forests thus have low ra-
tios relative to healthy forest.

5) Classify the 7/5 ratio image into defoliated and non-
defoliated forest stands. This step entails image
threshoiding. Work done during this project estab-
lished an approximate threshold for distinguishing
between healthy forest and heavily defoliated forest.
Subsequent work has shown that this threshold can
vary between Landsat scenes and between years.
Hence, a number of classification trials may be nec-
essary to produce an acceptable classification.

6) Produce appropriate output products such as tabular
statistics, classification images, or line printer maps.

D. Results

The utility of Landsat MSS data for assessing forest dis-
turbances depends on the success of a preprocessing step—
the delineation of forest and nonforest. Studies at Goddard
have shown that MSS data can be used to reliably distin-
guish forested areas from nonforested areas using growing
season data. Classification accuracies consistently fall
within the 85-95 percent range. The accuracy of the for-
est/nonforest mask for the entire state of Pennsylvania was
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forest. moderate defoliation, and heavy defoliation.

90 percent. A concise review of the production and as-
sessment of the statewide forest/nonforest mask for Penn-
sylvania is provided by Russo and Stauffer [21].

The use of Landsat MSS data for delincating gypsy moth
defoliation is limited by the spectral characteristics of dif-
ferent levels of canopy damage. MSS data may be used to
differentiate heavy defoliation (60-100 percent of the can-
opy removed) from healthy vegetation. Attempts to dif-
ferentiate three forest classes—heavy defoliation, moder-
ate defoliation (30-60-percent canopy removed), and
healthy forest (0-30-percent canopy removed)—have
shown that moderate defoliation and healthy forest are
spectrally inseparable (Fig. 2). Hence, only relatively
gross canopy differences can be distinguished using Land-
sat MSS data. MSS defoliation classification results agreed
with photo-interpreted results 77 percent of the time when
two forest classes were considered (i.e., defoliated and
healthy). It should be noted that the MSS-derived classi-
fication results were much more detailed at the local level
than were the photointerpreted results. With MSS data, a
decision is made on a pixel-by-pixel basis, where each pixel
represents approximately three to four tenths of a hectare.
On the other hand, a photointerpreter tends to assess gen-
eral conditions over areas within the photo which may
comprise several hectares.

The use of MSS data is somewhat limited by the tem-
poral frequency of coverage (16 days), because the tem-
poral window within which defoliation occurs at detect-
able levels is relatively short. Studies by Nelson [16] in-
dicated that there was, at best, a two-month window from
late June to mid-August for assessing gypsy moth defol-
tation damage. Given the 16-day repcat cycle of the cur-
rent Landsat 4 and 5 satellites, one has at best three to
four chances to acquire useful (i.e.. relatively cloud-free)
data over any given portion of the state during the window
defined by Nelson.’ Since the eastern states are often ob-
scured by clouds more than 50 percent of the time during
the summer months [6], a real problem exists in that one

*Actually the number of chances is increased by a factor of two when
two satellites are in phased orbit at the same time, which is currently the
case for MSS data acquisition by Landsat’s 4 and 5.

tion for assessment purposes. Thus, the potential for sig-
nificant cost savings is negated by the need to have a fall-
back source of data (i.e., to be safe, one must continue
the currently used approach of aerial sketch mapping and/
or acquisition of aerial photography).

For more information relative to the development of the
Pennsylvania data base and the data analysis software, the
following may be consulted: [5], [6]. [24]. [28]. [30].
Works by Nelson [16], [18], [19] provide in-depth discus-
sions of forest change detection using Landsat data and
the temporal aspects of gypsy moth damage assessment.

HI. MSS AND SimutATED TM DATA FOR FOREST
CovER TYPE MaPPING (NORTH CAROLINA)

A. Background

Two airborne multispectral scanners capable of collect-
ing data with spectral, spatial, and radiometric properties
similar to those of the TM (Tuble I) were developed and
flown by NASA Centers to provide simulated TM data to
researchers prior to the launch of Landsat-D.* The ratio-
nale for these data collection/analysis efforts was: a) to al-
low researchers to become familiar with the improved
spatial, spectral, and radiometric characteristics of TM
data; b) to permit advance development of new software
to take better advantage of the information contained in
this data; and c) to quantify the improvements to be ex-
pected from TM data relative to MSS data for specific ap-
plications [26].

An investigation was undertaken to examine the utility
of TM data for forest resource mapping. The study was
divided into two segments. The first segment involved a
comparison of simulated TM and actual MSS data to de-
termine which sensor was more suitable for forest re-
sources inventory and assessment. The second segment
was directed toward developing methods of reducing the
large volume of data inherent to the TM sensor by deter-
mining the optimum subset of spectral bands for identi-
fying forest cover types.

*For all practical purposes. the spectral bands provided by the TM sim-
ulator devices were identical to those provided by the TM. However, for
both TMS devices. the numbering of the bands difiered stightly from the
TM due to the inclusion of additional bands. ete. ‘To reduce confusion in
this paper. all TMS bands will be identificd by their TM equivalent band
number.

—1
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B. Study Area and Data Collection

The study area encompassed an intensively managed
forest plantation located in eastern North Carolina. A full
range of forest cover conditions such as recent clearcuts,
various stages of growth following artificial regeneration
of pine, and natural stands of both pine and hardwood were
represented in the study area. An intricate system of log-
ging access roads dissected the area and proved to be use-
ful for accurately identifying any given forest compart-
ment. A detailed analysis and evaluation of the separability
of the forest cover types in the area had been previously
conducted using multitemporal Landsat MSS data [25].

TMS data were collected over the area on June 14, 1979
with the NASA NS-001/MS instrument. The data acqui-
sition occurred at approximately 9:35 A.M. local time
from an altitude above the ground of 6 km. Five of the
eight TMS channels were operational at the time of the
overflight (TM1, 045-0.52 um; TM2, 0.52-0.60 pm;
TM3, 0.63-0.69 um; TM4, 0.76-0.90 yum; and TM5, 1.55-
1.75 pm). Color IR photographs at a scale of 1:40 000
were simultaneously collected with the TMS data, and ad-
ditional color IR photography at a scale of 1:65 000 had
been collected on April 18, 1979. Landsat MSS data were
acquired over the site on July 3, 1979 for comparison with
the TMS data. A forest type map generated in 1974 and
updated from the more recent aerial photos was also avail-
able.

C. Comparison of Landsat MSS and Simulated TM Data

After the TMS data had been preprocessed (i.e., radio-
metric and geometric adjustments to correct for look angle
effects, spatial degradation to approximate a sensor hav-
ing 30-m resolution, etc.), an equivalent area was ex-
tracted from the Landsat MSS data, and a set of training
statistics was developed for each data set using an ISOCLS
[7] clustering function. Using the TMS data set, spectral
classes representing the following seven forest types were
identified from this training routine: 1) clearcut, 2) regen-
eration/pine 1-5 years old, 3) pine 6-10 years old, 4) pine
11-25 years old, 5) mature pine greater than 25 years old,
6) mixed pine/hardwoods, and 7) hardwoods. Using the
MSS data, spectral classes representing all but the mixed
pine/hardwood class could be identified.

The corresponding data sets were then classified using
these training statistics and a maximum likelihood clas-
sifier. Classification performance was evaluated by extract-
ing a stratified random sample of pixels from the classified
images and comparing them to the ground reference data.
The classification results are graphically summarized in
Fig. 3. The TMS data yielded consistently higher classi-
fication performance levels for all cover types, and the
overall performance was 60 percent for TMS, as com-
pared to 39 percent for MSS. The markedly higher overall
performance derived from the TMS data indicated that TM
data would be superior to MSS data for these specific for-
est mapping purposes.

To compare the performance of the data from the two
sensors for mapping general forest cover types, the seven
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Fig. 4. Comparison of TM simulator and Landsat MSS classitication per-
formance levels for general forest cover mapping.

detailed, Level HI cover type classes were regrouped into
four general, Level II forest cover type classes (i.e., young
pine, mature pine, hardwood, and clearcut) and the data
were reclassified. In this case, the overall performance was
comparable for both data sets (77 percent for TMS and 71
percent for MSS; see Fig. 4).

D. Selection of Appropriate TM Bands

A spectral band selection analysis was initiated to de-
termine if acceptable levels of classification performance
could be obtained using only a subset of spectral bands
from the TM. If this were possible, data quantity and pro-
cessing costs could be reduced. A stepwise discriminant
analysis was performed on the sample statistics derived
from the randomly selected pixels used during the classi-
fication performance evaluation conducted in the first
phase of this study. Of the five TM bands evaluated for
discrimination among forest cover types, the combination
that permitted maximum separation of the land cover
classes was TM2, TM4, and TMS. The near infrared band
(TM4) provided the greatest discriminatory power for for-
est classes. The middle infrared (TMS5) and green (TM2)
bands were the second and third bands entered, respec-
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Fig. 5. Comparison of TM simulator classification performance using full
complement of spectral bands available and a subset of those bands.

tively. The other wavelength bands did not significantly
increase forest class separability and were, therefore,
eliminated from consideration.

Following the statistical analyses to determine the op-
timum combination of TM spectral bands, a third classi-
fication was completed for the study area using only data
from TM bands 2, 4, and 5. The results of this classifi-
cation are summarized in Fig. 5, along with a comparison
to the results obtained previously using all bands. Clas-
sification performance actually increased slightly (63 per-
cent versus 60 percent) when the reduced number of bands
were used. Thus, these results indicated that the amount
of TM data to be analyzed could be reduced without sac-
rificing accuracy by selecting the appropriate subset of
spectral bands for the specific application of interest.

E. Summary

The following conclusions were drawn based upon this
study:

1) For broad forest cover-type classifications, Landsat
MSS and simulated TM data provided similar results
when the land cover categories were fairly homoge-
neous.

2) For detailed forest cover-type classifications, TM
data provided superior results due to some combi-
nation of the spatial, spectral, and radiometric char-
acteristics of the new sensor.

3) Significant challenges will arise in processing the
approximate order of magnitude increase in data vol-
ume associated with the TM’s improved sensor res-
olution. Reducing the data volume by quantitatively
selecting a subset of spectral bands for analysis
yielded results comparable to those derived from the
full complement of spectral bands. This indicates
that spectral band selection provided a suitable al-
ternative for reducing data volume without signifi-
cantly reducing class separability.

A more complete discussion of the research summa-
rized here may be found in [4].

1V. SiMuLATED TM DATA ANALYSES FOR FOREST
CoVER AND DISTURBANCE MAPPING (MAINE)

A. Buckground

Simulated TM data were acquired in order to make pre-
launch determinations of the potential utility of TM data
for assessing chronic forest disturbances (such as spruce
budworm damage) and northern forest stand characteris-
tics. Tt was felt that the characteristics of the TM data
might permit the detection and classification of less ob-
vious, long-term damage such as that caused by the spruce
budworm. The research objectives of the study were to a)
determine the TM wavebands most useful for differentiat-
ing boreal forest cover types and conditions, b) obtain a
baseline assessment of classification accuracy as a func-
tion of waveband combination, and ) to identify those land
cover types subject to confusion (misclassification) and
suggest ways to alleviate the confusion.

B. Procedure

On October 12, 1981, TMS data (Texas Instruments RS-
18 MS) and coincident aerial photography were acquired
over a 23 200-ha study area located approximately 50 km
northwest of Millinocket, ME. The study area included a
portion of Baxter State Park and territory owned by the
Great Northern Paper Company. Two sets of color IR aer-
ial photography were available for the study area; 1:80 000
scale color IR photography was acquired coincidently with
the TMS digital data, and 1:7200 scale color IR photog-
raphy was acquired by the U.S. Forest Service on July 24,
1981. These two photo sets were used to create a digital
ground reference data set. Thirteen land cover classes
were identified, including three different classes of spruce
budworm damage (Table II).

This ground reference data set was registered to the
TMS data. Random pixels were chosen from each of the
13 land cover classes in order to spectrally characterize
these classes. Stepwise linear discriminant analyses were
run on the sampled spectral data in order to identify those
spectral bands most useful for differentiating between
cover types. Two analyses were run to determine those
bands which best discriminated between 1) defoliated and
healthy conifer cover types, and 2) all cover types.” Land
cover classifications were performed using band combi-
nations suggested by the discriminant analyses. The re-
sults of these classifications were evaluated using inde-
pendent, randomly sampled pixels.

C. Results

The results of the discriminant analyses are given in Ta-
ble III. Note that the band rankings at step 0 indicate band
order (most uscful to least useful) when the bands are con-
sidered individually. The forward stepping band selection
identifies the order of band utility in the context of the
bands previously entered. The band order suggested by

*Those cover types found to be significantly nonnormal in one or more
bands (i.c., mixedwood, mixedwood defoliation, strip cut, and water) were
not included in the discriminant analyses.

—
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TABLE 11
LISTING AND DESCRIPTION OF LAND CovER CLASSES FOUND IN GROUND
REFERENCE DATA SET FOR MAINE STUDY AREA

Number of
Cround
Class Reterence Prxels

3349

Clearcut

Description

Predomimantly slash on ground

i
2. Old Clearcut 10447 Some shrnb-hardwood regeneration
3 Coniter* 198532 ST0% of tree crown area is coniferons
1 Hardwood* 7336 2T0% of hiee crowa ared is hardwood
5 Maved wood* 13228 < 70% hardwood and < T0% soltwood
i Bog 6102 Alder and sprice bogs
7 Blowdown G176 <304 of tees standing, remainder blown down
5 Water 17506
§ Strip ent 11050
10 Nleadow 301 Short shialn o grasstand
T Severe Conifen
Defoliation 2691 SO0 1009 0l canopy removed
12 Heavy comfer
Defoliation 2664 GO RO%% ol canopy removed
13 Mived wood
Defoliation 2298 GO 100 of comtfer canopy removed
A cens consdered farested o W0 ol aeas covered by ties ceeawn
TABLE 111 coniferous defoliation were confused with each other and

RESULTS OF DISCRIMINANT ANALYSES FOR MAINE DATA SET

a. Defoliated and Healthy Conifer Cover Types:

Cover types considered:
healthy conifer
heavy conifer defoliation
severe conifer defoliation

Alpha level <0.05 (4.0 F-to-enter)

Band Ranking at Step 0, most informative to least informative
(F-to—-enter in parent e§es

. band 1 (57.3 5. band 5 (22.0)
2. band 7 (45.2 6. band 3 8.8;
3. band 4 27‘7g 7. band 2 (8.5
4. band 6 (23.9

Forward Stepping Band Seéection:
te -

Step 2 -~ band 7
Bands 2, 4, and 6 were not entered.

Step 3 —— band 5
Step 4 —- band 3

b. All Cover Types:

Cover types considered: All cover types listed in Table 2
except mixedwood, mixedwood defoliation, stripcut, and water.

Alpha level <0.01 (4.0 F-to-enter)

Band Ranking at Step 0, most informative to least informative
(F-to—enter in parentheses):

l. band 4 (178.0 5. band 3 (89.8
2. band 7 (176.8 6. band 5 (66.6
3. band 1 (175.1 7. band 2 (50.4
4. band 6 (146.7

Forward Stepping Band Selection:
Step 1 —- band
Step 2 -- band 1
Step 3 —- band 5
Band 2 was not entered.

p 4 -~ band 7
Step 5 —— band 3
Step 6 —— band &

the results of the forward stepping discriminant analyses
(all cover types) was used to determine the effects of ad-
ditional spectral bands on classification accuracy. An
analysis of the best single band, the best two bands, best
three, four, - - - , seven bands showed that test pixel clas-
sification accuracy did not increase with the inclusion of
the sixth and seventh bands. When the best five TMS
bands were used to classify the scene and test pixel ac-
curacies were calculated, the overall classification accu-
racy was 57.7 percent (TMS classification results com-
pared with photointerpreted ground reference data). The
five TMS bands which were used were the blue (TM1),
red (TM3), near infrared (TM4), and two middle infrared
bands (TMS and TM7). Table IV reports the individual
land cover classification accuracies using these bands.
The land cover classification results in Table IV exhibit
a wide range of accuracies. Severe (80-100 percent can-
opy removed) and heavy (60-80 percent canopy removed)

to a limited extent with blowdown. Evidently the TMS
data could not be used to distinguish detailed canopy clo-
sure classes. However, TMS data did permit the delinea-
tion of mixedwood defoliation from the pure conifer dam-
age. Meadows (grassland) were classified very poorly, in
part due to the small areal extent of the grassy areas, cou-
pled with minor misregistration problems between the
TMS data and the digitized photointerpretation results.
Hardwoods, which are often spectrally similar to grass-
lands, were confused with meadow; however, the greatest
source of hardwood misclassification error was the mixed-
wood defoliation category. This situation may be an arti-
fact of the October 12 data collection date. Hardwood
leaves had begun to drop, and the hardwood cover type
exhibited a great deal of spectral variability due to fall leaf
coloration. On the basis of these results, the following ob-
servations were made:

1) The discriminant analyses suggested that useful
waveband combinations include at least one band
from the visible (0.4-0.7 um), near infrared (0.7-1.3
pm), and middle infrared (1.3-3.0 um) spectral re-
gions.

2) The blue band (TM1) proved to be the most useful
for discriminating coniferous defoliation categories.
The forward stepping selection process ranked the
blue band second in overall utility for assessing all
cover types.

3) The two middle infrared bands (TM35 and TM7) pro-
vided significant spectral information for differen-
tiating all cover type groups considered. TM7 proved
most useful for coniferous defoliation assessment,
while TM5 proved most useful for differentiating all
cover types. The two middle infrared bands do not
appear to contain redundant information. The dis-
criminant analyses indicate that TM4 and TM7 con-
tain redundant information since the inclusion of one
in the discriminant function precludes or delays the
inclusion of the second (compare Step O results to
the forward stepping results (Table III).
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TABLE IV
TesT PIXEL CLASSIFICATION MATRIX USING FIvE TMS BANDS TO
DisCRIMINATE 13 LAND COVER CLASSES FOR MAINE STUDY AREA
(Table accuracies are in percent.)

Ground Reterence Data (A photomterpretation®

Severe Heavy  Mixed,

Landsat Old Snip Con Con Se
Classification Clearcut  Clearcut  Coniler Hard  Mixed Bog  Blowdown Witer Cut Meadow  Defl Det Def
Clearcut 65.6 12.8 1.6 12.4 0.8 08 T2 2.4 10 0%
Old Clearcut 12.0 71.2 3.2 2.4 3.2 24 15 16
Conifer 0.8 0.8 50.4 256 10 4 0.8 11.2 1.6 32
Hardwood 2.4 0.8 36.0 3.2 2.4 32 1.6 16 4.6 1.6 24 9.6
Mixed Wood 0.4 19.2 0.8 51.2 9.6 24 125 2.4 0%
Bog 4.0 96 1.6 4.8 576 0s 0s 11.2 10 1.6 16
Blowdown 6.4 3.2 0.8 0.8 1.6 1.6 G616 5.6 5.0 6.4 15.2 3.2
Water 08 1.6 936 08 0.5
Strip Cut 4.0 16 24 7.2 104 5.8 08 424 336 1.6 0.5
Meadow 5.6 2.4 3.2 1.0 0.8 T2 25 6 1.6 08 05~
Severe Con. Def. 4.0 1.6 9.6 1.6 6.4 0.8 2.4 6548 20.0 64
Heavy Can. Def. 2.4 7.2 1.6 2.4 2.4 2.4 K.0 13.6 52.0 08
Mixed Wd, Sev. Def 0.8 0.8 29.6 1.6 10 18 T
Total 100.0 100.0 100.0 100.0 100,00 100.0 100.0 000 00,0 1000 1000 1KLO 100 0
Number of Test
Pixels 125 125 125 125 125 125 125 125 125 125 125 125 125

Total Number of Test Pixels 1625

4) Three of the four most useful bands for discriminat-
ing northern forest cover types (bands 1, 5, and 7)
are not available on the Landsat MSS sensor. There-
fore, significant improvements may be expected in
the ability to spectrally differentiate these Level 11
and I land cover categories using TM data.

5) The use of data acquired on October 12 presented
problems in terms of adequately describing hard-
wood spectral variability. The New England fall col-
oration and subsequent leaf drop should be avoided,
especially when dealing with multi-colored cover
types such as bogs and coniferous stands which in-
clude tamarack (Larix laricina, (Du Roi) K. Koch),
a deciduous conifer. Data should be obtained during
the growing season (June, July, or August). To as-
sess budworm damage, investigators have suggested
that mid-July data would be optimal for current year
budworm activity, whereas August data should be
best for assessing overall tree condition |2].

The reader should realize that the classification accu-
racies which were obtained were relatively low due to the
constraints of the statistical design of the research project.
In this study it was important for the classification results
to be comparable when different waveband combinations
were employed. Therefore, analysts were not permitted to
interact or “‘groom’ the class statistics to increase spec-
tral class separability. The lack of analyst interaction in
the classification process removes any human bias from
the results; unfortunately, it also reduces the accuracies of
the resultant products. Therefore, one could expect sig-
nificant increases in classification accuracy if skilled an-
alysts were allowed to interact in the classification pro-
cess.®

A more complete description of the research conducted
on this site may be found in [20].

*Williams et al. 129] documented a 25-percent increase in percent cor-
rect classification accuracy when analysts were allowed to interact in the
classification process.

Ovenall Accuracy 57 7%

V. DiscussIoN

Based on the results of Goddard’s RRI-related research,
as well as past and present results published in the remote-
sensing literature, one can make generalizations concern-
ing the utility of satellite remote sensing data for forest
resource assessment. MSS data are most useful for recon-
naissance level forest surveys. MSS data were found to be
useful for accurately delineating a) forest from nonforest
at accuracies on the order of 90 percent, and b) heavily
damaged forest stands (i.e., 60-100 percent canopy re-
moved) from relatively healthy forest stands. However,
MSS data could not be used to reliably distinguish be-
tween three forest canopy closure conditions (i.e., 0-30
percent, 30-60 percent, and 60-100 percent canopy re-
moved) in the relatively uniform hardwood forests of
Pennsylvania.

Previous work by numerous authors (Kalensky and
Scherk [12], Williams [25], Fleming and Hoffer [8],
Schubert [22], Nelson {17]) has shown that MSS data may
be used to discriminate hardwoods, conifers, and other
Level 11 cover types (e.g., grassland/pasture, water, ur-
ban, bare soil) at accuracies generally between 70 and 80
percent. Conifers are (in general) classified more accu-
rately than hardwoods; hardwoods generally tend to have
spectral responses similar to some grasslands and agri-
cultural crops at certain times of the year. Studies have
also shown conclusively that MSS data cannot be used to
consistently identify tree species or forest cover types at
detailed levels (i.e., Level IIT) even when topographic data
is utilized (Hoffer et al. [9], Williams and Ingram [27]).
Hence MSS data may best serve as a primary stratification
tool in a multistage forest inventory at the regional level.

Work with simulated and actual TM data has shown that
the improved spectral and radiometric characteristics af-
forded by the TM should improve classification perfor-
mance significantly, especially for delineating detailed
Level 11 categories [3], [15], [20]. Conversely, improve-
ments in spatial resolution from 80 to 30 m can cause clas-
sification problems which may merit a change in the

——
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“standard” approaches to classifying a scene. Studies
which have used TM or TMS data on forested study sites
have produced classification accuracies higher than, equal
to, or below equivalent MSS data products [4], [10], [13],
[29]. The effects of changing spatial resolution on classi-
fication accuracy are discussed and quantified by Mark-
ham and Townshend [14] and Irons et al. [11]. Evidently
digital image processing techniques must be revised in or-
der to handle the spatial and spectral information available
in TM data. The information content of the TM data far
exceeds that of MSS data, as evident in a visual compar-
ison of MSS and TM imagery.

The remote sensing research community is now faced
with the problem of devising algorithms to efficiently ex-
tract information from TM data. Until such techniques are
developed, photointerpretation of TM image products may
be of most immediate benefit to foresters. The imagery
has many of the qualities of high-altitude small-scale
(1:100 000+) aerial photography. TM photo products,
which are available in black and white, true color, and
false color infrared, may be used to identify clearcuts, strip
cut areas (with strips being only one chain wide, = 20
m), water, bare soil, roads, and, most likely, hardwood
and softwood stands. The quality of the small-scale im-
agery, the synoptic coverage, and the cost of the product
behooves potential users to investigate the use of TM im-
agery if plans are being made to fly a high-altitude recon-
naissance mission.

In summary, it is apparent that we now have the capa-
bility to assess forest resources on local, regional, and
continental scales using data from sensors currently in
Earth orbit. There are distinct trade-offs associated with
data acquired by different sensors, and the research con-
ducted in support of the Renewable Resources Inventory
project helped to develop a better understanding of the
applicability of satellite data for forest resource assess-
ment.
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Coniferous Forest Classification and Inventory Using
Landsat and Digital Terrain Data

JANET FRANKLIN, THOMAS L. LOGAN, CURTIS E. WOODCOCK, anpo ALAN H. STRAHLER

Abstract—Accurate cost-effective stratification of forest vegetation
and timber inventory is the primary goal of a Forest Classification and
Inventory System (FOCIS) developed at the University of California,
Santa Barbara, and the Jet Propulsion Laboratory, Pasadena. Conven-
tional timber stratification using photointerpretation can be time-con-
suming, costly, and inconsistent from analyst to analyst. FOCIS was
designed to overcome these problems by using machine-processing tech-
niques to extract and process tonal, textural, and terrain information
from registered Landsat multispectral and digital terrain data. FOCIS
was developed in northern California’s Klamath National Forest (KNF),
where the rugged terrain and diverse ecological conditions provided an
excellent area for testing Landsat-based inventory techniques. The FO-
CIS procedure was further refined in the Eldorado National Forest
(ENF), where the portability and flexibility of FOCIS was verified.

Using FOCIS as a basis for stratified sampling, the softwood timber
volume of the western portion of the Klamath (944 833 acres; 422 340
ha) was estimated at 3.83 x 10° ft* (1.08 x 10° m%), with a standard
error of 4.8 percent based on 89 sample plots. For the Eldorado, the
softwood timber volume was estimated at 1.88 x 10” ft* (0.53 x 10° m*)
for an area of 342 818 acres (138 738 ha) with a standard error of 4.0
percent, based on 56 sample plots. These results illustrate the power of
FOCIS methods to produce timely accurate large-area inventories with
comparable accuracieés and reduced costs when compared to conven-
tional timber inventory methods.

Key Words—Classification, timber inventory, digital terrain data,
forest vegetation, Landsat.

I. INTRODUCTION

N FORESTRY and range science, the need often arises

to sample and inventory natural vegetation. Conven-
tional methods use manual interpretation of aerial photog-
raphy to delineate areas of homogeneous vegetation
(termed stands) using attributes of image tone, texture,
and topography. Stands with like attributes are then
grouped into strata from which samples are drawn to yield
inventory data that describe attributes of interest of the
natural vegetation. Because this process is based on man-
ual photointerpretation, it can be time-consuming and
costly, as well as inconsistent from analyst to analyst. In
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this paper we describe an automated system for natural-
vegetation inventory which utilizes digital image process-
ing of multispectral Landsat data and registered digital
terrain information. This technology, referred to as the
Forest Classification and Inventory System (FOCIS), has
shown the capability to classify and stratify forest vege-
tation for timber-volume inventory as precisely and more
cost-effectively than conventional methods of manual pho-
tointerpretation.

An earlier article discussed the general nature of the
problem of stratifying registered digital terrain and Land-
sat data for timber and rangeland inventory, and included
a brief review of FOCIS procedures as they existed at that
time [1]. This article focuses on some of the more impor-
tant procedural steps in FOCIS, and describes the accu-
racy of timber inventories of the Klamath and Eldorado
National Forests using FOCIS procedures. Technical de-
tails concerning the information-extraction process can be
found in our technical reports [2], [3].

Thus far, FOCIS presents the only example of a fully
integrated methodology for conducting large-area timber
inventory using satellite and DTM data, although a num-
ber of studies have employed Landsat data (and, for some,
digital terrain data as well) in forest cover type mapping
[4]-[7]. Unfortunately, an extensive review of the various
approaches that have been utilized is beyond the scope of
this paper.

II. BACKGROUND

A. Conventional Methodology for Timber-Volume
Inventory

To provide a background for the description of FOCIS,
we will summarize the conventional methodology used to
produce timber volume estimates by Region 5 (California)
of the U.S. Forest Service. Timber inventory is executed
in three steps: stand mapping, stratification, and sample
collection and data processing.

Foresters skilled in air photo interpretation use conven-
tional resource photography to delineate timber stands by
drawing boundaries around areas of uniform vegetation of
at least 10 acres (4 ha) in size.' These stand boundaries
are transferred from the air photos to 73-min topographic
quadrangles, and labels are affixed to each stand indicat-

'Since American forestry still uses English units, this research was
planned and carried out in the English system. Accordingly, English units
are shown first with metric cquivalents in parentheses.

0196-2892/86/0100-01393%01.00 © 1986 IEEE
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ing the species composition, height, crown density, and
other features of interest for forest-management purposes.

The next step is to scan photomechanically a photo-
graphic transparency of the stand boundaries as scribed
on each quadrangle. The output of the scanner, stored on
computer-compatible tape, is read by the RID*POLY soft-
ware system, a polygon-based digital cartographic infor-
mation system developed by the Forest Service |8]. Strat-
ification of the stand maps for inventory then follows. All
unique stand labels arc aggregated to form a dozen or so
strata that arc differentiated with respect to per-acre tim-
ber volume by attributes of crown density, height, and spe-
cies composition. The arca of cach stratum within
each quadrangle can be obtained by interrogating the
RID*POLY database.

Sample locations for the collection of timber-inventory
data are chosen from a subset of all 75-min quadrangles
in the Forest using a random method that weights the
probability of selection of a quadrangle by Forest-owned
area and within-stratum area. The number of samples al-
located to each stratum is determined by the variability in
per-acre timber volume anticipated within the stratum.
Assuming a typical coeflicient of variation of 0.5, six sam-
ples per stratum will yield an areal inventory estimate
with a standard crror of 6-7 percent of the mean.

The last phase of timber inventory is the collection and
processing of plot data from the designated locations,
yielding mean per-acre timber volumes for strata and total
timber volume by species. The mieans are then weighted
by the areas of their respective strata, and the total timber
volume by species. as well as other inventory statistics. is
calculated.

The methodology described above has two disadvan-
tages. First, conventional photointerpretation is time con-
suming, costly, and can be inconsistent when more than
one photoanalyst is involved. Second, the digitizing and
labeling of stand maps required to enter them into the
RID*POLY database is costly, time consuming, and prone
to error. The Forest Classification and Inventory System
described in this article bypasses manual photointerpre-
tation by using automatic classification of Landsat and
registered digital terrain data. Labeling of the automati-
cally defined classes is still required. but this labeling can
be done much more rapidly and cost-effectively than in the
conventional procedure. And, because FOCIS utilizes the
raster-based VICAR/IBIS software system [9], [10], the
classified images of stands that serve as maps can be di-
rectly interfaced through software to the polygon-format
files of the RID*POLY system {3].

B. Test Areas

The Klamath National Forest (KNF). located in north-
ern California, is the study area where FOCIS was devel-
oped and initially tested (Fig. 1). The Forest includes ap-
proximately 2500 mi” (6700 km?) of rugged terrain in the
Siskiyou, Scott Bar, and Salmon Mountains. It provides
approximately 260 X 10” board-feet (61 000 in’) of timber
per year, ranking sixth nationally in timber production.
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Fig. 1. Index map showing locations of Klamath and Eldorado National

Forests within California.

Past research conducted in the KNF includes species-spe-
cific forest cover classification [11], [12], and modeling
timber-volume proportions of species and ecological rela-
tionships of species to terrain | 13]. Its high relief and di-
verse ecological conditions throughout made this Forest an
excellent location to develop and test Landsat-based forest
classification and stratification techniques.

The results of the Klamath inventory were sufficiently
encouraging that the Forest Service contracted with us for
an inventory of the Eldorado National Forest (ENF), lo-
cated in the central Sierra Nevada of California. The ENF
includes about 900 mi’ (2400 km”) on the west slope and
crest of the Sierra Nevada, with similar species composi-
tion to the KNF, but variations in specics-terrain relation-
ships, and different physiography. This work provided an
opportunity to test the flexibility of FOCIS methods and
illuminate new problems not encountered in the develop-
ment of FOCIS in the Klamath.

III. FOCIS PROCEDURE
A. Introduction

To introduce our discussion of the FOCIS procedures,
it will be helpful to 1) discuss the concept of regional
types; 2) briefly describe our treatment of image texture;
and 3) present an outline of the stratification steps.

In conventional stratification of forest vegetation for
large-arca inventory, three attributes characterize each
stand: trec height, crown density, and regional type. Re-
gional type refers to species composition and is often de-
fined by the dominant species on the stand (e.g.. red fir,
Douglas fir, pondcrosa pine, or mixed conifer). It is im-
portant to distinguish between regional types because, for
a given size and density, the timber volume will differ with
regional type. This difference is related to the growth form
of the species and the productivity of the site.

Because forest composition varies systematically with
terrain in many western conifer forests, regional type can
be modeled using elevation and slope orientation (aspect)
data. The simplest method of expressing the relationship
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between elevation, aspect, and regional type involves sys-
tematically observing regional type at all aspects and el-
evations, and plotting regional type on a graph with ele-
vation and the cosine of aspect as axes. The regional type
of any point on the ground can thus be predicted by de-
termining the elevation and aspect of the point and then
consulting the graph. This procedure is discussed in more
detail in a following section.

The FOCIS automated stratification procedure uses the
same three characteristics of tone, texture, and terrain that
the photointerpreter uses in delineating timber stands.
Landsat multispectral reflectance data provide tonal and
textural information and digital elevation models provide
the required terrain information.

Classification of the Landsat and texture data into size-
and-density-based strata using FOCIS is accomplished in
the following steps’:

1) unsupervised clustering;

2) statistical editing;

3) classification using a hybrid parallelepiped/maxi-
mum-likelihood classifier;

4) differential illumination compensation; and

5) spatial-spectral editing and labeling of strata.

This basic procedure was refined in the ENF to include:

6) iterative clustering, classification, and editing; and
7) spatial simplification to provide a stand map with
stands of a minimum areal extent.

B. Digital Terrain Processing

Digital terrain data for the Klamath and Eldorado Na-
tional Forests were obtained from the National Carto-
graphic Information Center. For the Klamath, data were
of the DMA series, produced by scanning of 1:250 000
contour maps. For the Eldorado, Digital Land Mass Sim-
ulator data were used. In this type of digital terrain model,
an elevation is provided for each 3-s interval on a geo-
graphic grid. In the Klamath, terrain data were registered
to the Landsat image using a geometric resampling algo-
rithm that employs a two-dimensional correction grid de-
rived from control points. In the Eldorado, Landsat and
terrain data were each registered to Universal Transverse
Mercator projection using a similar procedure.

After registration of the Landsat and terrain data, sep-
arate images of slope angle and aspect were generated
from elevation by the least squares fitting of a plane
through each pixel and its four nearest neighbors. The as-
pect image was then transformed using a cosine transfor-
mation with a shifted axis, following the suggestion of
Hartung and Lloyd [14]. The transformation was: cos (as-
pect-45°). This function is based on the ecological obser-
vation that sites on northeast-facing slopes are most pro-
ductive, those on southwest-facing slopes are least
productive, and those on southeast and northwest slopes
are intermediate. This phenomenon has been observed in

2Except as noted, the procedures discussed below are the same for the
Klamath and Eldorado National Forests.
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Fig. 2. Regional-type field graph for Doggett Natural Region, Klamath Na-
tional Forest. Points plot regional type as observed in the field: red fir
(circles), mixed conifer (X’s), and ponderosa/Jeffrey pine. Lines divide
elevation/aspect space into areas associated with the three regional types.
(Note: triangles on lower right above lower line denote pine sites on ser-
pentine, which are atypical of the region as a whole and were ignored
when fitting the line.)

other areas [15]-[17], and is documented in the Klamath
and Eldorado by our regional type graphs (discussed in a
following section).

C. Modeling Regional Type Using Digital Terrain Data

Observations in the Klamath, Eldorado, and other west-
ern coniferous forest areas have shown that forest com-
position typically varies systematically with topography,
responding regularly to changes in elevation and slope as-
pect. Aspect tends to influence elevational relationships;
north to northeast exposures are typically more favorable
for tree growth than drier southwestern exposures, so that
species exhibiting elevational zonation tend to occur at
lower elevations on northeast-facing slopes.

Regional type is a level of classification used by the U.S.
Forest Service to divide forests into broad categories based
on species composition. In the Klamath, four regional
types were recognized: red fir (R), mixed conifer (M),
Douglas fir (D), and ponderosa/Jeffrey pine (P); In the
Eldorado, only three were present: red fir, mixed conifer,
and subalpine conifer (S4). The subalpine type was found
in the Eldorado only within the Desolation Wilderness
area. Although this type was mapped, no samples were
allocated to it since harvesting is not possible within the
wilderness area. Consequently, timber volume calcula-
tions omitted this type.

Field graphs were used to model regional type from the
digital terrain data (Fig. 2). To construct the field graphs,
elevation, aspect, and regional type were observed at lo-
cations chosen to represent the full range of the elevation-
aspect combinations. Types were then plotted by elevation
and by cos (aspect-45°). Lines fitted by eye partitioned
the elevation-aspect measurement space into areas repre-
senting each regional type.

Functions defining those lines were input to a VICAR
image-processing program to determine the most likely
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Fig. 3. Regional-type map for Doggett Natural Region, Klamath National
Forest. Lightest tone is ponderosa/Jeffrey pine: medium tone is mixed
conifer; dark tone is red fir. Black arcas are outside region. White lines
show road net. digitally scribed on image from regional maps.

regional type for each pixel in the terrain image based on
the elevation and aspect of the pixel. In this way, a new
registered image was created in which the value of each
pixel specified a regional type (Fig. 3).

D. Natural Region Concept

The FOCIS stratification procedure was not applied to
an entire Forest at once, but rather to a group of smaller
geographical areas called natural regions. Because a large
forest may exhibit extensive climatic, geologic, and eco-
logical diversity, species-terrain relationships and the
spectral signatures that characterize particular timber
types are not likely to be the same in all portions. There-
fore, the forests were divided into natural regions in which
ecological relationships remain fairly constant and signa-
ture extension should be valid.

Natural regions were designated primarily on the basis
of the field graphs described above. Elevation-aspect
ranges of the various regional types must remain constant
within a region. A natural region boundary has therefore
been crossed when the elevation-aspect range of a regional
type shifts significantly or a new regional type appears.
In the KNF, which is particularly large and diverse, eight
natural regions were defined for this study: two in the
eastern Goosenest Ranger District and six in the larger
western portion of the Forest. Three natural regions were
identified in the ENF: the Northern and Southern natural
regions in the western portion of the forest at lower and
middle elevations, and a higher elevation Alpine region in
the eastern portion.

E. Landsat- and Texture-Based Classification

The second stage of the stratification process used
Landsat and texture data to assign a iabel indicating tree

(a) (h)

Fig. 4. (a) Landsat MSS Band 5 image of portion of Goosenest Ranger

District of Klamath National Forest. (b) Standard deviation lexture image
of same arca.

height and density to each pixel within a natural region.
Landsat imagery was acquired from EROS Data Center.
The Klamath scene was imaged on July 15, 1976, by Land-
sat-2. The Eldorado scene. from Landsat-3, was imaged
on August 15, 1980.

The use of texture derived from Landsat multispectral
data greatly increased the ability to discriminate timber-
volume strata in the FOCIS procedure. The use of texture
by photointerpreters for forest-stand discrimination is well
established, but digital texture information has not been
widely incorporated into Landsat-based classifications. A
simple texture measure was derived from Landsat Band 5
by calculating the standard deviation of reflectance num-
bers within a 3 X 3 moving window. This standard devia-
tion value was scaled, assigned to the center pixel of the
3 X 3 window, and output as a new data plane. In forested
areas, low standard-deviation-texture values indicate con-
tinuous canopy cover and higher values are associated with
areas of discontinuous canopy. The largest texture values
occur at abrupt vegetation boundaries, thus enhancing
edges (Fig. 4).

F. Clustering and Classifying the Landsat Image

The classification of an area into height- and density-
homogeneous classes was based on five information chan-
nels: four Landsat MSS bands and the synthesized texture
channel. Unsupervised clustering was performed using a
modified version of an algorithm obtained from Pennsyl-
vania State University, and implemented as the VICAR
program USTATS. The algorithm is based on a method
suggested by Tryon and Bailey [18] for clustering large
numbers of observations. When the process is completed,
clusters found are ranked from largest to smallest, and a
user-specified number of clusters is retained to define
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classes for input to classification programs. Through clas-
sification trials, the 200 largest cluster classes were found
to contain all the significant variation in the forested por-
tion of the image. This number was thus retained for future
processing.

Because the clustering process produces an unwieldy
number of tightly defined classes, the classes are edited
and assigned stratum labels in two steps. The first step is
interactive spectral editing, based on the spectral similar-
ity of classes. Second is a spatial-spectral editing and la-
beling, in which classes are combined into strata depend-
ing on their spatial contiguity as well as spectral similarity.

For spectral editing, a VICAR program was written to
calculate a symmetric matrix of standardized Euclidean
distances between all class centroids, and construct a den-
drogram and list of class means using a complete linkage
algorithm [19]. In the editing process, classes are either
merged, pooled, or deleted. Because the editing is not au-
tomated, the analyst can compensate easily for variations
in scaling and relative importance of the various layers of
the database, drawing on knowledge of the forest charac-
teristics. Usually, 70 to 100 spectral classes will remain
after the spectral-editing phase. A hybrid parallelepiped/
maximum-likelihood classifier is then used to assign each
pixel in the image to one of these spectral classes.

G. Differential-Illumination Compensation

Although a large number of tightly defined spectral
classes are retained, some are found to contain more than
one height-density class when they are inspected on a dis-
play monitor. This variation is not the result of loose spec-
tral definition, but is produced by differential illumination
of slopes caused by the combination of high topographic
variation and an oblique sun angle at the time of the Land-
sat overpass. More densely stocked areas with “‘normal”
illumination can have the same spectral reflectance as
more sparsely stocked areas in poorly illuminated or
shaded areas. This problem, also noted by Sadowski and
Malila [20], ruled out the separation of forest strata based
solely on spectral reflectances.

To account for this differential-illumination effect, the
registered terrain data were used to model illumination
conditions on a pixel-by-pixel basis. For each pixel z, the
angle between a normal to the land surface and the sun at
the time of the Landsat overpass, was calculated. For a
diffuse (Lambertian) reflector, the apparent brightness of
a surface under constant illumination at an angle z will be
proportional to cos (z). Thus, the cos (z) image displays
the brightest values for pixels directly facing the sun and
the darkest values for pixels in shade (Fig. 5). From the
cos (z) image, a mask was created to divide the image into
two categories based on illumination: well illuminated and
poorly illuminated (shaded). The cutoff between these two
categories was an angle of z = 60°. Using this cutoff,
approximately 10 percent of the image was considered
shaded in the KNF. Another, related problem is shadow-
ing due to adjacent terrain features. In processing, we did
not specifically check for this effect. With a sun elevation
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Fig. 5. Cos (z) image for area containing Eldorado National Forest. Light
areas directly face the sun; dark areas are illuminated at oblique angles.
Derived from slope and aspect images obtained by processing the digital
terrain model. Lake Tahoe is the flat surface at the upper right.

angle of about 53° at the time of the Landsat overpass,
steep northeast-facing cliffs would be required to produce
such shadowing, and in any event the areas in shadow
would comprise only a very small portion of the image.

The mask of shaded and well-illuminated pixels was
then digitally added to the classified image, serving to di-
vide each spectral class into shaded and unshaded com-
ponents. This effectively reduced the within-class varia-
tion and removed a potentially adverse effect on the
stratification process. Since only 10 percent of the image
was shaded, however, many classes remained undivided.

In the Eldorado, the terrain is less rugged and illumi-
nation masking was only required in the northern natural
region, where the Rubicon River canyon produced deeply
shaded slopes. Using a similar illumination cutoff, only
1.5 percent of the natural region was shaded, and only a
few shaded classes needed to be labeled separately from
their unshaded components.

H. Spatial-Spectral Editing

The spatial-spectral editing phase is the most analyst-
intensive of the stratification process and involves the ag-
gregation of classes that are spatially continuous as well
as spectrally similar. This phase constitutes the final ed-
iting in the classification process and serves to reduce the
number of classes to approximately the same number of
height and density strata differentiated by the Forest Ser-
vice. Spatial contiguity of classes is established by inter-
active viewing of the classified image on a color video dis-
play that allows the viewing of up to six color-differentiated
classes overlaid on a Landsat background image. While
the classes are displayed, aerial photographs of selected
test areas are inspected to verify that classes to be aggre-
gated contain trees of similar size and spacing.

As they are created, height-density labels are attached
to the new classes. The labels follow U.S. Forest Service
notation [21]. For height, labels 2, 3, and 4 were used to
indicate crown diameters of 12 ft (3.6 m), >12-24 ft
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(>3.6-7.3 m), and >24-40 ft (>7.3-12.2 m), respec-
tively; stand densities were noted as S (sparse), P (poor),
N (adequate), and G (good), indicating crown closures of
10-19, 20-39, 40-69, and 70-100 percent, respectively. In
the western portion of the Klamath National Forest, 10
height-density types remained after the spatial-spectral
editing phase for all natural regions. In the Eldorado, 5
height-density types remained, corresponding to new For-
est Service policy to merge N with G and S with P density
classes.

I. Natural Regions and the Landsat Classification

Because the spectral signatures that characterize partic-
ular timber types are not constant over large areas, each
natural region should be classified and stratified sepa-
rately. However, to reduce time and cost, we carried out
unsupervised clustering, spectral editing, classification,
and differential-illumination compensation for four of the
six natural regions in the western KNF pooled together;
the remaining two regions were also pooled to reduce pro-
cessing time. Although this procedure may possibly have
restricted the number and composition of spatial-spectral
classes extracted from the image base, the final editing
and labeling of classes were carried out independently for
each region.

An important modification to the stratification proce-
dure was made for the Eldorado. After the image was ed-
ited to 70 to 100 classes for labeling, the largest classes
were too heterogeneous with respect to tree height and
stocking to be assigned accurate labels. This was due to
the small dynamic range of the Landsat spectral values
- observed in the forested areas. To solve this problem, an
iterative procedure that repeated the clustering, classify-
ing and labeling sequence was used. Classes that appeared
heterogeneous or hard to label were pooled, reclustered
using a smaller cluster size parameter, and reclassified.
Up to three such iterations were performed. Thirteen to
16 percent of the area in each natural region remained after
well-defined classes were labeled, and these remaining
pixels produced another 50 to 100 classes for labeling. This
change illustrates the ease of modification to the FOCIS
procedures and the importance of analyst interaction in
applying the technology to the stratification of diverse and
heterogeneous natural vegetation.

J. Merging Regional Tipe and Height-Density Classes

To derive the final strata, the regional type map and the
Landsat- and texture-based height-density classification
were merged, thus providing each pixel with a combined
height-density regional-type label. This merging was ac-
complished by scaling the regional type image in multiples
of the number of height-density classes and adding the
height-density image. In the KNF, there were four re-
gional types and 10 height-density classes. In the ENF,
there were three regional types and four height-density
classes. With these values, 40 and 12 strata, respectively,
could have resulted from this addition, but all possible
combinations did not occur. Further, some strata con-

TABLE 1
WEST KLAMATH TIMBER INVENTORY
Mean Standard Number Stratum Standard
Stratum Yolume Error 0f Plots Area Volume Error

D36 56.88] 25.778) 4 25,7712 | 1,465,855° 332,1623
D3N 38.74 22.758 4 25,127 973,420 285,920
D3P 20.95 11.023 4 26,663 558,590 146,953
D4N 40,42 18.044 " 81,797 | 3,306,235 445,015
Dap 33.37 27.894 3 48,451 | 1,616,810 780,284
MS 27.75 21.904 4 127,403 | 3,535,433 1,395,317
M2pP 19.81 10.833 4 22,679 449,271 122,841
M3G 40.25 25,635 4 87,005 | 3,501,951 1,115,187
M3N 41.90 26.525 4 100,800 | 4,223,520 1,366,360
MaG 89.09 21.858 4 121,220 {10,799,430 1,324,813
Map 62.58 0.569 2 174,685 110,931,787 70,283
PS 21.97 18.396 4 14,862 | 326,518 136,701
P2G 44.11 9.329 3 5,629 | 248,295 30,318
P2N 18.82 8.858 4 10,768 | 202,654 47,691
P36 54,14 13.789 4 4,068 220,242 28,047
P3N 35.21 11.763 4 8,548 300,975 50,275
P3P 15,15 3.745 4 20,277 307,197 37,969
R36G 47.75 15.900 7 18,060 862,355 108,534
R3P 24,93 25.650 4 14,155 352,844 181,538
R4G 54.52 25.740 7 6,915 377,006 67,275
TOTALS 89 944,883 | 44,561,143 2,801,326

1

Units are hundreds of cubic feet per acre.
2laits are acres.

5 )
Tmits are hundreds of cubhic feet.

tained very few pixels and were merged with similar types.
The selection of those strata to be retained for final output
was based primarily on areal extent, with large strata al-
ways preserved. The final strata retained for sampling are
listed in Table I.

K. Spatial Filtering

Conventional timber inventories are obtained by sam-
pling from stand maps produced from photointerpretation.
These typically contain stands of some minimum size.
However, because there are no spatial contraints on the
FOCIS classification, the final classification maps pro-
duced have a minimum resolution of 1 acre (0.4 ha) (the
area corresponding to a pixel after resampling), and there-
fore these maps often exhibit a complex spatial pattern.
While a classification this detailed can serve as a sampling
base for inventory, the units in the classified image are too
small for management purposes. Thus, in the Eldorado
the FOCIS procedure was modified at the request of the
Forest Service to produce regions (groups of connected
pixels) no smaller than 6 acres (2.4 ha). Note that if the
original classification is accurate, the spatial filtering will
degrade accuracy by adding pixels to classes they do not
represent. This added variance is an unavoidable by-prod-
uct of providing a stand map with improved spatial coher-
ence, and, presumably, it is worth the trade-off.

A spatial filtering program was written to simplify the
classified image. The algorithm used was modified from
one developed by Davis and Peet [21], which removes all
groups of pixels below a user-specified minimum size for
each class in the image. The first step is to remove all
single pixel regions. When all eight neighbors in a 3 x 3
window are of a different class than the center pixel, the
class of the center pixel is changed. In the algorithm im-
plemented in FOCIS, the classes are assumed to be weakly
ordinal, and a priori class conversion weights are used.
The number of neighboring pixels in each class is scaled
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by the conversion weighting for that class, and the class
with the largest resulting product “wins” the center pixel.
Conversion weighting is effected to reduce the relabeling
of timber types into nontimber types; we preferred to ex-
pand timber types by including pixels from edges and
holes, thus increasing the variance of the timber types,
rather than ““lose” timber altogether to nontimber classes.
The conversion weights also reduce the tendency of large
classes to grow larger simply because they have a large
perimeter.

The resulting image, which has all isolated single pixels
removed, is sorted into “‘regions’’—contiguous areas of
the same class. The second step is region conversion. If a
region is larger than the specified minimum size for that
class, it is not changed. If it is smaller, the entire region
is changed to another class, again using the composition

of the perimeter pixels and the class conversion weights to
determine the new class.

L. Final Products

Besides inventory statistics, UTM-projection quadran-
gle maps were produced for both forests (Fig. 6). For the
Eldorado, these were converted to a vector format com-
patible with direct entry to RID*POLY. For the Klamath,
tabulations of timber strata by slope and elevation class
within quadrangles were also prepared and delivered to
the Forest Service.

IV. REsuLTs
A. Assessing the Quality of the Stratification
For a large-area inventory based on stratification and
sampling, accuracy is normally measured by the coeffi-
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cient of variation of the estimated quantity—the lower the
standard error of the estimate with regard to the mean, the
more accurate is the inventory. Since the Klamath and El-
dorado inventories included ground samples of timber vol-
ume, it was possible to estimate this standard error in both
cases. For the Klamath, however, a concurrent timber in-
ventory carried out by the Forest Service using conven-
tional techniques was also available. In the case of the El-
dorado, a full and complete Landsat-based inventory was
the objective. Thus, no concurrent alternative inventory
was available for comparison there. The remaining sec-
tions in this portion of the paper document sample allo-
cation, data collection, and calculation of totals and stan-
dard errors.

B. Field Data Collection

Following definition of the final strata, the actual per-
acre timber volume associated with each stratum must be
estimated. These estimates are obtained from ground
samples, or “cluster plots,” collected according to stan-
dardized procedures specified by Region 5 of the USFS
[21]. These ground samples are termed cluster plots be-
cause each consists of five subplots clustered in the shape
of an ““L.” with one subplot at the vertex and two along
each arm. The arms of the cluster plot are oriented due
north and due east with the subplots located two chains
(132 ft, 40.2 m) apart. The use of such spatially clustered
samples is a classic sampling technique that is invoked
when local variance is high and the travel cost to reach
randomly located points is excessive [23]. In the case of
the Eldorado, the distance between subplots was adjusted
to 100 ft (30.5 m), or about half the interpixel ground dis-
tance, to avoid interaction between the cluster plot layout
and the pixel grid.

The cluster plot data collected at the individual points
included height, diameter at breast height (DBH), and
growth increment for a systematically selected subsample
of trees; and height and DBH class, damage and defect
codes, and other information for all remaining trees fall-
ing within variable-radius plots defined using standard
wedge prism methods [21]. In the processing of the plots
by the Forest Service, variables are averaged over all the
subplots and weighted by the number of subplots within
the plot for which it was actually possible to collect data.
Degrees of freedom in inventory calculations, however,
are determined by the number of plots, not subplots. This
procedure results in a conservative estimate of within-
stratum variance.

C. Sample Allocation

Estimating the average timber volume for each Landsat-
derived stratum requires allocating cluster-plot samples to
each stratum. A random stratified sample design with
equal numbers of samples for each stratum is considered
appropriate by the Forest Service for this purpose. A min-
imum of four cluster plots per stratum is the rule of thumb
used for Region 5 forests: this criterion implies 68 cluster
plot samples for the Landsat-based strata in the KNF. Un-
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fortunately, funds were not available to collect this large
number of cluster plots independently, and it became nec-
essary to rely in part on the cluster plots collected by the
Forest Service for their forest-wide inventory. This plot-
sharing procedure added an unknown bias to the FOCIS
timber-volume total, but it was unlikely to affect the stan-
dard error of the estimate [2].

Another problem in sample allocation in the Klamath
inventory arose because of a Forest Service decision to
merge strata with similar stocking densities, thus creating
a smaller number of strata than originally planned. In ad-
dition, since the new strata were expected to be somewhat
more variable than the older ones, the intensity of Forest
Service sampling by the Forest Service was increased,
with at least six cluster samples obtained for each stratum.
Thus, the final strata used by the USFS and produced by
FOCIS did not correspond exactly for the KNF.

Neither of these problems arose in the Eldorado inven-
tory, since all samples were allocated according to the FO-
CIS stratification. Fifty-six plots were allocated in the
eight FOCIS timber strata, and after collection, the data
were processed by Forest Service software to derive tim-
ber volume estimates.

D. Landsat-Based Timber Volume Inventory

In order to assess the accuracy of the inventories, we
focused on one inventory statistic—total softwood timber
volume for the forest—obtained by areal weighting of
within-stratum volume averages. Areas of strata were eas-
ily obtained from tabulations of pixels; mean and variance
of softwood volume were derived from the processing of
the cluster plots.

Table I presents the inventory total and its standard error
for the western region of the KNF. For the mapped areas
of 944 833 acres (422 340 ha), the value is 3.83 x 10°
ft? (1.08 x 10® m3), with a standard error of 0.187 x 10°
ft’ (0.053 x 10° m*). This standard error represents 4,88
percent of the total timber volume. In comparison, the
Forest Service inventory yielded a timber total of 2.69 x
10° £t (0.76 x 10° m3), with a standard error of 0.067 X
10” £t (0.019 x 10® m") for an area of 1 082 000 acres
(438 000 ha) [2]. This error is about 2.5 percent of the
total.

A comparison of the two inventories shows that each
yielded significantly different timber-volume totals—the
FOCIS volume was about 40 percent larger than that es-
timated by the Forest Service. However, the higher value
for the FOCIS inventory results largely from high mean
values for the two M4 strata. Although four Forest Service
plots were allocated to M4P, data for only two of the plots
were received. Also note that the standard error of the
M4P FOCIS stratum is very low—0.569 x 10* f£® (1.61
m’)—compared to the rest of the values, which range
roughly from 5 to 25. This value is probably accidental,
resulting because the two plots were. by chance, very close
in timber volume. This low standard error, multiplied by
the large area of the stratum, reduces the standard error
of the total significantly, making it look better than it really
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TABLE 11
ELDORADO TIMBER INVENTORY

Mean
Volume

Standard

Stratum Frror

Number
of Plots

Standard
Frrer

Stratum

Area Volume

e 56.8511 8.300" 8

M3p 42.759 15.148 8

M4G 74.015 .255 8

M4P 54.071 . 364 8

R3G 86.634 .310 6

R3P 30.936 6.722 6

R&G 91.536 L4z27 6

R4P 51.419 11.205 3

Totals

78,5322 | 4,464,623° | 230,4863

122,400 5,233,702 655,628

51,469 3,809,478 5, 639

43,579 2,356,360 3,707

10,701 927,070
12,288 380,142 33,7268
10,493 960,487

13,356 686,752

342,818 18,818,614

Yynics are hundreds of cubic feet per acre.

2
Units are acres.

3, B P
Units are hundreds cf cubic feet.

is. If the means and variances for M4P and M4G obtained
in the Forest Service inventory are substituted for those
obtained by the FOCIS procedure, the FOCIS total drops
to 2.87 x 10° ft* (0.81 x 10° m’), with a standard error
of 0.161 x 10° ft’ (0.046 x 10% m?). This adjustment
brings the two timber volume totals to within approxi-
mately one and one-quarter standard errors of each other.

Note also that these modifications raise the FOCIS stan-
dard error to 5.61 percent of the total timber volume. This
accuracy value, approximately 6 percent, probably better
represents the true value achieved using the Landsat-based
methodology of FOCIS. Compared to the value of 2.51
percent of the Forest Service inventory, it is more than
twice as large. However, that the standard errors are not
directly comparable, since the total areas of the two in-
ventories are different and each is based on a different
number of samples chosen from a different number of
strata. By expressing the timber volume on a per-acre ba-
sis, and by correcting for degrees of freedom in sampling,
the per-acre per-sample standard errors are 0.573 and
0.332 £ (0.0162 and 0.0094 m®), respectively, for FOCIS
and Forest Service inventories. In this comparison, the
FOCIS value is higher than that of the Forest Service, but
is still well within the 7.5-percent USFS guideline.

Table II presents inventory statistics for the Eldorado
National Forest. The inventory showed a total softwood
volume of 1.88 x 10° ft* (0.53 x 10° m’) for an area of
342 818 acres (138 738 ha). The standard error of the tim-
ber volume estimate was 0.075 x 10° ft’ (0.021 x 10°
m’), representing almost exactly 4.0 percent of the mean.
This value compares favorably with that obtained in the
Klamath, and is also well within Forest Service guide-
lines.

In the Eldorado, the accuracy of the stratification label-
ing for all strata, including nonforest types, was also as-
sessed. Table III presents a crosstabulation of predicted
and actual labels for a set of points randomly selected to
verify accuracy. Of the 128 points, 108 were correctly la-
beled, yielding an overall accuracy of 84.4 percent. The
table does not reveal that any strata were consistently mis-

labeled; at least five of the eight points were correct for
all strata, and 10 of the 16 strata showed seven or eight
correct points. The overall accuracy compares favorably
with the highest values heretofore reported [11] and is
close to the 90-percent level, which is occasionally
achieved in Level I classification of Landsat MSS imagery
[24]. Because many of our classes correspond to Level 111
classes, our accuracy probably represents the maximum
attainable in a realistic situation. Using the binomial dis-
tribution, it is possible to place confidence intervals on the
accuracy; a 5-percent confidence interval ranges from 76.6
to 89.8 percent [25].

An alternative method for evaluating a confusion table
was suggested by Card [26] in which the marginal totals
of the table and the area of each stratum are used to pro-
vide an overall accuracy and confidence interval, as well
as estimates of the true area for each stratum and associ-
ated confidence intervals. The overall accuracy calculated
by this method improved to 87.0 percent, but the confi-
dence interval widened to 79.5 to 94.4 percent, indicating
that there is no significant difference between the two ac-
curacy estimates. Using the new estimate of the area for
each stratum, the timber inventory statistics can be recal-
culated. The total timber volume estimate increased by 3.7
percent and the standard error of this new estimate was
reduced to 3.5 percent.

V. CONCLUSION

The FOCIS procedure for timber volume inventory using
Landsat MSS, texture and digital terrain information was
developed, tested and refined over a 6-year period in two
large forests in California. By incorporating the same ele-
ments of tone, texture, and terrain used in manual delin-
eation of forest stands, FOCIS can produce a softwood
timber volume estimate for very large areas with a stan-
dard error comparable to estimates produced by conven-
tional means. Because part of the FOCIS procedure is au-
tomated and based on Landsat technology, the per-acre
cost of timber inventory should be significantly lower than
that of conventional methodologies. Further, FOCIS meth-
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TABLE Il
CoNFusioN TABLE FOR ELDORADO STRATIFICATION
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{
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On the Design of Classifiers for Crop Inventories

RICHARD P. HEYDORN anp HELEN C. TAKACS

Abstract—Crop proportion estimators that use classifications of sat-
ellite data to correct, in an additive way, a given estimate acquired from
ground observations are discussed. A linear version of these estimators
is optimal, in terms of minimum variance, when the regression of the
ground observations onto the satellite observations is linear. When this
regression is not lincar, but the reverse regression (satellite observa-
tions onto ground observations) is linear, the estimator is suboptimal
but still has certain appealing variance properties. In this paper we
derive expressions for those regressions which relate the intercepts and
slopes to conditional classification probabilities. These expressions are
then used to discuss the question of classifier designs that can lead to
low-variance crop proportion estimates. Variance expressions for these
estimates in terms of classifier omission and commission errors are also
derived.

Keywords—Regression, Bayes, and Maximum Likelihood Classifiers,
Sampling Efficiency, and Landsat Satellite Data.

I. INTRODUCTION

ROP INVENTORY approaches that make use of re-

motely sensed observations of the crop from satellites
have been discussed by MacDonald er al. [1] and Hanus-
chak et al. [2]. These approaches are based on a sampling
design in which areal segments are randomly selected from
strata within an agricultural sampling frame. In the design
discussed by Hanuschak er al., each segment is approxi-
mately one square mile in size and contains about 664
Landsat pixels. (A pixel is 1.1 acres in size.) The segments
considered by MacDonald ef al. are 30 square miles in
size and contain 22 932 Landsat pixels. Spectral obser-
vations from each segment pixel are acquired from the sat-
ellite. These observations are classified into two cate-
gories; one is the crop of interest and the other is the
category of all other material on the ground. By counting
the number of pixels classified as the crop of interest, and
dividing by the total number of pixels classified, an esti-
mate of the proportion of the segment that is the crop of
interest is acquired. However, since these classifications
are error prone, each segment estimate can be biased. (See
Tenebein [3] or Heydorn {4] for a discussion of this prob-
lem.)

In domestic surveys, the USDA conducts a crop and
livestock survey by visiting randomly selected farms. This
survey is a source of ground truth observations which can
be used along with the satellite observations. The use of

Manuscript received Junc 12, 1985; revised September 10, 1985.
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the ground truth data makes it possible to obtain (at least
theoretically) unbiased estimates, while the satellite data
can be used to increase the precision of the ground-ac-
quired survey. The increase in precision implies that it is
possible to reduce the number of ground observations while
still keeping the sampling error within a prescribed inter-
val. Given that the satellite is in place, the data and data-
processing costs related to the satellite generally render a
satellite observation cheaper than a ground-acquired ob-
servation, so that this combined approach can reduce the
cost of a crop survey.

In this paper we consider a crop proportion estimator
that is discussed by Cochran 5] and is used by USDA in
their domestic satellite crop survey studies (cf. Hanuschak
et al. [2]). This estimator is optimal (minimum variance),
among a class of estimators in which an additive correc-
tion is made to the ground survey estimate using the sat-
ellite data, when the regression of the ground observations
onto the satellite observations is linear. When the obser-
vations regressed in the reverse way give a linear regres-
sion, the estimator can be suboptimal, but it still has
certain appealing properties. We establish sufficient con-
ditions that the classifier must satisfy to have a linear
regression and under these sufficient conditions examine
the variance properties of the estimator.

II. Tue Crop PROPORTION ESTIMATOR

Given a segment, let y denote the true proportion of the
crop of interest in the segment, obtained from the ground
truth sample, and let x denote the corresponding propor-
tion derived from the classifier. Let X, Y denote the ran-
dom variables corresponding respectively to the x, y ob-
servations from randomly drawn segments. Finally let
E(X) =vand E(Y) = u.

Given an (independent and identically distributed) (iid)
sample (X;, ¥), i = 1,2, - - -, n, consider an estimator
tfor p of the form

pe = Y + E(gX)) — g(X)
where Y = (I/n) LY., X' = (X, X,, -+ , X,) and g is
some integrable (i.e., L) function of X. Let G be the class

{ﬁg: 8 € Ll } .
Cochran [5] discusses estimators of this kind when g is
a linear function. That is

L=Y+ br—X) (D)

where X = (1/n) LX,. This estimator (see (1)) is also used
in the USDA studies mentioned in the Introduction (cf.
Hanuschak ef al. (2)).

U.S. Government work not protected by U.S. copyright
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Both fi, and [ are clearly unbiased and since

Var (2,)

Il

E(Var (4,[X)) + Var (E(i,|X))

E(Var (Y|X)) + Var (E(Y|X) — gX)). (2)

fi, will have minimum variance (and therefore minimum
mean square error since E(i,) = p) among the members
of class G if g(X) = E(7|X) + ¢ where c is any constant.
The last term in (2) measures the increase in variance
when failing to match (within a constant) the true regres-
sion function when selecting g. In particular the linear ver-
sion in (1) may be suboptimal, but since b is the only pa-
rameter that needs to be estimated, it is an appealing
choice. We are assuming that the satellite provides us with
a large number of observations, and therefore, v can be
computed (i.e., estimated with virtually zero variance).
This is the case in the above-mentioned USDA studies.
For the estimator of (1)

Var () = (1 — RY) —Varn(y)

v (b -
where R = cov (X, Y)/vVar (X) Var (Y). The best choice
for b is cov (X, Y)/Var (X) regardless of the form of the
regression function. The term 1 — R* is the variance re-
duction afforded by using j in place of Y as an estimator
for p.

If E(X|Y) were linear (where Y’ = (Y, Y5, - - -, ¥)),
then the minimum mean square error (MSE) estimator for
v among estimators of the form ¥, = X+ E(f(Y)) — f(I),
fe€ L,, would have a variance reduction that is again 1 —
R?. Hence, /i will estimate p at least as well (in terms of
R?) as 7, can estimate » when E(X|Y) is linear.

Based on these considerations related to the estimator
of (1), we next consider some possible properties of the
classifier that can lead to linear regression models.

cov (X, Y)>2 Var (X)

Var (X) )

n

III. THE CLASSIFIER AND REGRESSIONS

To introduce some of the ideas in this section, we will
need the following notation.

Let Z be the random variable of satellite pixel observa-
tions z. Since the satellite is capable of acquiring data
within several spectral wavelengths (Landsats 1 through 3
acquire data within four wavelength ranges and Landsat 4
within up to seven) and views the same spot on the Earth
multiple times during a year, Z is generally a vector rather
than a scalor. Let @ be the random variable that denotes
the label of an observed pixel. When # assumes a value of
1, the pixel being observed is the crop of interest, and
when 8 assumes the value of 0, the pixel is some other
material. The satellite provides us only with values of Z.
Values of § must be obtained by other means, such as from
ground observations. The purpose of the classifier will be
to use Z to estimate §. We denote the classifier by the
function ¢ where ¢(z) € {0, 1}. We classify z as an ob-

servation on the crop of interest when we write ¢(z) = 1
and on some other material when we write ¢(z) = 0. Fi-
nally we let A be a random variable that indexes the seg-
ments in the sample.

In the development to follow we will allow for the option
to alter the classifier depending upon some property of the
segment being classified, i.e., the classifier can be a func-
tional of A. We denote this fact by writing ¢,.

Given the early definition of X and Y along with the
above definitions, we see that

X = E(¢s(2)|4)
and
Y = E(6|A).

We will be interested in the regression functions E(Y|X)
and E(X |Y) and to study these functions we will start with
simple *‘two-point-models”

0 = ajy + oapalZ) + ¢.

E(egloa(Z), A) = 4)
Oa(Z) = Bia + Baalb + e,
E(e¢|9, A) =20 5

which, as we will show in the next theorem, have the ca-
pability of generating our regression functions. Notice that
since @ and ¢,(Z) can only assume two values, the con-
ditional expectations of the errors are zero when we make
proper choices for the o’s and the (3’s. Clearly, these

choices should be
E@6]oA(Z) = 0, 4),

Qa =

E@|¢a(Z) = 1, 4) — aj4

Il

[EHXN
Bia = E(¢A(Z)|0 =0, 4),
Baa E(d)A(Z)l 6 =1,4A) — B4

Theorem
(l) E(Y’X) = |y + azxx
(i) E(X|Y) = By + ByyY

where
Hix = E(OMSA(Z) =0, X)
Chox = E(OWM(Z) =1, X) — ai
By = E(¢A(Z)‘9 =07
Bzy = E(¢A(Z)|6 =17Y) - BIY-

A proof of this theorem is given in the Appendix.

We saw in the previous section that g of (1) is optimal
among members of class G when E(Y|X) is linear. The
theorem shows that this regression function will be linear
if (but not only if) «,yx and o,y are constants. The func-
tions oy and «,y are made up of conditional expectations
(or conditional probabilities since § assumes only 0 or 1)
where the conditioning depends on the classifier ¢,. If we
fix X, at say X = x, then x could be treated as a parameter;
and further, if ¢, were a function of 8, rather than z, the
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requirement that oy and o,y be constants would imply
that ¢, would be a sufficient transformation. Since ¢, is
a transformation on Z rather than 6, this interpretation of
¢.’s role is not strictly correct. Nevertheless, since Z is a
predictor of 8, it is reasonable to suspect that ¢, needs to
be some sort of information-preserving transformation,
relative to the family of probability distributions { P.} de-
fined on § if o,y and a,y are to be constant.

To gain some insight on the possible effect of classifier
design on the regression function E(Y|X), we offer the
following numerical example.

In this example the population of z-values from the crop
of interest in a segment was simulated as being normally
distributed with mean m, and variance ¢°. The z-values
from the class of all other material was also normally dis-
tributed with mean m, and variance ¢°. These two means
we allowed to vary according to a uniform distribution (on
[0. 11) from segment to segment. The true proportions of
the crop of interest, i.c., the y-values, were also drawn
from a uniform distribution on |0, 1]. Each segment was
classified, and from the classification results the x-value
for that segment was determined.

In the first set of experiments, a maximum likelihood
classifier was used. Here ¢,(z) = 1 if N(z; m,, 0) > N(z;
my, o) and ¢,(z) = O if the reverse inequality holds, where
N(-; my, o) is the likelihood (normal density) of the crop
of interest and N(-; my, o) is the likelihood for the class
of all other material. The results are shown in Fig. 1(b),
(d), and (f).

With this classifier, the commission errors (calling a
pixel the class of interest when it is not) dominate the seg-
ment estimates when y is small. This means that for small
¥, x is too large. Where v is large, on the other hand, the
omission errors (calling a pixel the class of all other ma-
terial when it is not) forces the x-values to be too small.
This distortion at the two extremes of the y-values gives
the regression function E(Y|X) in Fig. 1(b) a sigmoidal
functional form.

A classifier that cannot compensate for these commis-
sion and omission errors at the extreme values of y is likcly
to give rise to a sigmoidal regression function. Since the
Bayes classifier does compensate in this way, one might
suspect that the Bayes classifier would give rise to a
regression function that is more linear than the one re-
sulting from the maximum likelihood classifier. This con-
jecture was examined by weighing the densities N(-; m,
o) and N(-; my, o) with y and | — y, respectively, in the
above-mentioned classifications rule. The results are
shown in Fig. 1(a), (c), and (e). For this case the regres-
sion is reasonably linear. While «ny appears to be con-
stant, o, shows a slight linear trend with x; and hence
the information preserving analogy discussed above does
not quite hold.

To construct the Bayes classifier, however. we would
have to know the true proportions in each segment. If these
proportions were known, there would, of course, be no
need to consider our estimator that uses the satellite data,
since we could compute the desired answer directly. We

propose that a more workable solution would be to con-
sider classifier designs that can force 3, and 8,y to be
constant. This can sometimes be done without having a
knowledge of the y-value for each segment. We now dis-
cuss some examples of this approach.

For the remainder of the discussion we will consider
only classifiers that represent a fixed transformation on Z.
Accordingly, we will drop the A subscript and write ¢ in
place of ¢,. From Theorem | we therefore have that

Biy = E(@(Z)]0 = 0, Y)
Bay = E(@Z)|0 = 1. Y) — Byy.

The conditional expectations in these expressions depend
only upon distributions of Z that are conditional on Y rather
than on A. In other words, we are not concerned with the
behavior of the classification results for individual seg-
ments but rather with the classification of observations
pooled from any group of segments which have the same
y-value.

A particular class of problems come from the case where
the regression of Z on Y. when sampling from the class of
interest (6 = 1), follows the mode!

€ ~ N(-; 0, EI)

If

Z = h(Y) + ¢, (6)

and when sampling from the class of other material (§ =
0) follows the model

Z = hy(Y) + «. y ~ N0, Ey) (N

where h;, h, are distinct vector valued functions of y and
€, and ¢, are independent errors. It we can find a trans-
formation 7 such that

Z)

[gol

=c &, & =~ N0 k)

T(Z) = Cy + E’(), g() -~ N( 0, i()).

¢; # ¢, where ¢, ¢y are constant vectors and ¢, and ¢, are
again independent, then E(H(T(Z)|¢0 = 0, Y) and
E(H(T(Z))|0 = 1, Y) would both be constant. Treating ob-
servations on Y as parameter values, ¢o7 would then be
an ancillary transformation (see Rao [6] for a definition of
an ancillary transformation) for the families {F.(-]8 =
0)} and {F,(-]0 = 1)} of distributions of Z conditioned
onY =y. '

Rao [6] considers a version of the models in (6) and (7)
in which for ¢ = 1

Z = ) + B[)](Y) + €, € ~ N(', 0, E|) (8)
and for 8 = 0
Z = ¢y + Bby(Y) + ¢, en ~ N1 0, Iy (9)

where ¢y # ¢, are constant vectors, b, b, are some vector
valued functions of v, and B is a p X k matrix, & < p.
Here p is the dimension of the observations on Z. These
models simply restrict the functions A, and &, of (6) and
(7) to assume values only in a k& dimensional subspace of
©* For these models, T'is a matrix that annihilates B (i.e.,
TB = 0) but Te, + Tey.
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Fig. 1. (a) E(YIX) for the Bayes Classifier. (b) E(YIX) for the Maximum
Likelihood Classifier. (¢) «,x for the Bayes Classifier. (d) «,y for the
Maximum Likelihood Classifier. (€) «ax for the Bayes Classifier. (f) oy
for the Maximum Likelihood Classifier.
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The models in (8) and (9) may be a plausible represen-
tation for Z. The physical explanation is as follows:

As a crop grows, it develops a green vegetative canopy
that covers the soil. In the early stages of growth, a large
part of the z-measurements represent soil color, while in
later stages, as the canopy thickens, the soil contribution
decreases. Kauth and Thomas [7] found that the four
Landsat observations on any given pass can be repre-
sented by a special orthogonal coordinate system. In this
system one axis (called soil color) accounts for most of the
z-variation due to soil color, while an orthogonal axis
(called greenness) accounts for the variation due to the
amount of green vegetative matter. Since the amount of
green matter at a given point in time is a distinguishing
feature of that crop, the coordinate along the greenness
axis is generally a good crop discriminating variable. Also,
since it is often more economical to grow a crop on certain
kinds of soils, the proportion of a crop in a segment is
likely to be soil dependent. Since the z-measurements are
also soil dependent, a transformation which annihilates
variations along the soil color axis, but preserves variation
along the greenness axis, may be a suitable transformation
T.

IV. EFFICIENCY OF THE ESTIMATOR
From (3) we see that the efficiency of the estimator j is

determined by 1 — R? where R = cov (X,Y)/
~vVar (X) Var (Y). If 3,y and 3,y are constant then

_ Var (Y) _ _ _
R = B2 \[Sar ) = Pr6s@ = 110 = 1
~ e Var (Y)
Pros(@) = 116 = 0) - o
-, ¥, |r®
Var (X)

where ¥,, ¥, are the omission and commission error
probabilities of the classifier and defined, respectively, as
Pr(¢,(Z) = 016 = 1) and Pr(¢A(Z) = 1/6= 0). Letting
pr = Var (X)/N1 — N) and p, = Var (Y)/n(1 — =), where
A = Pr(¢(Z)= 1) and ©* = Pr(6= 1), the correlation can
be rewritten as

_ _ _ (1l — @) P2
R =1 v, ¥,) /—F RN

Here p, and p, measure the effect on the variance from
packing the pixel observations in segments rather than
randomly dispersing them throughout the entire sampling
frame. For example, since 1 — p, = E(Var (8| A)/II(1 —
IT), 1 — p, is the expected ratio of the within segment
variance of # to the total variance.

It is interesting to compare the efficiency of the esti-
mator g with that of a stratified estimator. To create the
stratified estimate, we allocate in a simple random way N
pixels rather than N segments. We then classify each pixel

(10)

into class ““1” or class “0” as we did to obtain i, and
thereby stratify our sample in two strata whose approxi-
mate sizes are NX and N(1 — M), respectively. If we pick
a random subsample of size » from this allocation of N
pixels (where n is much smaller than N) and obtain a
ground truth label for each of the n pixels (i.e., determine
if @ = 0 or 1 for each of the n pixels), then we could form
the estimator

provided neither n, or ny are 0. Here n, is the number of
pixels in the sample of size n that fell into the stratum
classified as class 1 and n, is the number that fell into the
stratum called class ““0.” Also, n,; is the subset of the n,
pixels that received the label 8 = 1 and n,q is the subset
of the n pixels that received the label # = 1. It can happen
that in the sample of size n one of the strata will not get
sampled (i.e., n| or ny could be 0), and so our formulation
is somewhat incomplete. As n gets large, however, this
empty strata event becomes highly unlikely. Heydorn [4]
offers a more precise formulation of this estimator. Here
we wish to keep our description as simple as possible.
Tenebein [3] shows that

I A | ({ —H))
Var () = <1 (1 =¥, = ¥
I — 1)

n

(1D

Using (10) (and hence assuming that 8,y and 3, are con-
stant) the variance of g can be written as
. 0da — 10 p,
Var () = <l -1 =¥, - ¥) =
Al = N) py
TI(1 —~ II)
n '

e (12)

For both estimators the variance is a function of the
omission and commission errors of the classifier as well
as the variances w(1 — =) and AM(1 — N). In addition, Var
(i) is also a function of the coefficients p; and p, which
account for the additional observations used by j and that
are packed in segments. The comparison of the variances
of the two estimators depends upon the behavior of p, and
p>. We now discuss some extreme situations in an attempt
to understand the variance properties of the two esti-
mators.

From (5), E(6(Z)]|A) = Bis + BraE(B]A) or X = ¥,(4)
+ (1 — ¥, (A) — ¥.(A)) Y where we have written the
omission and commission errors, ¥,(A) and ¥ (A), as
functions of A, since these classification errors can vary
across segments even though 3y, 8,y are constant. If clas-
sification is consistently poor so that ¥, (A) and ¥ (A) re-
main near %, then Var (X) is much smaller than Var (Y).
Moreover, A will be close to 3, and thus p, will be small.
In view of (11) and (12), we would therefore expect that
Var (i) < Var (f). Since the term 1 — v, — ¥ will also

—
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be near zero in this case, the magnitude of Var (ﬁ) — Var
() may depend largely on p,. This is, of course, consis-
tent with the general theory of cluster sampling in which
one tries, if possible, to make each segment as heteroge-
nous as possible ( p, small), i.e., so that the segment pop-
ulations look like the total population.

When the classifier performs extremely well so that
¥ ,(A) and ¥ (A) remain near zero, then both estimators
do well. In this case both II(1 — IT)/A(1 — A\) and II(1 —
IT) p, /N1 — XN) p, are near unity and so again Var ({i) can
be smaller than Var (ﬁ) if p, is small.

If it were possible to hold the omission and commission
errors constant on every segment, then Var (p) = 0, since
we would have an exact linear relationship between X and
Y. Thatis, X = ¥, + (1 — ¥, — ¥ ) Y. which implies 1
— (1 — ¥, — ¥)> (U — I) po/AN1 — N py) = 0. In
practice, however, this may be an impossibie task since
local disturbances (such as, for example, from varying op-
tical depth properties of the atmosphere) can cause varia-
tions in the omission and commission errors across seg-
ments.

V. CONCLUDING REMARKS

From (4) we have ¥ = a4, + a»,X and from (5) X =
B1a T Baa Y If either the «’s or the 3’s are constant across
segments, we therefore have an exact linear relationship
between X and Y. For these cases Var (i) = 0. The loss
in efficiency of p therefore occurs when variances are in-
troduced into the «’s or 3’s. It appears to us that control-
ling the «’s through classifier design is a difficult problem.
We choose therefore to concentrate on controlling the 38’s,
or as we saw, controlling the omission and commission
errors of the classifier. It seems plausible to us that this
can be done to some extent through suitable transforms
which make the classifier behave like an ancillary statistic.

We compared p to a poststratified estimator, which we
denoted by fi, in order to examine the possible benefits of
replacing a simple random sample with a cluster sample
where the clusters are the segments. Qur comparison was
not complete, but our observations suggest that the addi-
tional observations may lead to a significant reduction in
variance at least in some extreme cases. In all cases the
general notion that one should, if possible, design the
cluster sample so that the segments are as heterogenous
as possible, which means that p, should be small, follows
also for this estimator.

Finally, notice that we did not discuss cases where the
coefficient b was estimated. When b is estimated, it is
useful to notice that (1) can be written as

1<
po= 2 (Y, + b~ X)),
ni=1
If the estimator for b has a variance that is inversely pro-
portional to n, then n Var (i) will be close to (I — R?)
Var (Y), and hence our conclusions approximately hold for
large n.

APPENDIX

Proof of the theorem:

We will prove i). The assertion in ii) can be proved by
similar means.

From (4)

E@|oa(Z), A) = ajy + cpda(Z).
Since X = E(¢,(Z)|A) then ®(X) C ®(A) and hence!
E@|0a(Z), X) = E(E@®|6s(Z), 8)|pa(Z), X)
= E(a4|04(2). X)
* E(aga|da2), X) $5(2).

Therefore
E@|$a(Z) = 0, X) = E(cal$a(Z) = 0, X) £ a)y
E@|oa(Z) = 1, X) = E(aypn + oo4|0a(Z) = 1, X)

-

oy + oy
which implies

arx = E@|oaZ) = 1, X) — ajy.
Thus

E@B|62(Z), X) = aix + arxda(Z)
or

E@1X) = aix + aE(@AZ)|X).
But since B(X) C ®B(A), this is the same as
E(E@|D)]X) = oy + apxE(E(4(Z)|2)|X)
or
E(Y|X) = aix + anxX
which completes the proof.
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Crop Acreage Estimation Using a Landsat-Based
Estimator as an Auxiliary Variable

RAJ S. CHHIKARA, JAMES C. LUNDGREN, anp A. GLEN HOUSTON

Abstract—The problem of improving upon the ground survey esti-
mates of crop acreages by utilizing Landsat data is addressed. Three
estimators, called regression, ratio, and stratified ratio, are studied.for
bias and variance, and their relative efficiencies are compared. The ap-
proach is to formulate analytically the estimation problem that utilizes
ground survey data, as collected by the U.S. Department of Agricul-
ture, and Landsat data, which provide complete coverage for an area
of interest, and then to conduct simulation studies. It is shown over a
wide range of parametric conditions that the regression estimator is the
most efficient unless there is a low correlation between the actual and
estimated crop acreages in the sampled area segments, in which case
the ratio and stratified ratio estimators are better. Furthermore, it is
seen that the regression estimator is potentially biased due to estimat-
ing the regression coefficient from the training sample segments. Esti-
mation of the variance of the regression estimator is also investigated.
Two variance estimators are considered, the large sample variance es-
timator and an alternative estimator suggested by Cochran. The large
sample estimate of variance is found to be biased and inferior to the
Cochran estimate for small sample sizes.

I. INTRODUCTION

HE STATISTICAL Reporting Service (SRS) of the

U.S. Department of Agriculture (USDA) collects crop
data each year during its annual June Enumerative Survey
(JES) by interviewing farm operators located in randomly
selected area segments. Each sample segment is com-
pletely enumerated for its land use and cover types, and
their crop acreages determined. With the launch of Land-
sat-1 in the early seventies, SRS proposed to utilize Land-
sat data as auxiliary information for improving its regular
crop acreage estimates made from JES data. The USDA-
SRS started a remote sensing program and participated in
the Large Area Crop Inventory Experiment (LACIE) and
Agricultural Resources Inventory Surveys Through Aero-
space Remote Sensing (AgRISTARS), joint programs
with other U.S. Government agencies. The proposed ap-
proach was to acquire Landsat data for an area of interest
and use it in conjunction with the JES data to reduce the
sampling error for the regular crop acreage estimates at
the state and lower levels [1].

Manuscript received February 4. 1985: revised June 26, 1985. The por-
tions of this work completed by R. S. Chhikara and I. C. Lundgren were
supported by the Statistical Reporting Service of the U.S. Department of
Agriculture, under NASA Contract 9-15800.
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77058.

I. C. Lundgren was with Lockhced Engineering and Management Ser-
vices, Houston, TX 77058. He is now with Texas Instruments, Dallas, TX.

IEEE Log Number 8406238.

Basically, the approach is to acquire Landsat data over
a stratum, called an analysis district, containing a number
of JES sample segments. The Landsat data are classified,
using data from the sample segments for training, and crop
acreage or proportion estimates are obtained for each sam-
ple segment in the stratum as well as for the entire stratum
for the crop of interest. The crop acreages for the sample
segments observed in the JES are regressed onto the cor-
responding estimates obtained from the classification of
the Landsat data and the resulting relationship is used to
obtain a crop acreage estimate for the stratum based on
the classifier estimate for the stratum [2].

Suppose x denotes the Landsat-estimated and y the
ground-observed acreage for a crop in a segment. Suppose
segments in a stratum are of the same size and X is the
average Landsat estimated crop acreage from all segments
in the stratum. Let Y denote the corresponding actual stra-
tum average crop acreage. For the n sample segments in
the stratum, suppose y;, v,, , ¥, are the actual crop
acreages and x, x,, . X, are their corresponding
Landsat estimated crop acreages. Then a regression esti-
mator of Y is given by

Y=7+ bX — 3 (1)
where
¥ = 2 yin
1
X = 2 x/n (2)
1

are the sample means of actual and Landsat estimated crop
acreages, respectively, and

AR R DYTEE C
is the sample-based regression coefficient [3]. An estimate
may be obtained for the stratum total crop acreage by mul-
tiplying the estimate Y in (1) by the total number of seg-
ments covering the stratum. On the other hand, the stan-
dard USDA estimator of the stratum crop acreage is
obtained by multiplying the sample mean y by the number
of segments in the stratum. The latter is called a direct
expansion estimator and is based solely on the ground sur-
vey data from the JES segments.

In the past, SRS/USDA conducted extensive empirical
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studies to evaluate the relative efficiency of this regression
estimator over their direct expansion estimator. The rela-
tive efficiency (RE) is defined by the variance ratio for the
two estimators and is a measure of the relative sample size
required to achieve the same precision for the two esti-
mators. For example, if the ratio of the variance of the
regression estimator to that of the direct expansion esti-
mator is 0.5, then the regression estimator has an RE of
2.0, and it would take twice the number of sample seg-
ments for the direct expansion estimator to obtain the same
precision as the regression estimator. These studies
showed that the RE of regression estimators were some-
times substantial; for example, 2.43 and 2.38 for corn and
soybeans, respectively, in lowa for crop year 1978, and at
the analysis district level, it ranged from .93 to 5.98 for
corn and from 2.73 to 7.59 for soybeans [1]. This indicates
that the use of the regression estimator may lead to a sub-
stantial savings in sampling of ground survey data. Since
this assertion is bascd on purely empirical studies, it is
important to investigate the properties of the regression
estimator analytically, if possible, and compare it with
other alternative cstimators before it should be recom-
mended for operational purposes. A basis for the regres-
sion estimator is that the two variables x and y can be mod-
eled as

y=ua+ (x + e

(4)

If the error term € is expected to be zero for any given
value of x, the model in (4) is linear, otherwise it is not a
linear model. When the Landsat data are classified using
a maximum likelihood decision rule (as described in Sec-
tion II) to obtain x, the model in (4) is not linear {4]. Be-
cause of the potential nonlinearity in the model, the least
squares estimates of the regression coefficients « and 8
may be biased [5}. On the other hand, the model relating
x in terms of y

X =5+ 8y + e &)

is linear, i.e., the conditional mean of e given y, is zero.
This suggests that if x is regressed on y, the least squares
estimates of v and ¢ are unbiased and the resulting cali-
bration equation can be used to obtain another estimate of
Y. This estimator, however, has been shown to be less ef-
ficient than the regression estimator [4].

Besides the regression estimator, the sample mean es-
timator can be improved upon by considering the use of a
ratio estimator |3]. Furthermore. another estimator of Y
can be obtained if the individual pixels in sample segments
are stratified as to how they were classified, correctly or
incorrectly, and this additional information is utilized [6].
A stratified ratio estimator thus constructed is also stud-
ied.

An analytical formulation of the estimation problem, the
estimators, and the bias and variance of these estimators
are discussed in Section II. A sampling study was con-
ducted to compare the relative efficiencies of the esti-
mators. The results of this study are presented in Section
III. In this sampling study. the number of pixels per seg-

I, JANUARY 1986

ment was assumed to be infinite and parametric values
were generated at the segment level. Another more com-
prehensive simulation study was conducted in which
Landsat data were simulated at the pixel level and then
classified to determine x at the segment level. The simu-
lation study is described in Section IV. This study was
limited to investigation of the regression and ratio esti-
mators.

II. CLASSIFICATION AND ESTIMATORS

The present estimation problem, in its general form, can
be formulated as follows: consider a large population con-
sisting of N segments. Each segment is a cluster of mea-
surement units (presently, pixels). Let Cy, C,, - - -, C,
be m distinct classes of units in the population. Suppose
the measurement vector z is g-dimensional and has the
multivariate normal distribution with mean vector pu; and
covariance matrix X; forclass C;, i = 1,2, - - -, m. Sup-
pose a set of training samples are obtained from each class
and the unknown parameters y; and E; are estimated from
the sampled data. Let g; and ¥, denote their estimators. If
i) = fz, p, %) denotes the estimated density function
for class C;, obtained by replacing the unknown parame-
ters by their estimates, and the classes are assumed to
have equal a priori probabilities, a measurement unit u
with observation z can be classified on the basis of the
maximum likelihood decision rule as follows [7]:

Assign u to Cy if z belongs to region R;, where

R, = {z: In fi2) = max In £(2)},

K=1.2. - .m ©)
with
Infz) = K, — D& — 4y £7' @ - )
and
Ki=—(p/2)yIn2r — & In (L]

(Here, In stands for the natural logarithm.) Define the ran-
dom variables

‘ 1, ifze R,
(D = 0, otherwise @
and
1, ifuecC,
) = 0, otherwise’ ®)
Then the set of pairs (n,(z), ¥u(z), &k = 1,2, - -+, m,

characterizes the m-way classification of measurement
units as actual versus classifier assigned. If Y (z) = n(2)
for all units, k = 1, 2, - - - , m, then the classification is
perfect; otherwise it is fallible. The maximum likelihood
decision rule is optimum in terms of minimizing the clas-
sification errors, provided the underlying assumptions hold
true [8].

—
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A. Estimation of a Single Class in a Cluster

Suppose C; is the class of interest and C; is the set of
remaining classes in the population. Let y be the propor-
tion of measurement units actually in C, for a cluster and
let x be its estimate obtained from the classification of units
in the cluster. Assume that the number of measurement
units in a cluster is infinitely large. Then y and x can be
approximated by the probabilities

x = Ply(z) = 1, y = Plm(») = 1]. )

Similarly, the two classification error rates are approxi-
mated by the conditional probabilities

o = PIY1(2) = OJni(z) = 1]
and
0, = Pl¥1(2) = ln(2) = 0].

Here 6, will be known as the omission error rate and 6,
as the commission error rate. From (9) and (10), one gets

Pl = 1]

Plyi(2) = 1im(2) = 0] Pni(z) = 0]

+ Pli@ = 1Im@ = N P = 1]
=0, 1=+ A -10)y

=0, +1 — 6, —8)y.

(10)

X

Il

(1)

Thus, for a cluster, x is a linear function of y.

One may similarly express y as a function of x by inter-
changing the role of the two variables ¢,(z) and 7,(2) in
(10). Define the conditional probabilities

by = P[’?l(Z) = 1|\[/1(Z) = 0]
¢ = Py = 0ly,(2) = 1]. (12)

Here, ¢, is a measure of the relative frequency that a unit
actually belongs to C; when it has been classified as being
in Cy. The conditional probability ¢, is for the reverse
situation. From (9) and (12), taking a similar approach as
in (11), one obtains

V=9l —x0) + (1 - ¢)x
=¢ t (I — ¢ — ¢ x. (13)

Consider the joint probability of the two random variables
given by

A= Pl =1,k = 0] (14)
Then it follows from (9) and (12) that
ol —x) =N (15)

and, hence, from (13)
(I —-9o¢)x=y—A\ (16)

Equations (15) and (16) relate x and y through the joint
probability A for the two random variables 7,(z) and ¥,(z).
In the case of a finite size cluster containing M mea-

surement units, the probabilities in (9) are replaced by rel-
ative frequencies as follows:

1 M
X = M igl ¥i(z)
and
1 M
Y= 2. (17)

It may be observed that x and the error rates 6, 6, ¢,
and ¢, are random quantities because the classification rule
in (6) is based on randomly selected training samples.
Thus, one may want to evaluate their distributional prop-
erties. The present study is restricted to the case of a large
training sample size and hence, the variability in these
quantities will be ignored.

B. Estimators of the Population Mean

Suppose n clusters are randomly selected from the pop-
ulation consisting of N clusters and (x;, y),i = 1,2, - - -,
n are the pairs of observations for x and y in the sampled
clusters. If X is the mean of the estimated proportions of
units in C; for all N clusters in the population and Y is the
actual mean value, then the following estimators of Y are
considered.

a) Sample Mean.:

M=) (18)
where
Y= Ziy/n
1
b) Regression Estimator:
Y=V +bX -3 (19)

where X and ¥ are the means for the observed sample data
and b is the estimated regression coefficient as defined in
(3) in Section I.

¢) Ratio Estimator:

Y, = (/DX (20)
d) Stratified Ratio Estimator:
Y, = (W/x) X + (/%) X, 2n

where X, and X, are the proportions of units in the pop-
ulation classified as Cy and C,, respectively, whereas X,
and X, are the corresponding proportions of units in the
sampled clusters. y, and ¥, are the proportions of units in
the sampled clusters assigned to C; and C,, respectively,
that actually belong to C,. The rationale for the stratified
ratio estimator is to treat the two strata of units classified
as C, and C, separately by constructing their ratio esti-
mators individually, and then adding these two together.
This estimator utilizes the additional information as to how
accurate the units in the sample clusters were classified.
This type of estimation approach was used in LACIE at a
cluster level and led to better estimates than those based
solely on the nonstratified approach [6].



In the Appendix, it is shown that the stratified ratio es-
timator can be expressed as

Y, =Y, + MG - D) G — X) (22)

where X is the average of the \; for the sampled clusters,
\, is the joint probability of (14) for cluster i, and Y, is
the ratio estimator given in (20). Note that the second term
on the right side in (22) is analogous to that in (19) for the
regression estimator. The coeflicient ME( — X)) is a rel-
ative measure of the discrepancy between the actual and
classifier assigned labels for units. If there is complete
agreement, that is every sample unit is correctly classi-
fied, then A = 0 and Y, = Y,; otherwise the second term
accounts for the fallibility of the classification rule.

C. Sampling Properties of the Estimators

For the standard survey estimation case, the bias and
variance for estimators a)-c¢) are well known [3]. Thus,
we will state here the main results, skipping details unless
warranted. R

a) The estimator Yy, is simply the sample mean and
hence it is unbiased and has variance

V(Y,) = (1 — n/N) $¥n (23)

where S7 is the population variance and n is the sample
size. An estimate of the variance in (23) is given hy

v(f’M) = (1 — n/N) sf/n (24)

where N is the population size and
= 2. (v; — }_*)2/(/1 — . (25)
1

b) The regression estimator Yy can be used even when
the underlying regression function is not strictly linear,
provided a sample plot of the y; against x; appears approx-
imately linear [3, p. 193]. Presently, the regressor values
x; are estimated and therefore, the previously known re-
sults for bias and variance of Yy as given in [3] hold true
only if the x; are assumed known. Recently, Hung [9] in-
vestigated the case where the x; are estimates and showed
that under certain conditions, the estimator Y, with the x;
estimated has the same limiting distribution as when the
x; are known.

The bias of Yy is of order I/n, and its variance for large
n is given by

v(Ye) = (I — n/N)y S (1 — R*)/n (26)

where R is the population correlation coefficient between
the y; and x;. An estimate of this variance using the large
sample variance formula given in [3, p. 194] is given by

U(?R) = (1 — n/N) si/n (27)
where
gf = >, (vi — _\”r,-)z/(n - D
1
9=V + blx; — X).

1. JANUARY 1986

The variance estimator in (27) generally underestimates
the true variance for small sample sizes [10]. Another var-
tance estimator based on a formula on p. 197 in [3], given
next, is considered to be superior for small sample sizes.

o(Ye) = [(1 = w/N) &) [V + Un — 3) + 265
(28)

where

T
&:MAZm—ﬁ/
I

32

;X
——— 2 (x, = )’
N Ty

N —1 29
is the relative skewness of the distribution of x; in the pop-
ulation.

¢) In general, the ratio estimator is biased and is no
more efficient than the regression estimator. The bias and
variance of ¥, with x; assumed known are discussed in {3,
p. 160]. When the x; are estimated, the properties of ¥,
have not been investigated; however, in the limiting case
these are expected tg be the same as in [3].

d) The estimator Y, is new and its properties need to be
established. In the appendix, we de'rivAe expressions of the
bias and the mean squared error of Y, to terms of order
n~'. It is shown that in the limit, as the sample size n
increases without bound, Y, has the same bias and mean
squared error as the ratio estimator Y,.

III. AN EVALUATION OF ESTIMATORS

In this section we discuss a certain sampling study con-
ducted to evaluate the above estimators. For simplicity, we
restrict attention to a two-class case in which the mea-
surement vector z is distributed normally with mean vec-
tors p, and p, for C, and C;, respectively, and common
covariance matrix X. By a set of linear transformations,
the class structure can be obtained in the canonical form
so that the vector z can be assumed to have class mean
vectors (—A/2,0,0, - -+ ,0)and (A/2,0, - - -, 0) for
C, and C,, respectively, and common covariance matrix
[, where

A= — m) 20— gl (30)

15 the Mahalanobis distance between the two classes and
is a measure of class separability. When A is known, the
maximum likelihood classification rule is to classify a
measurement unit in C; it z; < 0, and in C, otherwise,
where z, is the first component of measurement vector z.
Observe that z; has a univariate normal distribution and
the omission and commission error rates for the popula-
tion are each equal to $(—A/2), where ® denotes the cu-
mulative distribution function for the standard normal {11].

For the stratified ratio estimator, the classification error
rates must be evaluated for individual clusters. Since the
cluster size is assumed infinitely large, the class distri-
butions for each cluster can be approximated by the nor-
mal distribution. For cluster i, let £ and (§;, + A))e be
the mean vectors of the measurement vector z for C; and
Cy, respectively, where ¢ = (1, 0,0, - - - ,0)isag X |
vector and [ is the common covariance matrix. This dis-

—
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tributional assumption allows variation in class distribu-
tions across clusters in the population. To have the class
means as in the first paragraph, we assume that the aver-
age value of £; across clusters is —A/2 and that of (¢, +
A) is A/2.

In practice, the parametes £;, A;, and y; are unknown
except for the sampled clusters, and hence the error rates
cannot be obtained for all clusters. However, once the
classification of data is completed the x; can be computed
directly for each cluster as the proportion of units from
cluster i that are assigned to C, by the classifier. Accord-
ingly, the estimators of Y described in Section II can be
easily computed.

To investigate the bias and variance of the estimators
and to compare their relative performances, the following
simulation study was conducted: A hypothetical popula-
tion consisting of 500 clusters was considered. The num-
ber of units per cluster is assumed infinite. For a given
population mean Y, the beta distribution (IMSL subrou-
tine GGBTR [12]) was used to generate the actual pro-
portions y; of the class of interest for each of the 500 clus-
ters. For each cluster, the distribution of the measurement
variable z, for the class of interest was assumed normal
with mean &, = »; — A;/2 and variance 1. For the other
class, the distribution was assumed normal with mean £,
+ A; = v; + A/2 and variance 1. The p; allow the mean
of the distribution of the measurement variable for the class
of interest to vary from cluster to cluster. The »;, were
generated from a normal distribution with mean 0 and var-
iance o> (IMSC subroutine GGNML [12]), with o2 spec-
ified. The A; allow the distance between the means for the
two classes to vary from cluster to cluster. The triangular
distribution (IMSL subroutine GGTRA [12]) over the in-
terval (A — p, A + p), which has mean A, variance p*/6
and range 2p, was used to generate the A,, given A and p.
To ensure A; > 0, it was assumed that A > p.

The indices of each of the variables for the 500 clusters
were randomly permuted (IMSL subroutine GGPER [12])
and the first n indices were selected as the sample for which
the actual proportions were assumed known. For the max-
imum likelihood classification rule, the discriminant
boundary point was estimated from the parametric values
of the sampled clusters by

T=2 i(y; — Ai/z)/z Yi
1 1

+ % (1 — ¥ + A,-/:z)/ ;‘ (1 -y D

and the classification rule for all measurement units in the
population was to assign a unit to C, if z;, < 7/2, and to
Cy, otherwise. Note that 7 estimates the distance between
the means of the measurement variable for the class of
interest C, and the other class C,. The individual means
are estimated by a weighted average of the sampled cluster
means, the weights being the proportion of the cluster be-
longing to the class. In terms of the random variable v
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defined in (7), we have

I, ifz;, < 7/2

Y(2) = (32)

0, otherwise.

Note that we did not actually generate the measurement
vector z. These results correspond to having an infinite
number of measurement units for training, since we as-
sumed the number of units per cluster to be infinite. The
errors of misclassification were computed for each of the
500 clusters.

It follows from (10) and (32) that for cluster i, the omis-
sion and commission error rates are

60,’ ¢("‘ (T + A,)/2 + Vi)

and

B, = (7 — A2 — »). (33)

Thus, the estimated proportion of units in C, for cluster i
is obtained from (11) and (33) as

X = D1 — AY/2 — ) + [®((+ + A2 —v)
S (- A2 = ),

noting that 1 — ®(x) = &(—x).

This process was replicated 500 times for each combi-
nation of parameters considered in order to compute the
bias, variance, and mean squared error for each of the es-
timators of Y. Fig. 1(a) shows a histogram of the 500 ac-
tual proportions generated from a beta distribution with
mean 0.25. The actual mean and variance of these 500
proportions are 0.2575 and 0.02366, respectively.

Fig. 1(b) shows a corresponding histogram of one re-
alization of the classified proportions determined from
(34) with input generated using n = 10, ¢ = 0.1, A =
1.5, and p = 1. A scatter plot of the actual versus the
classified proportions is given in Fig. 1(c). In this case,
the relationship is approximately linear (but not through
the origin) and a linear regression model should hold rea-
sonably well. The summary results for the estimators for
500 replications (one of which is plotted in Fig. 1(c)) from
this combination of parameter values are presented in Ta-
ble I. All estimators are truncated at O and 1 before com-
puting the summary statistics. The MSE ratio is the ratio
of the mean squared error (MSE) for an estimator to the
MSE of the sample mean estimator ?M. This, of course,
is an estimate of the relative efficiency of the sample mean
relative to the estimator.

The bias is negligible for each estimator, though it is
statistically significant in the case of the regression esti-
mator. The MSE ratio of 0.342 for the regression estimator
1s the smallest.

Simulations were conducted for many other parametric
values to evaluate the performance of estimators across a
wide range of situations. Table II shows the values of the
parameters used in the simulation. It encompasses cases
of low and high class separability, small and large sample
size, and equal and unequal class proportions. Increasing

(34)
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Fig. 1. Histograms and scatter plot of class proportions when ¥ — 0.25, ¢
=01 A=15p=1 and n = 10.

TABLE 1 _ values of p or ¢ give rise to larger variability in separabil-
SUMMARY STATISTICS FOR 500 REPLICATIONS WITH Y = 0.25, n = 10, 0 = : : : lati b h ,
0.0 A= LS, ANDp = 1.0 ity, resulting in lower correlation between the x; and y;.
In each simulation run, the square of the correlation
Estimator Bias Variance MSE MSE Ratio  t-Statistic Coefﬁcient between the X; and Vi Rz’ was computed for
both the population and the sample. Variation in the pop-

Sampie Mean L0020 L0021 L0021 1.000 .97 . . m . . d h d -

Regression 0033 0007 L0007 302 21 ulation correlathn coe -01e_nt arises due to t ¢ decision
Ratio -.0003 L0009 0009 425 -9 rule for the maximum likelihood classifier varying from
Stratified Ratio oo 0012 L0012 .595 .72 sample to sample for the 500 replications. Figs. 2 and 3

summarize the MSE ratios of the estimators as a function
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Fig. 2. The MSE ratios of the three estimators for sample sizes (a) 4, (b)
10, and (c) 30 when ¥ = 0.25 and A = 3. (Legend: Regression = *
Ratio = +, and Stratified Ratio = 11).
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TABLE 11
INPUT PARAMETRIC VALUES

n=4,10, 30
Y = .25, .5
¢ = .01, .10, .50
A =1.5, 3.0
p=0, .51

of the mean population R? for the 500 replications. These
two figures are based on ¥ = 0.25 and all combinations
of the other parameter values in Table II. Fig. 2 shows the
results for a A value of 3, corresponding to high separa-

OH=->»D MX

] v T v T T —r T T

8.4 8.8
MEAN POPULATION R-SGUARE

(a)

OH=A»D mMuX
g&

T T T T T

8.2 8.2 0.4 8.0 8.8 1.@
MEAN POPULATION R-SQUARE
(b)

OH->1 mMwX
@
3
1
i

*
T T T T T ¥ T
0.2 o.4 8.0 0.8 1.8

MEAN POPULATION R-SQUARE
(c)
Fig. 3. The MSE ratios of the three cstimators for sample sizes (a) 4. (b)
10, and (c) 30 when Y = 0.25 and A = 1.5. (Legend: Regression = *,
Ratio = 4+, Stratified Ratio = ).

bility between C, and C,. Fig. 3 is for a A value of 1.5,
corresponding to low separability between C, and C,,. The
different symbols in each scatterplot represent the three
different estimators. The three lowest values of mean pop-
ulation R? in each plot correspond to ¢ = 0.50. The three
largest values correspond to ¢ = 0.01; the middle three to
o = 0.10. Within each of these three sets, the largest R’
corresponds to p = 0 and the smallest to p = 1.

Fig. 2 indicates that when the class separability is quite
good across clusters and the sample size is large, all three
estimators are similar in performance and significantly
improve the efficiency relative to the sample mean. When
the sample size is reduced, the ratio and stratified ratio



TABLE 111
MEANS AND STANDARD DEVIATIONS OF THE VARIANCE RATIOS

i Variance Estimator

Sample Size Statistics | Large Sample Cochran
4 Mean .602 1.227
Standard Deviation .108 215

10 Mean .884 1.015
Standard Deviation 074 .083

30 Mean 972 1.000
Standard Deviation .096 .094

estimators are hardly affected. The regression estimator
performs well overall with some decrease in efficiency
when the sample size is small.

When the separability between classes is reduced (Fig.
3), the stratified ratio estimator appears to be the most
robust. It is the only estimator that provided improvement
over the sample mecan for all cases considered (for ¥ =
0.5, not shown, the ratio estimator had MSE ratios greater
than 1 for A = 1.5 and low mean population R’ values).
For moderate to large values of R, however. the regres-
sion estimator is superior. Similar results were obtained in
the case of ¥ = 0.5.

Because of a greater interest in the regression estimator,
its variance estimation was also investigated in this sam-
pling study. The large sample variance estimator given in
(27) and the alternative estimator due to Cochran given in
(28) were computed for all 108 combinations of parameter
values in Table II. The sampling results showed that the
Cochran estimator tends to reduce the bias for the lower
sample sizes, while retaining the large sample property. In
fact, it tended to be conservative for the lower sample sizes
as compared to the large sample estimator which signifi-
cantly underestimated the variance of Yy. Presented in Ta-
ble Il are the means and standard deviations of the ratios
of estimated to actual variance in cach case for different
sample sizes. It is seen that in the case of n = 4, the under-
estimation of the variance using the large sample variance
estimator could be substantial. The Cochran estimator is
seen to be almost unbiased except when n = 4.

IV. A SimMuLAaTION STUDY

The evaluation study in Section IIl is fairly general and
applies not only to the present problem addressed in Sec-
tion I, but it is also applicable to any other sample survey
problem in which the auxiliary variable is obtained using
a classifier. In order to investigate the crop acreage esti-
mation using a Landsat-based estimator as auxiliary var-
iable, we conducted another simulation study where the
Landsat data were simulated at the pixel level with input
derived from a real situation and these were classified
using the classification rule discussed in Section 1I to ob-
tain the estimated crop acreages for the segments. This
study and its results are described in this section.

A. Simuiation of Landsat Data

A simulation program was developed to create segments
and their simulated multispectral scanner (MSS) data sim-
ilar to the real MSS data for the 33 JES segments in north-
ern Missouri acquired by Landsat in May and August
1979. The simulated segments were designed to be similar
to the actual data in the expected crop acreage propor-
tions, field size distributions, segment size, and MSS data.
To achieve this, fields were selected randomly according
to the empirical distribution of crop fields observed for the
33 JES segments. These fields were joined together by ar-
ranging them in horizontal and vertical arrays and then
segments were randomly located on the generated field -
patterns. A pixel grid was overlaid on each simulated seg-
ment such that the angle between the pixel and field edges
was similar to that of actual data. Segments with an ex-
pected area of 1 mi” rather than 0.5 mi’, as was the case
for the 33 Missouri scgments, were simulated. This was
done to conform with a more standard size for JES seg-
ments.

MSS data were simulated for the segments in each of
the four channels for each of the two Landsat acquisitions,
and for both pure and mixed pixels. The first step in the
spectral data simulation was to find the principal compo-
nents of the observed eight spectral values for pure pixels
in cach crop or cover type. The component values were
generated corresponding to each of these principal com-
ponents. By definition, the principal components are un-
correlated, therefore, these were independently simu-
lated. This simulation was done so as to have the same
variance for within fields, between fields (within seg-
ment), and between segments as observed for the real data
for each cover type. A nested analysis of variance model
with these three variance components was used for each
of the four principal components for each cover type. Each
of the random components (effects) due to pixel, field, and
segment was assumed to have the normal distribution with
mean 0 and variance equal to the computed variance com-
ponent using the real data. These simulated principal com-
ponent values were then transformed into spectral values
for the pure pixels through the use of inverse eigen-vector
matrices and applicable mean values. A mixed pixel was
simulated by linearly combining spectral values of pure
pixels with weights equal to the proportions of pure areas
in the mixed pixel. The statistical distributions of the sim-
ulated spectral values were found to closely approximate
their corresponding distributions of Landsat observed MSS
data.

B. Classification and Estimation

There were 12 cover types of which four cover types
accounted for less than one percent of pixels in the 33 JES
segments, and hence these were eliminated from the study.
Spectral data were simulated for each of the remaining
cover types consisting of pasture, soybeans, corn, waste,
wood, hay, winter wheat, and alfalfa. These data were
classified using the maximum likelihood decision rule de-

—
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TABLE 1V
THE OVERALL PERCENT OF CORRECTLY CLASSIFIED PURE PIXELS OF EIGHT
CoVER TYPES

Actual Simulated
No. of Channels Data Data
2 4 37
4 44 42
8 50 65
TABLE V

NUMBER OF EVALUATIONS AND POPULATION—SAMPLE SIZE COMBINATIONS

Sample Size (n)
4 6 10 15

Population |
Size (N) 25| 6

50| 6 6 6

100 2 2 2 2

scribed in Section II. The classification accuracies for the
first 1) two channels, ii) four channels, and iii) all eight
channels are compared to that obtained using the actual
Landsat data as shown in Table IV.

The best agreement is in the case of four channels. Be-
cause of this and because computations are reduced con-
siderably with the use of four channels versus eight chan-
nels, the first four channels were used in our study.

For each simulated segment, the actual crop acreage
proportions were determined by tabulating the number of
pixels assigned to each crop or cover type. The estimated
proportions are the relative frequencies of pixels that were
classified into these crop or cover types by the maximum
likelihood rule. Both ratio and regression estimates were
obtained following the estimation procedures described in
Section II.

Table V shows the various combinations of population
size and sample size for which evaluations of estimators
were made. However, due to extensive and very time con-
suming computations involved in simulation and classifi-
cation of MSS data, the evaluation for each of these com-
binations was split into several sets, each based on 20
replications. The numbers of evaluation sets for different
population and sample size combinations are also listed in
Table V.

C. Numerical Results

Table VI lists the estimated bias, variance, and relative
efficiency for each estimator of the mean number of pixels
per segment in a cover type for each combination of pop-
ulation and sample sizes. Alfalfa was frequently found to
have too few pixels to compute estimates so it was not
included in the evaluations. (The figures in the table are
the mean values obtained from the number of simulation
sets shown in Table V.) The bias for each individual case
of population and sample size combination is insignificant
using a r-test at the 5-percent level. Since the estimates
are based upon a small number of replications, this test
has a low power. Hence, a nonparametric sign test was
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TABLE VI
MEAN DIFFERENCE BETWEEN AN ESTIMATE AND POPULATION MEAN
(ESTIMATED BIAS), VARIANCE, AND RELATIVE EFFICIENCY

RELATIVE
BIAS VARTANCE EFF ICIENCY
TRegression Ratio Regression Ratio Regression Ratia
COVER TYPE N n Estimator |Estimator | Estimator !Estimator | Estimator ‘Estima{or

Pasture 25 4 -9.6 =12 2972 2284 1.2 1.5
6 -6.8 -6.5 1470 984 1.2 1.7

50 4 -2.7 -6.8 5011 243 -9 1.6

6 -3.8 -10.1 2609 1832 1.0 1.4

10 -5.0 -5.8 1103 1056 1.3 1.4

100 4 -25.1 -16.7 3661 2736 1.3 1.4

6 -16.8 =181 1240 993 1.9 2.2

10 -2.4 -2 1256 892 1.1 1.7

14 2.0 -0.5 1021 851 1.1 1.3

Soybeans 25 4 1.5 -1.2 1158 309 2.2 2.8
6 -1.2 -2.2 685 496 1.7 2.3

50 4 5.6 -1.7 1679 1126 1.4 3.0

6 1.7 1.2 609 526 2.6 2.9

10 2.] 0.7 319 307 2.6 2.3

130 4 -8.8 2.6 244 305 2.7 2.3

6 1.9 2.2 544 462 3.0 3.7

10 -1.8 -2.6 404 345 2.2 2.5

15 -2.5 -3.6 354 310 1.9 2.0

Corn 25 4 -9.4 -4.5 745 508 1.7 2.4
[ -5.1 -3.4 293 335 2.8 2.2

50 4 -9.0 -6.0 bB& 50 1.6 2,2

6 -9 =72 453 393 1.7 2.0

10 -5.6 -5.3 216 242 1.9 1.7

100 4 140 -7.39 248 257 3.0 4.1

5 -5.3 -3.3 376 32 2.2 2.6

10 -4.5 -3.5 241 19 24 2.3

15 -4.3 -1.7 187 167 1.7 24

Waste 25 4 22.5 14.5 N0 1692 0.5 0.9
6 9.2 8.2 1035 83 1.0 ! 1.2

50 4 16.3 12.0 3726 2102 3.4 | 0.9

6 14.5 12.8 1401 132 0.7 0.9

10 6.5 3.8 557 434 1.4 1.5

100 4 33.4 223 3581 2586 0.4 0.6

6 18.9 14.2 1553 1372 0.5 Q9.7

10 8.1 7.8 804 633 0.8 1.0

15 2.2 -1.0 235 225 2.2 2.8

Woods 25 4 -1.8 [N 1288 521 1.0 1.6
6 -1.4 -1.3 423 362 1.4 1.6

50 4 -0.4 0.4 1180 786 0.8 1.3

6 0.0 0.7 551 494 1.2 | 1.4

10 -0.4 -1.2 314 266 1.2 | 1.3

100 4 4.8 5.1 1483 660 0.7 1.5

3 0.4 1.0 460 309 1.9 2.4

13 -0.4 1.3 434 416 0.8 1.

15 0.8 0.3 ‘ 159 160 1.3 1.3

Hay 25 4 5.6 2.9 : AL a1 0.7 14
6 -1.6 -2.4 38 Kyl 1.1 1.2

50 4 3.6 1.4 1248 672 0.6 1.0

6 2.0 0.2 678 457 0.6 0.9

10 3.3 2.3 266 240 0.8 1.0

100 4 2.3 -1.0 124 n U 0.8

6 6.4 5.3 46 296 0.9 1.3

10 0.2 -3.0 246 158 i.0 i.4

15 1.5 1.5 259 249 7.6 0.6

Wheat 25 4 ! 2.0 0.2 i i s 0.9 1.3
6 -0.3 0.3 | 71 65 0.9 1.2

50 4 | Q.2 0.5 | 231 162 0.8 1.2

6 | -0.4 -0.9 ! 124 103 0.8 1.0

10 i [N =020 : 24 42 1.3 1.4

100 4 -3.3 -4.2 | 264 163 0.8 1.3

6 -1.1 -1 i 107 109 1.4 1.0

10 0.7 041 . 44 35 1.2 1.6

15 i 1.5 2.9 i 43 4 1.0 1.2

used to test for significant bias for each cover type across
all population and sample size combinations. For this test,
the null hypothesis is that the median bias is zero. Hence,
one would expect an equal number of negative and positive
estimates of bias under the null hypothesis. The hypoth-
esis is rejected at the 5-percent significance level if there
are either less than two or more than seven negative esti-
mates out of nine independent estimates considered here
[13].

Using the sign test, it can be determined from Table VI
that the bias is significant for pasture, corn, and waste for
both estimators and for hay only for the regression esti-
mator. The mean percent of actual pixels simulated for the
cover types are as follows: pasture—30 percent, soy-
beans—25 percent, corn—12 percent, waste—13 percent,
woods—9 percent, hay--7 percent, wheat—3 percent, and
alfalfa—1 percent.

Thus, there was no apparent pattern to significant bias
in terms of the relative size of a cover type. The relative
efficiencies of the ratio estimator are consistently higher
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TABLE VII
MEAN POPULATION REGRESSION SLOPE AND MEAN DIFFERENCE BETWEEN
THE SAMPLE AND POPULATION REGRESSION SLOPES

TABLE VIII
MEAN Bias OF REGRESSION ESTIMATES FOR NUMBER OF PIXELS PER SEGMENT
USING INDEPENDENT SETS OI' SAMPLES FOR CLASSIFICATION AND REGRESSION
(N =25 n=06)

COVER TYPES
PARAMETER N n Pasture T Soybeans ["Corn | Waste | Woods | Hay | Wheat
Population 25 4 1.54 7 100 | 1.s6 | 89 290 .32 Pasture | Soybeans | Corn | Waste | Woods } Hay | Wheat
Slope 6 1.49 .84 1.06 1 2.04 1.01 .32 .29 : o . -
50 4 )49 1,04 ‘95 1 1033 73 26 37 Bias ~0.91 -4.68 -1.46 3.84 2.83 5.07 -0.50
6 1.79 1.0 .96 1.1 J2 21 .37 s
10 V.67 o8 99 .34 1 2 38 t-statistic -0.79 -5.22*% -1.38 2.20* 2.57% | 4.80%| -1.64
o 4 1.81 .97 97 | 1as 64 | 9| .28 . A .
5 1.87 ‘96 ‘o N ‘69 22 ‘35 Relative Bias @ -0.50 -2.20 -1.32 2.90 4.44 8.77 | -2.07
10 1.45 .93 9| 2.8 77| .23 Lz
2. . . 2, . . . c e
Mean " 10 1.03 .02 2.04 62 16 36 * Significant at the 5% level of significance.
Di fference 25 4 67 e 09 IRE! 23 33 12 @ Percent bias relative to the crop area.
In $iopes 6 46 06 07 24 | -0 14 04
50 4 64 -.04 R R I 33 15
6 N -0 a0 b7 18 19 08
10 22 37 05 .89 17 16 07
o8 -1l -0 o2 ] 327 SO I 20 replications for each of 20 different classifications of
1 % -0 0 | A N R ] the single population (2800 regression estimates). Table
E§3"1 vion N o N i " N VIII contains the results obtained for the bias per crop in
ulati 37 . . . . . . . . . . .
RZ ‘ this analysis. It shows signifiant biases for soybeans,
[

than those of the regression estimator. The maximum gain
in efficiency due to the use of either estimator is in soy-
beans, showing a substantial savings (more than half over
the direct expansion estimator) in sampling of JES seg-
ments for ground enumeration. For corn, the range in RE
is from 1.6 to 3.0 for the regression estimator and from 1.7
to 4.1 for the ratio estimator. For other cover types, the
relative efficiencies are not substantially different from 1.0.

To investigate the cause of bias in the regression esti-
mator, the regression coeflicient (slope) was computed
using the data on (x, y) from segments in the sample as
well as those in the population. Table VII lists the mean
slopes obtained for the population case and the mean dif-
ference between the sample and population slopes. Over-
all, the slopes are nearly one for soybeans and corn, but
differ substantially from one for other cover types. The
two slopes are significantly different for all cover types
except soybeans and corn at the S-percent significance
level of the sign test and the slope from the sample tends
to be larger than that of the population. This is an ex-
pected result since the MSS data from the sample seg-
ments are used in training the classifier and thereby, will
have better classification accuracy than the remaining MSS
data. Hence, it may lead to a significantly different rela-
tionship between x and y in the sample relative to the pop-
ulation. Overall, there is a tendency for differences to ex-
ist in both the slopes and means as can be seen in [ 14,
Tables 111 and V7.

Also included in Table VII are the mean population R*
values for each cover type. Better correlations are seen for
the prevalent cover types.

In general, the regression estimator is biased [3] and the
bias due to the use of training sample segments to estimate
the regression line may confound with the inherent bias of
the regression estimator. To investigate this problem, a
small study was conducted. A test set of six segments was
repeatedly selected at random from a population of 25,
after an independent set of six sample segments had been
used to train the classifier. A regression estimate was
computed from each test set for all seven crops in each of

waste, woods, and hay, indicating a confounding effect
since the bias was not significant earlier for this set of cover
types. Only one population was used in this analysis (thus
the bias may be population specific) and a further study is
necessary to make a conclusive inference.

The two variance estimators, the large sample and
Cochran, given in (27) and (28), were evaluated for
underestimation of the variance of the regression esti-
mator as in the earlier sampling study. The results were
similar. The large sample variance estimate underesti-
mated the actual variance and the Cochran estimator was
essentially unbiased.

V. SUMMARY AND CONCLUSIONS

The USDA-proposed method of improving the proba-
bility survey crop acreage estimates using Landsat derived
estimates as auxiliary information was analytically for-
mulated. The bias and variance of the regression, ratio
and stratified ratio estimators were outlined for the large
sample case. Simulation studies were conducted to inves-
tigate the small sample properties of the estimators, as
this is a typical situation in the described USDA problem.

In the sampling study segment-level data were simu-
lated for a wide variety of situations corresponding to low
and high separability, small to large sample sizes, and
equal and unequal class proportions. It was found that no
estimator was uniformly superior. Variation of class sep-
arability across clusters and the sample size influenced the
performance of an estimator most. The regression esti-
mator was most efficient unless the sample size was very
small or R* was low due to the class separability varying
considerably across clusters, in which case the stratified
ratio estimator was preferable. The ratio estimator showed
significant bias in the case of ¥ = (.25 whereas the regres-
sion estimator had significant yet negligible bias when
sample size was moderate to large. The stratified ratio es-
timator was robust.

For the regression estimator, the large sample variance
estimator underestimated the variance considerably in
small to moderate sample size cases. On the other hand,
the Cochran variance estimator overestimates the variance
when the sample size is small.
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A Review of Three Discrete Multivariate Analysis
Techniques Used in Assessing the Accuracy of
Remotely Sensed Data from Error Matrices

RUSSELL G. CONGALTON annp ROY A. MEAD

Abstract—Three discrete multivariate analysis techniques were used
to assess the accuracy of land use/land cover classifications generated
from remotely sensed data. Error matrices or contingency tables were
analyzed using these techniques and the results reported. The first
technique is a normalization procedure using an “‘iterative propor-
tional fitting” algorithm that allows for direct comparison of corre-
sponding cell values in different matrices irregardless of sample size.
The second technique provides a method of testing for significant dif-
ferences between error matrices that vary by only a single variable or
factor. The third technique allows for multivariable comparisons to be
made between matrices. Each technique is implemented through the
use of a computer program.

{. INTRODUCTION

HE NEED FOR procedures to assess the accuracy of
remotely sensed data has been adequately docu-
mented in the literature (e.g., [14]-[16], [5]). With the
arrival of Landsat Thematic Mapper imagery and SPOT
imagery, the need for such techniques becomes even more
important. The objective of this paper is to review three
discrete multivariate analysis techniques used in assessing
the accuracy of remotely sensed data from error matrices.
Following the description of the techniques, some example
analyses will be presented. It is not within the scope of
this paper to review other methods of accuracy assess-
ment, nor is it possible to present all the theoretical details
of the three techniques described here. Those researchers
interested in pursuing this topic further should see [4].
The method of accuracy assessment described in this
paper employs discrete multivariate analysis techniques.
Other names for this type of analysis include contingency
table analysis and the analysis of cross-classified categor-
ical data. These techniques are appropriate for remotely
sensed data because they are designed for the analysis of
discrete data. Remotely sensed data are discrete (noncon-
tinuous) and multinomially distributed. Most previous
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work in accuracy assessment involves the use of para-
metric statistical techniques which assume that the data is
continuous and normally distributed.

The most common way to represent the accuracy of a
classification derived from remotely sensed data is in the
form of an error matrix [2]. [8], [10]. An error matrix is
a square array of numbers set out in rows and columns
which express the number of pixels assigned a particular
land cover type relative to the actual ground-verified land
cover type. The columns of the matrix represent the ref-
erence data (assumed correct) while the rows indicate the
classification of the remotely sensed data (satellite data or
aerial photography). This form of expressing accuracy as
an error matrix is an effective way to evaluate both errors
of inclusion (commission errors) and errors of exclusion
(omission errors) present in the classification of the re-
motely sensed data. In addition, the error matrix allows
for the analyst to determine the performance of individual
categories as well as for the overall classification [9]. In a
100-percent correct classification, all the nondiagonal ele-
ments of the error matrix would be zero, indicating no
misclassifications. An error matrix is typically generated
using only a sample of the data within the area of interest.
An important assumption made here is that this sample be
representative of the entire area.

Given an error matrix, a simple procedure can be used
to determine the overall performance accuracy of the clas-
sification. The values on the major diagonal (i.e., cor-
rectly classified pixels) are summed up and divided by the
total number of pixels classified. This number is then a
measure of overall performance accuracy and is the most
common use of the error matrix in accuracy assessment.
However, two more sophisticated statistical techniques are
now being used to further assess the accuracy of remotely
sensed data. These two techniques are analysis of variance
and discrete multivariate analysis.

The analysis of the variance technique uses only the di-
agonal elements in the error matrix. Also, the technique
requires that the diagonal element values (data) be contin-
wous and normally distributed. As previously mentioned,
error matrix values are discrete and multinomially distrib-
uted. The diagonal elements of the error matrix can be
converted to a normal distribution using various transfor-
mations [13]. However, another assumption of analysis of

0196-2892/86/0100-0169301.00 © 1986 IEEE
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variance is that the values along the diagonal (i.e., the
categories) in the error matrix are independent. This as-
sumption does not hold for remotely sensed data. Addi-
tional details and examples of this technique can be found
in [12].

The discrete multivariate analysis techniques do not as-
sume that the categorics are independent nor do they re-
quire any transformation of the data. Instead, these tech-
niques were designed to deal specifically with categorical
data. Discrete multivariate analysis also uses the entire
error matrix and not just the diagonal elements. As sug-
gested by [2], ““contingency table analysis is the most nat-
ural framework for accuracy assessment, both for the con-
venient display of empirical results and for the ease of
statistical analysis.”

II. DisCRETE MULTIVARIATE ANALYSIS TECHNIQUES

Three different methods of comparing érror matrices
using discrete multivariate analysis techniques are re-
viewed here. The first method allows for the direct com-
parison of values within the error matrices through a pro-
cess called normalization. The second method computes
a measure of agreement between error matrices, which can
be used to test if the matrices are statistically significantly
different. The third method provides for the simultaneous
examination of all factors affecting the classification ac-
curacy.

The first comparison procedure allows for correspond-
ing cell values in different error matrices to be directly
compared. This comparison is made possible by a stand-
ardizing process called normalization [1]. Normalization
of an error matrix is performed by a procedure called “it-
crative proportional fitting.” The rows and columns of a
matrix are successively balanced until each row and each
column adds up to a given value called a marginal. In the
examples in this paper, the row and column marginals will
be set to 1.0. This process forces each cell value to be
influenced by all the other cell values in its corresponding
row and column. Each cell value is then representative of
both the omission and commission errors for that land
cover category. In this way, all the information in the en-
tire error matrix is forced to be a part of each cell value.

Prior to the normalization procedure, comparisons of
corresponding cell values in different matrices was only
possible if the matrices had the same sample size. Even
then, the cell value may have been misleading as a mea-
sure of accuracy since the errors of omission and com-
mission were ignored. However, due to the normalization
procedure, corresponding cell values of two or more error
matrices can now be directly compared without regard for
differences in sample size and including omission and
commission errors. As yet, there is no test for significance
between corresponding cell values. However, since all
rows and columns in the matrix are forced to add to a
given marginal, direct comparison of individual cell val-
ues can provide a relative measure of which is better.

The second method of comparison reviewed here is a
procedure that allows one to test if the overall agreement

(i.e., accuracy) in two error matrices is significantly dif-
ferent. A measure of overall agreement is computed for
each matrix based on the difference between the actual
agreement of the classification as indicated by the major
diagonal and the change agreement as indicated by the
product of the row and column marginals. This measure
of agreement, called KHAT (i.e., 1&), is computed by the
following equation:

r r
N ,Z] Xij — ’Zl (i *xy))
1= =

R = _
N* — 20 (x, *x.))
i=1

where r is the number of rows in the matrix, x;; is the
number of observations in row i and column i (i.e., the ith
diagonal element, x, . and x,; are the marginal totals of
row i and column i, respectively, and N is the total number
of observations {1].

A KHAT value is computed for each matrix and is a
measure of how well the classification agrees with the ref-
erence data (i.e., a measure of overall accuracy). Confi-
dence intervals and statistical tests are performed using
the approximate large sample variance given in [1, p. 396].
A test for significance of KHAT can be performed for each
matrix separately to determine if the agreement between
the remotely sensed data and the reference data is signif-
icantly greater than zero. In other words, this test is per-
formed to see if the classification is significantly better
than a random assignment of land cover types to pixels.
More importantly, a pairwise test of significance can be
performed between two independent KHAT s (a value of
KHAT computed from an independent sample for each
matrix) using the normal curve deviate to determine if the
two error matrices are significantly different [3]. The test
statistic for significant difference in large samples is given
by

K- Ky ()

The confidence intervals and significance tests are based
on the asymptotic normality of the KHAT statistic.

The above test between two independent KHAT's al-
lows any two error matrices to be compared in order to
determine if they are significantly different. In other
words, error matrices generated from several classifica-
tion algorithms can now be compared, two at a time, to
determine which classifications are significantly better
than the rest. Researchers can also use this procedure to
test the effects of individual factors such as time of the
year or analyst on the accuracy of the classification. How-
ever, this procedure is limited to varying only one factor
at a time. For example, in order to determine which date
of imagery yields the best results, all other factors (i.e.,
algorithm, analyst, Landsat scene, etc.) must be held con-
stant. Actually, since this condition is common in accu-
racy assessments, this method is very useful.

The third method of comparison reviewed here allows

7z ~
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one to simultanecously analyze more than a single factor
affecting the classification accuracy. This procedure is the
most complicated of the three and is based on the log-
linear model approach as described by [1], [6]. In this
method, many variables (factors) affecting the accuracy
and their interactions can be tested together to determine
which are necessary (i.e., significant) in fully explaining
the classification accuracy.

In this method, the simplest model (combination of var-
iables and their interactions) that provides a good fit to the
data (error matrices) is chosen using a model selection
procedure. This procedure, which is similar to model se-
lection procedures used in regression (i.e., forward selec-
tion, etc.), allows the user to systematically search all pos-
sible combinations of variables and their interactions and
choose the simplest combination that provides a good fit
to the data. First, all uniform order log-linear models (i.e.,
models with all possible n-way interactions, where n = 1
to the number of variables) are examined and the simplest
good fit model is chosen. Each interaction of the chosen
uniform order log-linear model is then tested for signifi-
cance. If the interaction is not significant, it is dropped
from the model. The process continues for each interac-
tion until a model is found in which all the variables and
their interactions are significant. For more details on this
model selection procedure, see [6, Section 5.3]. The cri-
teria used for determining the significance of the variables
and interactions in a model is based on the likelihood ratio
G? and the corresponding degrees of freedom for that
model.

This procedure uses a method of successive approxi-
mations (i.e., “‘iterative proportional fitting’”) which con-
verges to the maximum likelihood estimates of the mini-
mum sufficient statistics as defined by the model. In other
words, the ‘“‘iterative proportional fitting”’ procedure at-
tempts to fit the model of interest to the data. This pro-
cedure is tedious and complicated and is almost always
done on the computer. The likelihood ration G? is then
used as a measure of ‘“‘goodness of fit”’ of the model to
the data. The likelihood ratio statistic is used in place of
the Pearson chi-square statistic because G? can be parti-
tioned, as is necessary in the model selection procedure,
and still retain an approximate chi-square distribution
while Pearson’s statistic cannot. Therefore, the critical
value for testing if the model of interest is a good fit can
be obtained from a chi-square table with the appropriate
degrees of freedom [1], [6].

The log-linear model approach, unlike the KHAT sta-
tistic, allows for the analysis of multi-way error matrices
with many factors. For example, error matrices generated
using different dates, different algorithms, and different
analysts all of the same scene of imagery, can be put to-
gether and the factors significant in explaining the classi-
fication accuracy identified. A possible practical result of
such an analysis could be that the image date is insignifi-
cant, and therefore the imagery with the highest quality,
irregardless of the date obtained, could be used in the
study.

It should be realized here that performing any of these
three comparison methods by hand is a very tedious pro-
cess. Computer programs have been written to implement
all three techniques and are available from the author. The
first and second procedures are very easy to use while the
third is somewhat more complicated.

ITI. EXAMPLE ANALYSES

Data used to demonstrate the normalization procedure
and the test of agreement procedure were part of a study
done on various image processing software packages by
the U.S. Army Engineer Waterways Experiment Station
Environmental Laboratory [11]. Each software package
was used to produce the best possible classification o the
Simeon Southeast USGS 73-min quadrangle into three
general land cover categories: water (WA), wetlands
(WE), and nonwetlands (NW). The three software pack-
ages evaluated were: the EDITOR software developed at
NASA Ames Research Center, the GISS software devel-
oped at the Goddard Institute for Space Sciences, and the
VICAR software developed at Washington State Univer-
sity. The original and normalized error matrices for each
of the three software packages are given in Tables I-1I1.
Table IV presents a comparison between the overall per-
formance accuracy, the measure of agreement (KHAT),
and the normalized performance accuracy for the three
software packages. Normalized performance accuracy is
computed in the same way as overall performance accu-
racy except on the normalized matrix. This measure of
accuracy differs from the overall performance accuracy in
that the cell values along the major diagonal in the nor-
malized matrix now incorporate the omission and com-
mission error in the matrix as a result of the “iterative
proportional fitting™ procedure. Note that in this case all
three measures of accuracy yield the same ranking (best
to worst). However, because these are three different
measures of accuracy and contain different levels of infor-
mation, they do not always have to yield the same ranking,.

As previously mentioned, normalization allows for the
direct comparison of corresponding cell values in each of
the three matrices. For example, Table V contains the per-
cent correct and normalized values for the water category
in each matrix. In the percent correct calcuiation only er-
rors of omission are accounted for. However, the normal-
ized value considers both errors of omission and commis-
sion as well as negating the effect of sample size. The result
of considering both omission and commission errors in the
accuracy measure is clearly demonstrated by comparing
the values in the water category for the EDITOR software
and the VICAR software (Table V). Notice that the EDI-
TOR software has a percent correct for the water category
of 71 percent and a normalized value of 0.8729 while the
VICAR software has a much higher percent correct of 8l
percent and yet a normalized value of 0.8630. This appar-
ent discrepancy in results is mostly due to the large com-
mission error (placing 4184 wetland pixels in the water
category) in the VICAR error matrix (see Table III). The



172 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. VOL. GE-24, NO. 1. JANUARY 1986
TABLE 1 TABLE V
THE ORIGINAL AND NORMALIZED ERROR MATRICES FOR THE EDITOR A COMPARISON OF THE WATER CLASSIFICATION FOR THE THREE SO WARL
SOFTWARE CLASSIFICATION OF THE SIMEON SOUTHEAST QUADRANGEI: PACKAGES
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TABLE I
T OrRIGINAL AND NORMALIZED ERROR MATRICES FOR THE GISS SOFTWARE
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TABLE 11
Tk ORIGINAL AND NORMALIZED ERROR MATRICES FOR THE VICAR
SOFTWARE CLASSIFICATION O THEE SIMEON SOUTHEAST QUADRANG].£
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TABLE 1V

A COMPARISON OF THE OVERALL PERFORMANCE ACCURACY, THI: MEASURE
OF AGREEMENT (KHAT), AND THE NORMALIZED PERFORMANCE ACCURACY

Qverall Normalized
Software Ferformance KHAT Ferformance
Fackage Accuracy Accuracy

practical application of this result is that perhaps the ED-
ITOR software is not as bad at distinguishing water as it
would at first appear.

The data supplied by Rekas er af. [11] were also used
to test for significant differences between error matrices.
The error matrices generated from the three software
packages can be tested to see which are significantly dif-
ferent. The KHAT statistic can be used as an accuracy
measurement as shown in Table IV. In addition, it can be
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TABLE V1
T RESULTS FOR THE TEST OF AGREEMENT BETWEEN BRROR MATRICES FOR
IHE THREE SOFTWARE PACKAGES

Resul t
1 e
Fairwise Compar:son Z Statistic 5% QO%
EDITOR vs. GIS% —24, 8T S S
EDITOR vs. VICAR &L T7160 s S
GISS vs. VICAR 31,4763 S S
1

Use equation (1) to calculate the Z statistic

S = significant result

TABLE Vil
KHAT S1AT1STIC AND VARIANCE FOR EACH ERROR MATRIX USED TO
CoMPUTE CONFIDENCE INTERVALS AND PERFORM SIGNIFICANCE TESTS

Error Matrix EHAT Statistic Variance
EDITOR LLI29IR LOO000OZ47
GISS 67187 - DO00GEe7
VICAFR 61155 LOODTI0T54

used to test which matrices are significantly different and
theretore which software package is best. Table VI shows
the results of the pairwise significance tests for the three
software packages. These results indicate that the three
software packages are significantly different from each
other with the GISS package being the best and the VICAR
package the worst for this particular data set. Without this
statistical test, it would have been impossible to distin-
guish betwcen the overall performance accuracy of the
EDITOR software (0.803) and the VICAR software
(0.794). A more practical application of such an analysis
would be to test if a very expensive software package pro-
duces results that are not significantly different from a less
expensive package. It this were the case, then the less ex-
pensive package should be used. Table VI contains the
KHAT statistic and the variance for each of the three error
matrices. In addition, this table contains the Z statistic used
to test if the agreement between the reference data and the
remotely sensed data was significantly greater than zero
for each matrix separately.

Data used to demonstrate the multifactor comparison

——
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TABLE VIl
THE UNIFORM ORDER MODELS FOR THE FOUR-WAY TABLE COMPARING
ENHANCEMENT TECHNIQUES AND CLASSIFICATION ALGORITHMS

MODEL c? ar RESULT
{11 [2){3) ™) 10688.872081 352 poor fit
A
{12][13)[ 6] 23] 28]] 3H)f 14s5.Bo428 29 govd 1L
fre3]franu][ 18] 234) 20.90917 5h good [fit

procedure were supplied by Gregg et al. [7]. These data
were collected as part of an operational study of Landsat
imagery for inventory purposes in the State of Washing-
ton. In this example, two classification algorithms, two
enhancement techniques, 10 reference data categories, and
10 Landsat data categories were studied resulting in a four-
way table of dimensions 2 by 2 by 10 by 10. Unfortunately.
due to the size of this four-way table, it cannot be printed
here. However, the original data can be found in the paper
cited above.

As previously described, a model selection procedure
was used to determine the simplest good fit model to the
data. Table VIII contains the uniform order log-linear
models for these data. Notice that, because this is a four-
way table, the uniform order models consist of the models
with all three-way, all two-way, and all one-way interac-
tions. The uniform order model of all four-way interac-
tions (written as [/ 2 3 4]) is the complete or saturated
model and will always fit the data because it contains all
the factors and their interactions. However, the object here
is to eliminate the nonsignificant factors or interactions
and find the simplest good fit model.

In this example, classification algorithm (denoted vari-
able [/]). enhancement technique (denoted variable [2]),
and the reference data (denoted variable [3}]) arc called
explanatory variables while the Landsat data (denoted var-
jable [4]) is called the response variable. This terminology
is derived from the idea that the first three variables are
being used to try to explain the response (i.¢., the Landsat
classification). The interaction terms in the model are rep-
resented as combinations of these variables enclosed in
brackets (e.g., [/2] is the interaction between algorithm
and enhancement).

Table VIII shows that the two-way interaction uniform
order log-linear model is the simplest good fit model as
determined by the likelihood ratio G”. The one-way uni-
form order model is a poor fit while the three-way uniform
order model is a good fit. but is more complicated than
the two-way model. Notice that the two-way uniform order
model consists of six two-way interaction terms. The ob-
ject then is to systematically eliminate all the nonsignifi-
cant factors or their interactions leaving just the simplest
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TABLE IX
THE MODEL SELECTION PROCESS FOR THE FOUR-WAY TABLE COMPARING
ENHANCEMENT TECHNIQUES AND CLASSIFICATION ALGORITHMS

MUDEL a2 ar RESULT
{12110 1) 23)1 28] 10732.65712 315 poor fit
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good fit model to the data. Table IX shows the steps of this
process. The next step in the model selection process then
is to eliminate a two-way interaction term from the two-
way uniform order model. By eliminating one two-way
term, six new models result, each with a different com-
bination of the five remaining two-way interaction terms.
These six new models are tested for “goodness of fit”
based on the G* and the appropriate degrees of freedom
(df), and model B is chosen to be the simplest good fit
model. The eliminated two-way interaction term is tested
for significance by comparing the fit of the two-way uni-
form order model, labeled 4 in Table VIII, with model B.
This test is possible because partitioning G? still results
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in a chi-square distribution. Because this test is not sig-
nificant, the [23] interaction term can be dropped from
the model (see Table 1X).

This same process is then repeated on model B by elim-
inating another two-way interaction term and testing the
resulting five models. The results of the test yield model
C as the simplest good fit model. Also, the test shows the
[72] interaction term to be not significant; therefore, it is
dropped from the model. The process is repeated again,
leading to model D and the elimination of the [/3] inter-
action. Note that one of the possible models tested here
contained a one-way interaction term. The process is re-
peated one last time, resulting in model E as the simplest
good fit model. However, the test between models D and
E was significant; therefore the [74] interaction cannot be
eliminated from the model without losing some of the crit-
ical information about the data. Therefore, model D [714]
[24][34]) is selected as the simplest good fit model to the
data.

Model D indicates that there are no three-way interac-
tions necessary to explain the data. Instead, there is a
combined effect due to each explanatory variable (i.e., al-
gorithm, enhancement, and reference data) separately with
the response. In other words, for this example each factor
contributes significantly to the performance of classifying
the image and, therefore, none can be eliminated.

IV. SuMMARY AND CONCLUSIONS

The three discrete multivariate analysis techniques re-
viewed here are very helpful in assessing the accuracy of
classifications derived from remotely sensed data. These
techniques have the advantage of allowing the user to
quantitatively compare the different aspects of the classi-
fication process and assess the results. In addition, each
technique is easily implemented by a computer program.
However, the results of these quantitative techniques are
only as good as the error matrices used in the computa-
tions. A great deal more research is needed in the sam-
pling aspects of accuracy assessment to insure that the er-
ror matrices are indeed representative of the entire arca
classified using the remotely sensed data.
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Landsat Large-Area Estimates for Land Cover

GEORGE A. MAY, MARTIN L. HOLKO. anp NED JONES, JR.

Abstract—A methodology for using ground-gathered and Landsat
MSS data to obtain natural resources information over large areas was
developed by the USDA, Statistical Reporting Service (SRS) and NASA/
NSTL, Earth Resources Laboratory. The SRS’s remote-sensing tech-
niques for improving crop area estimates were expanded and modified
to obtain land-cover data. These techniques employ statistical relation-
ships between field-level ground data and corresponding Landsat pixels
to determine classification accuracy and variances for acreage esti-
mates. State-level and land-cover surveys were conducted in Kansas,
Missouri, and Arkansas. During the Missouri project, all costs for per-
son-hours, materials, and computer time were tracked for the various
analysis steps. Classified Landsat data stored on computer tapes and
area estimates with known precision are two products obtained from
these surveys.

. INTRODUCTION

HE U.S. Department of Agriculture’s (USDA) Statis-

tical Reporting Service (SRS) uses digital data from
the Landsat satellite to improve crop-area statistics based
on ground-gathered survey data. This is accomplished by
using Landsat digital data as an auxiliary variable in a
regression estimator. Several reports ([S], [7], 91, [111,
[14]) discuss results from this procedure which has been
applied to major crops in the midwest. Briefly, the SRS
Landsat procedure for major crops consists of the follow-
ing steps:

Ground truth collected during an operational survey,
plus corresponding Landsat MSS digital data, are used to
develop discriminant functions which in turn are used to
classify Landsat pixels which represent specific ground
covers.

Areas sampled by the ground survey are classified and
regression relationships developed between classified re-
sults and ground truth.

All of the pixels contained in the Landsat scene(s) within
the area of interest are classified.

Crop-area estimates are calculated by applying the
regression relationship to the full scene classification re-
sults.

In 1979, the land-cover classification and measurement
program within AgRISTARS gave the SRS a research
charter to develop and evaluate techniques for obtaining
land resources information. The overall objective was to
determine if land-cover data obtained using the above
methodology could be useful to other USDA agencies, or
state and county level agencies, concerned with natural
resources management. The National Areonautics Space
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Administration’s Earth Resources Laboratory (ERL) at the
National Space Technology Laboratory (NSTL) had prior
experience in examining land cover and geographic infor-
mation needs. Thus, NSTL and SRS personnel began joint
remote-sensing research efforts to address land-cover in-
formation needs with major emphasis placed on SRS’s
methology for obtaining crop area estimates.

The following is a brief overview of land-cover research
that was conducted during AgRISTARS:

1979 The SRS has a lead role along with NASA/ERL
in land-cover research.

1980 Pilot study conducted in Kansas.

1981 Seventeen land covers classified and estimated at
the state level in Kansas using unitemporal
Landsat data.

1982 Results from 1981 analyzed and preparations
made for 1983 test.

1983 Twenty-three land covers and five major crops
classified and state-level estimates produced in
Missouri using multitemporal Landsat data.

1984 The Soil Conservation Service (SCS), the Forest

Service (FS), and the SRS jointly fund a state-
level crop and land-cover survey in Arkansas
using the SRS’s June Enumerative Survey and
multitemporal Landsat data.

This report will discuss, starting in Section III, each of
the above studies in chronological order and will show how
the results and experiences gained in one year helped to
improve the survey for subsequent years. Section II pre-
sents the basic techniques and methodologies used to com-
bine ground-gathered and Landsat MSS data to obtain crop
classification and acreage estimates. Cited references
which give additional details on these techniques are read-
ily obtainable from the SRS. Modifications were made to
these procedures to allow the classification and estimation
of noncrop cover types. These changes are discussed
within the appropriate land-cover study presentation.

II. METHODOLOGY
A. June Enumerative Survey

Every year during the last week in May and first week
in June the SRS conducts a June Enumerative Survey (JES)
in 48 conterminous states [3]. The JES is a probability
survey based on a stratified area-frame sampling tech-
nique [6]. In this technique the area of a State is divided
into homogeneous subdivisions called strata (Table D).
Each stratum is further subdivided into smaller areas

U.S. Government work not protected by U.S. copyright
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TABLE 1
KANSAS AREA SAMPLING FRAME STRATA
Average
Population Sample SegmentZSlze
Stratum Description Size _Size (mi°)
n > 80% cultivated 25,028 170 1.00
12 50 to 80% cultivated 21,704 120 1.00
20 15 to 49% cultivated 21,286 100 1.00
31 Agri-urban 2,774 12 0.2%
32 City 2,941 12 0.10
33 Resort area 247 2 0.25
40 Rangeland 3,147 15 4.00
50 Nonagricultural 294 2 1.00
61 Potential water 29 2 0.50
62 Water 231 90 1.00
TOTAL 77,681 435

called primary sampling units (PSU’s). Out of each stra-
tum a suitable number of PSU’s are randomly chosen with
probability of selection proportional to the area of the PSU.
Each of the sampled PSU’s is divided into sampling units
called segments (a segment is a well-defined area of land
that can be delineated on photographs and readily identi-
fied by data collection personnel in the field). In strata that
are predominantly cultivated land, the average segment
size is about 1 mi”. After each sampled PSU is subdi-
vided, one segment is randomly selected from each PSU.

The JES procedure requires that information be ob-
tained for all the land within each of the sampled seg-
ments. To ensure that all the land is accounted for, aerial
photographs are used as an enumeration aid. The bound-
aries for each segment are drawn on individual noncurrent
photographic prints. These segment photographs and cor-
responding questionnaires are sent to field enumerators for
data collection. As part of the data collection procedure,
each enumerator is instructed to draw the boundaries of
all fields, within each segment, on the segment photog-
raphy (a field is defined as a continuous block of land con-
taining the same crop or land cover). On the correspond-
ing questionnaire the enumerator records the cover and
size of each field, as well as livestock numbers and other
agricultural information obtained from the operator.

The information collected during the JES is aggregated
to the segment level and direct expansion estimates are
then calculated to obtain state level estimates for crop
acres [12]. The formulas for the direct-expansion esti-
mator and its variance are as follows:

Let ¥, be the unbiased direct expansion estimate for the
acres of crop ¢

1y

N
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is the acres reported to crop c, in segment j, for
stratum s,

n, is the number of segments sampled in stratum s,

is the total number of potential segments in stra-
tum s, and

S is the total number of strata.

The estimated variance is:
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In 1972, SRS personnel started to investigate the poten-
tial of using digital Landsat data to improve the precision
of the estimates obtained from the JES. The procedure
developed consists of the following steps:

1) Analysis District Selection: Landsat data are se-
lected and boundaries of Landsat analysis districts de-
fined.

2) Signature Development: Data collected during the
JES and corresponding Landsat data are used to develop
a maximum likelihood classifier for each analysis district,

3) Small-Scale Processing: The Landsat pixels repre-
senting the area within each segment contained in an anal-
ysis district are classified. A regression relationship is de-
veloped between the number of pixels classified to a crop
and the acres recorded for that crop on the JES.

4) Full-Frame Processing: All of the Landsat pixels
within the analysis district are classified. Estimates are
calculated at the analysis district level by applying each
crop regression relationship to the all-pixel classification
results.

5) State-Level Accumulation: The estimates for all
analysis districts are combined to create a state level es-
timate for each crop of interest.

B. Analysis District Selection

An analysis district is an area of land covered by Land-
sat imagery of the same overpass date. Depending on the
location and availability of Landsat data, cach state is di-
vided into a number of districts with each being analyzed
separately. The Landsat analysis district location is treated
as a geographical post-stratification imposed on the orig-
inal strata. As a result of this post-stratification, SRS per-
sonnel must determine the number of PSU’s and the sam-
pled segments which fall into each post-stratum. This
results in two strata categories:

1) The first stratum category corresponds to the area of
the state for which there is no Landsat coverage. This area
may be noncontiguous. The portion of each land-use stra-
tum within these geographical areas makes up the post-
strata. We let M, be the total number of segments in the
nonLandsat area in land use stratum s, and m, be the num-
ber of sampled segments in the non-Landsat area in land
use stratum s.

2) The second stratum category corresponds to the
areas of the state where the analysis districts are defined.
In these areas each stratum consists of the area of inter-
section between the land use strata and a Landsat analysis
district. Here, we let M, be the number of PSU’s in anal-
ysis district a, land use stratum s, and m,, be the number
of sampled segments in analysis district a, land use stra-
tum s.

e EERER
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C. Signature Development

Signature development is done independently for each
analysis district and consists of four phases. The first phase
is segment calibration and digitization. Segment calibra-
tion is a first-order linear transformation that maps points
on the segment photograph to a USGS map base. Segment
digitization is the process by which field boundaries drawn
on the segment photograph are recorded in computer-
compatible form. The combined process of calibration and
digitization gives us the capability of digitally locating
every JES field relative to a map base.

The next phase in signature development is the registra-
tion of each Landsat scene. The SRS’s Landsat registra-
tion process is a third-order linear transformation that
maps each Landsat pixel within a scene to a map base
[4]. Corresponding points selected on a 2° map and a
1:250 000 Landsat image are used to generate this math-
ematical transformation. The combination of segment cal-
ibration, digitization, and Landsat registration provides
the capability to locate each JES segment in its corre-
sponding Landsat scene (to within about 5 pixels of the
correct location). Since this registration is not accurate
enough for selecting training data, line plots of segment
field boundaries and corresponding greyscale prints are
overlaid and each segment is manually located to within
5 pixel of the correct location. This procedure allows ac-
curate identification of all the pixels associated with any
JES field. The result of this is a set of pixels labeled by
JES cover.

The third phase of signature development is supervised
clustering. In supervised clustering all of the pixels for
each cover are processed through one of two available
clustering algorithms: classy or ordinary clustering.
Classy is a maximum likelihood clustering algorithm de-
veloped at Johnson Space Center in Houston, TX [8]. Or-
dinary clustering is an algorithm derived from the 1SO-
DATA algorithm of Ball and Hall [2]. Each clustering
algorithm generates several spectral signatures (cate-
gories) for each cover. Each spectral signature consists of
a mean vector and the covariance matrix for the reflec-
tance values for that category.

In the fourth phase, the statistics for all categories from
all covers are reviewed and combined to form the discrim-
inant functions of the maximum likelihood classifier.

D. Small-Scale Processing

In small-scale processing, each pixel associated with a
JES segment is classified to a category. The category to-
tals corresponding to crops of interest are summed to
segment crop totals. These crop totals are used as the in-
dependent variable in a regression estimator. Correspond-
ingly, the acres reported on the JES for each crop are
summed to segment totals and used as the dependent var-
iable. The segment totals are used to calculate least
squares estimates for the parameters of a linear regres-
sion.

The linear regression equations for analysis district a,
stratum s, and crop ¢ are of the form
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where

Viase is the reported acres of crop ¢, from seg-
ment j, analysis disctrict a, land use stra-
tum s,

Xjuse is the crop total classification for segment
J, analysis district @, land use stratum s,
and

bouse» Drase  are the least squared estimates of the

regression intercept and slope parame-
ters for crop ¢, analysis district a, land
use stratum s.

E. Full-Frame Processing

The classifier used in small-scale processing is used to
classify every pixel in the analysis district. The classified
results are tabulated by category and land-use stratum.
For each crop of interest, the category totals are summed
to stratum crop totals. From these totals the population
averages per segment are calculated. Using the population
average, a stratum-level regression estimate is made for
that analysis district for each crop.

Let Y(«m be the analysis district level regression esti-
mator for crop ¢ and stratum s. Then

Y{L\‘(' = Mds[yas(‘ + blm‘('(XAuS(' - )_C.ax(‘)]
where
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Mgy, My, Xjgyer and Yj,, are as defined above, and X . is
the population average number of pixels per segment clas-
sified to crop ¢, analysis district a, and land use stratum
5.

The estimated variance is
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where r,,, is the sample correlation between y;, . and Xj,,.

F. State-Level Accumulation

The final step of Landsat analysis is the combining of
all of the estimates (one for each post stratum) into a state-
level estimate of the area of the desired crop.

Let ¥, be the final state level estimate for the acres of
crop c.

Then
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M, m; are as previously defined with subscript fused
to distinguish from strata with Landsat cov-

erage,

)A’,\”.(. is as defined earlier,

Yife is the acres reported to crop ¢ for segment j in
the non-Landsat post stratum f,

S, is the number of land use strata in analysis dis-
trict a,

A is the number of analysis districts, and

L is the number of land use strata in the area

where there is no Landsat coverage.

The estimated variance is
A S i
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G. Evaluation of the Landsat Estimate

Landsat data are used as supplemental information to
improve the precision of the area estimates obtained from
the JES. Unlike area frame construction, the effectiveness
of this use of Landsat data can be measured. The measure
used is the efficiency of the Landsat estimator relative to
the JES direct expansion estimator. This relative efficiency
(RE’) is defined as the ratio of the variance of the direct
expansion to the variance of the Landsat estimate. Equiv-
alently, this is the factor by which the sample size would
have to be increased to produce a direct expansion esti-
mate with the same precision as the Landsat estimate.

_
S V(ry

Recent studies have suggested possible bias in the Land-
sat regression estimates. During 1985 SRS is conducting
research in two mid-western states to examine this prob-
lem.

II. 1980 KaNsas PiLoT StupY
A. Objectives

The first step in implementing and expanding the above
procedures for land-cover research was to determine if
land-cover information could be obtained using JES tech-
niques and methodology. A pilot study was conducted in
Kansas using 86 SRS segments from nonagricultural
strata. The objectives were 1) test the feasibility of having
regular enumerators use land cover definitions to classify
parcels of land, and 2) obtain preliminary variance infor-
mation for direct expansions of cover types in the non-
agriculture strata.

B. Selection of Land Cover Definitions

The short-time period between the initiation of the
AgRISTARS program and this study required that land-
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cover definitions be used that were readily available and
accepted by other land classification systems. Because of
these restrictions, the land-cover classification system set
forth in USGS Professional Paper 964 [1] was used as a
basis for defining the land-cover codes. This resulted in a
scheme which combines the Level I and Level 1I classifi-
cation system in the above paper.

Using these definitions, the enumerators went to each
of the 86 segments during August and observed the land
covers present. Everything inside a segment was placed
into one of the defined land covers. The minimum map-
ping size was 1 acre.

C. Results

Enumerators did an excellent job in conducting the sur-
vey and in many instances extracted more information than
necessary. Analysis of the land-cover data indicated that
some land-cover terms were too broadly defined. This in-
dicated a need for increasing the number of land-cover
types for enumeration and a better definition of these
terms. Direct expansion estimates were obtained using the
86 segments and the variances examined. Specific conclu-
sions were difficult to make due to the small sample sizes.
The results did indicate that the JES may have the poten-
tial for providing state-level acreage estimates for several
NONCrop cover types.

IV. 1981 KANsas Stupy
A. Objectives

The objectives for the 1981 study were to 1) produce
land cover classifications and acreage estimates for the en-
tire state using ground-gathered and Landsat MSS data;
2) incorporate the land-cover survey into the SRS’s reg-
ular June Enumerative Survey; 3) produce statistically
based regional land-cover estimates and maps, and 4) de-
termine if land-cover information obtained from this study
could be useful to federal and state agencies.

B. Land Cover Definitions

The approach taken in developing terms and definitions
for the 1981 survey was to solicit inputs from federal and
state agencies that gather, analyze, and/or disseminate
land-cover information within Kansas. Definitions used for
surveys conducted by the Soil Conservation Service and
Forest Service were added to this study. Seventeen land
covers pertinent to the landscape of Kansas were defined
and are presented in the left-hand column of Table II.

C. Ground Data Collection

The land-cover ground data were collected during the
JES and were considered a part of the regular crop survey,
Ground data for crop and noncrop cover types were col-
lected in 435 sample segments. The addition of land cov-
ers required some modification to JES forms. A training
school was held prior to the survey to familiarize enumer-
ators with the land-cover terms and to discuss enumera-
tion techniques. After collection, the ground data went

—
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TABLE 11
DiRECT EXPANSION AND REGRESSION ESTIMATES FOR LAND COVERS WITHIN
KANSAS

DIRECT EXPANSION REGRESSION

Land Cover Categories Estimate Standard Estimate Standard Relative

(Acres) Error (Acres) Error Efficiency
Cropland 28,349,166 487,446 28,008,390 363,571 1.8
Permanent Pasture 3,145,220 525,561 2,970,378 486,070 1.2
Rangeland 16,452,963 752,294 15,828,804 466,533 2.6
Farmstead 404,467 22,710 416,270 19,521 1.4
Forest (Not Grazed) 935,398 151,104 1,009,638 70,832 4.6
Forest (Grazed) 693,086 194,579 744,089 98,132 4.0
Wooded Strips 481,442 52,665 480,958 48,840 1.2
Residential 461,235 69,559 450,713 33,838 4.2
Commercial/Industrial 116,629 28,391 89,438 18,139 2.4
Transp. Commun., & Util. 503,095 132,872 506,319 123,320 1.2
Other Urban 143,434 29,072 145,683 27,288 1.1
Stripmines, Quarries,

G. Pits 137,775 56,683 109,434 29,026 3.8
Sand Dunes 4,818 1,833 - - -
Ponds {<40 AC) 199,557 28,074 182,520 18,715 2.3
Lakes (>40 AC) 183,447 17,983 - - -
Rivers 138,298 72,672 131,717 65,913 1.2
Transitional 78,742 41,249 - - -

through a quality-control process and were digitized into
computer readable format.

D. Landsat Data

The 1981 Landsat data obtained for this study are shown
in Fig. 1. The earliest date was April 25 and the latest
August 31. These data were registered and classified ac-
cording to the procedures described in Section II.

E. Results

The direct expansion (ground data only) and regression
(ground and Landsat data) acreage estimates, for the sev-
enteen land covers within Kansas are given in Table II.
The relative efficiency of the regression estimates are also
listed.

The direct expansion standard error is high for several
noncrop cover types. One reason for this is because the
JES sample is designed for an agricultural survey. As in-
dicated in Table I, most of the 435 sample segments fall
in agricultural strata 11, 12, and 20, while very few fall in
the remaining nonagricultural strata. One method for low-
ering the standard error of noncrop covers is to select more
segments from nonagricultural strata. For example, pre-
cision of the estimates for commercial/industrial and other
urban categories can be improved by selecting additional
samples in strata 31, 32, and 33 and enumerating these
segments during the JES. This can be accomplished with
minimal effort because, as shown in Table I, the popula-
tion for each stratum has been defined.

The standard errors for the regression estimates were
lower than the direct expansion for all cover types. For
example, the regression standard error for grazed forest,
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not grazed forest, and residential was less than one-half
the direct expansion standard errors. The regression stan-
dard errors were lowered for commercial/industrial and
other urban, but additional improvement in these esti-
mates will have to come from increasing the sample size
or from the use of multitemporal Landsat data.

A state-level land-cover classification must be produced
in order to derive these regression estimates. Therefore,
this classification can be used to obtain land cover map-
type products and associated acreage counts for any land
area within the state whose boundaries are recorded in a
computer-readable format. Map-type products of several
counties were obtained from an electrostatic plotter and a
cathode ray tube display using NASA/NSTL’s software
[10].

In summary, the feasibility of using USDA SRS crop
area estimation methodology to obtain land-cover classi-
fication products and area estimates was demonstrated in
Kansas. The 1981 Kansas study indicated that some non-
crop cover types were poorly estimated using the current
JES sample allocation. Incorporating the collection of
land-cover ground data with the JES eliminates the need
for two separate ground data activities.

V. 1982 StuDpY

Based on analysis of the Kansas results, another state-
level land-cover study needed to be conducted in a more
diversified geographic location. Missouri was selected for
the next study, and changes were made to the JES sample
allocation and enumeration procedures. Ground data were
collected, but the study was cancelled due to inadequate
Landsat data. Only 25 percent of the state had adequate
Landsat coverage due to cloud problems throughout the
summer and fall months.

VI. 1983 MISSOURI STUDY
A. Objectives

During 1983 the SRS wanted to estimate several crops
within Missouri using JES and Landsat data. Other fed-
eral and state agencies expressed interest in classifying
and estimating several noncrop covers, especially forest
categories. To meet these various requirements, the fol-
lowing objectives were established.

1) Provide SRS with area estimates for winter wheat,
rice, cotton, corn, and soybeans from a combined crop
and land-cover Landsat analysis.

2) Provide classified data tapes and area estimates of
defined Missouri land covers.

3) Determine the additional cost of doing land cover
analysis with crop analysis.

B. Land-Cover Deﬁ}lirions

Potential users of SRS-generated land-cover data were
contacted and asked to determine what land-cover types
should be included in this study. The final list of land cov-
ers are presented in the left-hand column of Table IV
(given later).
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land cover study.

C. JES Sample Size

Forest is an important and extensive land cover in Mis-
souri and several agencies expressed interest in this cover.
The results from previous years indicated that the sample
allocation of 450 operational JES segments did not ade-
quately sample forest land, especially ceniferous forests.
To provide better ground data, 67 segments from the non-
agriculture strata were added.

D. Landsat Dara

Two dates of Landsat data were used to enable the es-
timation of crop acreages for a spring crop (winter wheat)
and fall crops (corn, soybeans, rice, cotton) and improve
land cover classification results. Fig. 2 shows the analysis
districts and Landsat dates which comprised the multitem-
poral data set. These data sets were created by overlaying
the fall imagery onto the spring imagery. Only spring data
were used to produce regression estimates for winter
wheat.

E. Crop Acreage Results

During the first two weeks in December, the SRS’s Crop
Reporting Board was provided direct expansion and
regression estimates for all five crops. These estimates
were timely input data for the SRS’s year-end crop acreage
reports. Table 111 lists these estimates and associated sta-
tistics.

Several points should be made concerning thesc regres-
sion estimates. The relative efficiencies for the cstimates
of winter wheat, corn, and soybeans was less than antici-
pated. In 1983, USDA implemented the “‘Payment in
Kind™ (PIK) program, which enabled farmers to enroll
acreage normally planted in wheat in a program that would
guarantee the farmer a specified price for wheat for not
planting the acreage. This program was implemented after
the winter wheat was planted, which caused some confu-
sion between the ground and Landsat data.

The improvement in the precision for corn and soybeans
are-poor considering the use of multitemporal data. Part
of the loss in efliciency was due to the lack of fall Landsat
data in a large corn and soybean producing arca (area H
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TABLE 111
PLANTED ACREAGE ESTIMATES FOR MAJIOR CROPS IN MISSOURI

Multitemporal Landsat digital data analyzed in Missouri.

DIRECT EXPANSION

LANDSAT REGRESSION

Standard Standard Relative
Crops Estimate Error Estimate Error Efficiency
Winter Wheat 2,229,000 174,000 2,314,000 131,000 1.8
Cotton 62,000 35,000 75,000 11,000 10.1
Rice 128,000 54,000 149,000 27,000 3.9
Corn 1,762,000 140,000 1,555,000 110,000 1.6
Soybeans 5,556,000 303,000 4,961,000 239,000 1.6

in Fig. 2). The regression precisions for cotton and rice
estimates improved dramatically. These are specialized
crops grown only in the Missouri “Boot Heel™ region.
The JES is not designed to estimate crops concentrated in
a small area of a state and this is shown by the high stan-
dard error of the direct expansion estimates for these two
Crops.

F. Land-Cover Results

The direct expansion and regression estimates for land
covers are listed in Table IV. Potential users of the land-
cover data who participated in defining terms for this proj-

ect were interested in the outcome of the forestland esti-
mates. The latest state survey conducted by the Forest
Service was in 1972 [13]. Table V is a comparison of SRS
and FS estimates for these various categories. The “‘un-
productive” and “‘reserved’ categories are special break-
downs by the FS for hardwoods and conifers. This study
was not able to provide estimates for these specialty cat-
egories, but the acreages associated with these categories
are contained in the estimates for hardwood, conifer, or
conifer-hardwood.

G. Project Costs

A specific objective of the 1983 study was to determine
costs for the various crop and land-cover estimates. The
1983 cost for conducting the JES in the 450 operational
segments for crops and land covers was $43 788. This was
an ll.5-percent increase when compared to the average
JES costs of 1980 and 1981 when no additional land covers
were enumerated. Some of this increase is due to an in-
crease in salaries. Total cost for Landsat tapes, prints, and
transparencies was $21 240.

Person hours, CPU (in minutes), and computer costs



TABLE 1V
LAND COVER DIRECT EXPANSION AND REGRESSION ESTIMATES FOR MiSSOURI

DIRECT EXPANSION REGRESSION
Standard Standard Relative
Cover Estimate Error Estimate Error Efticiency
Hardwood 10,499,754 §29,061 11,139,532 443,461 1.4
Conifer 181,568 43,325 187,650 21,782 4.0
Conifer-

Hardwood 1,149,738 247,934 1,148,447 245,461 1.0
Grazed Forest 2,884,732 297,743 2,705,512 299,958 1.0
Brushland 1,286,435 143,382 1,318,875 138,723 1.1
Row Crops 8,539,851 361,734 7,742,383 246,344 2.2
Sown Crops 2,391,119 175,337 2,547,815 127,349 1.9
Idle/cropland 2,100,277 163,574 2,015,582 139,389 1.4
Hay 3,110,286 197,393 2,980,606 171,303 1.3
Cropland/

Pasture 1,434,850 234,325 1,245,797 149,895 2,4
Other Pasture 7,698,684 423,699 7,624,049 380,381 1.2
Idle Grassland 1,403,300 140,411 1,331,205 133,127 1.1
Farmsteads 385,091 23,474 387,434 23,515 1.0
Residential 962,910 105,045 823,018 95,628 1.2
Commercial 328,253 81,590 305,556 41,463 3.9
Other Urban 140,229 39,114 122,873 30,365 1.7
Transportation 296,577 53,422 288,724 53,398 1.0
Lakes 307,755 118,936 265,246 108,556 1.2
Ponds 84,270 17,563 84,438 13,130 1.8
Rivers 129,922 43,887 103,729 23,368 3.5
Disturbed Land 44,223 17,7141 42,455 16,020 1.2
Transitional 183,379 137,668 - - -
Wetlands 106,830 87,386 - - -

*Fields that are double cropped are included in the estimates for each crop.

TABLE V
COMPARISON OF 1983 FORESTLAND ESTIMATES FROM SRS LANDSAT STUDY
WITH 1972 FOREST SERVICE ESTIMATES

Lategory SRS ks
Hardwood 11,139,532 11,619,900
Con' fer 187,650 204,300
Con- fer-Hardwood 1,148,447 540,500
{Unproductive) {included above} 298,300
(Reserved) (included above) 256,100
TOTAL 12,475,629 12,919,100
Grazed Forest 2,705,512 2,803,100

were recorded for various steps required to process the
Landsat data and to generate regression estimates. These
steps and associated costs were tracked separately for
winter wheat, summer crops, and land covers.

In this study, winter wheat was analyzed using unitem-
poral spring Landsat data. A second analysis using mul-
titemporal spring and fall data was done for summer crops
and land covers. Table VI presents the total resource re-
quirements for Landsat analysis. Analyzing and estimat-
ing the 23 land covers with summer crops required 51 per-
cent more person hours and a 62-percent increase in
computer cost. A majority of these costs were incurred
during the acreage estimation processes. Since this study
these estimation programs have been rewritten which
should reduce future costs of producing land-cover esti-
mates.

In summary, 23 land covers and five major crops were
classified and estimated. The classifications were saved on

—
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TABLE VI
TOTAL RESOURCE REQUIREMENTS FOR DIFFERENT LANDSAT ANALYSES USING
A CoMMON TEST AREA

CPU Computer
Category Person-hours (min.) Cost
nitemporal Winter Wheat 773 R
Multitemporal Summer Crops 467 1,294 12,634
Multitemporal Summer Crops and Land
Covers 707 2,380 20,481
TABLE VII

CoST FOR 1984 ARKANSAS CROP AND LAND COVER PROJECT

MATERIALS
Landsat Data - $17,000 ($730x20 scenes + B/W Prints)
Blank Tapes -~ $ 2,000 {§25 x 80)

DATA PROCESSING

Martin Marietta - $2,000 (ground data)
ARPANET - $4,000 (Electronic data transmissions)
1BM 33-30 - $2,000 (tape reformat & data editing)
DEC-10 - $36,000 (multitemporal overlay, digitizing, registra-
tion, signature development)
CRAY-1S - $8,000 {ful) scene classification)
PERSONNEL
Data Analyst - $25,000 (1/2 MYE at GS13)
Support Staff - $10,000
TOTAL $106,000

tape and the utility of the classified data are being assessed
by potential users of the land-cover data. Increasing the
sample allocation of the regular JES provided improved
estimates of forest categories due to more samples in the
forest strata. Cost figures were kept for all analysis steps
and the additional cost of doing land cover was deter-
mined. The increase in precision of crop and land-cover
estimates, when using multitemporal Landsat data, was
not as high as originally anticipated. Research is needed
to determine if the addition of land covers had an adverse
affect on the classification results of summer crops.

VII. 1984 ArkaNsas STupy
A. Objectives

Land-cover results obtained from the Kansas and Mis-
souri studies generated interest within the Soil Conser-
vation Service and Forest Service. These two agencies
along with the SRS jointly defined and funded a crop and
land-cover study in Arkansas. The overall objectives of
this study were to 1) utilize SRS’s ground data collection
and Landsat analysis techniques to produce a crop and
land-cover classification for the entire state and 2) provide
this classification on tapes so that each agency could in-
dependently utilize the land-cover data in their respective
programs.

The SRS used the classified data to obtain 1984 planted
acreage estimates for cotton. rice, soybeans, and sor-
ghum. SCS will use the classified data in their next na-
tional resources inventory and FS will utilize the data in
their forest land inventory.

B. Project Costs

The additional costs over normal JES costs for con-
ducting this project are given in Table VII. These costs
were evenly divided between the three agencies.
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TABLE VIII
DIRECT EXPANSION AND REGRESSION ESTIMATES FOR M AJOR CROPS IN
ARKANSAS

DIRECT EXPANSION LANDSAT REGRESSION

Standard Standard Relative
Cover Estimate Error Estimate Error Efficiency
Cotton 442,000 94,000 458,000 61,000 2.4
Rice 1,161,000 118,000 1,133,000 69,000 2.9
Soybeans 4,124,000 204,000 3,989,000 136,000 2.3
Sorghum 671,000 85,000 559,000 60,000 2.0

C. Land Cover Definitions

Representatives from the three agencies met and estab-
lished the terms and definitions for the survey. A listing
of the land cover classification categories are shown be-
low:

Hardwood Forest
Mixed Forest
Conifer Forest
Clearcut Forest
Barren Land
Urban

Water

D. Landsat Data

Native Pasture
Improved Pasture
Row Crops
Sown Crops

Hay

Other Land Use

Multitemporal Landsat data were obtained for most of
the state. Conifers are an important land cover; therefore,
late fall 1983 and winter 1984 were obtained for the first

date of the multitemporal data set. The second date of
Landsat data were obtained from summer and fall 1984,
Most of the crop land is located in the eastern half of Ar-
kansas. To meet the SRS due dates for crop estimates,
castern Arkansas was analyzed first. Fig. 3 delineates the
analysis districts and Landsat dates.

E. Results

The direct expansion and regression estimates for the
crops generated for the SRS are given in Table VIII. These
estimates were produced and delivered on December 1 in
time for the year-end crop acreage report. The land-cover
estimates and classified tapes for the SCS and FS will be
generated during the first quarter of 1985. Therefore, these
results were not available for inclusion in this paper.

VIII. ConcLusIONS

Five years of research were conducted in developing and
evaluating techniques for obtaining large-area land-cover
classifications and area estimates. The remote-sensing
techniques developed by the USDA’s SRS for improving
crop area estimates formed the basis for this research. The
overall objective of applying this technology for the pur-
pose of obtaining land-cover information was met. The
following are specific conclusions from the land-cover re-
search.

1) SRS’s JES provides a vehicle, on an annual basis, for
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obtaining ground truth data for land cover surveys that
utilize Landsat data.

2) For classification and estimation purposes the oper-
ational JES segment allocation does not adequately sample
many noncrop cover types. This can be corrected by in-
creasing the sample size in strata for which the land
cover(s) are located.

3) The SRS’s deadline for timely crop area estimates
can still be met when noncrop covers are included in the
survey and Landsat analyses.

4) Two products can be obtained from the techniques
discussed in this report: a) acreage estimates with mea-
sures of precision and b) classified Landsat data contained
on tapes.

5) The utility of classified Landsat data for land-cover
studies by other federal and state agencies is still being
assessed.

6) Large increases in computer time and person hours
were incurred when analyzing noncrop covers with crops.
This can be offset by muitiple agencies sharing the cost of
a crop and land-cover survey.
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