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PROPORTION IN MIXTURE DENSITIES]

Virgil R. Marco, Jr., and Patrick L. Odell
University of Texas at Dallas
Box 688, Richardson, Texas, 75080

I. INTRODUCTION

Data taken remotely by multichannel sensors on a near earth sate]]ite
~ can be modeled as a collection of multivariate data points. In the
application [1] that motivates this paper each px1 data vector repre-
sents a measure of reflectance from (1.1) acre location on the surface of
the earth. Each of the p elements of the data vector is a reflectance
measure at a preassigned wave length of light. Conceptually, each crop
class defines a set of reflectance measures that can be modeled by a
multivariate unimodel probability density function unique for each crop
class.

Let there be m-crop classes and let the p.d.f.
‘Pi(x) - pi(x;“i’zi) i=1,...,m (1.1)

denote the distribution of the random data vector X aiven that the
measurements were made on the ith crop class, Hi’ i=1l,...,m. Also

let the multivariate mixture p.d.f.

]This research was supported in part by the National Aeronautics and
Space Agency, Johnson Space Center under Contract NAS 9-14689-95.



fi .
p(x) = ] ops(x) (1.2)
=1
m
such that a, 0 i=1,2,...,m and ] o, =1 denote the distribu-
i=]

tion of the mu]tivariatg observations given that the data is unlabeleld,
that is modeled by p(x) in (1.2).
Definition 1. A random sample is said to be unlabeled if the random
vectors are selected from a population defined by (1.2).
Definition 2. A random sample of unlabeled data is said to be classi-
fied data if, according to some classification rule R = (Rl’RZ""’Rm)’
each vector in the sample is assigned to one of the (crop) classes
H], Hz,...,Hm 5
Definition 3. A random sample of unlabeled data is said to be verified
data if each vector is classified as being from the true subclass Il
for some i = 1,2,..., or with probability one. ,

Verified data is classified data in which there is zero probability
of misclassification.
Definition 4. A random sample is said to be labeled if it is selected

i population is known.

from a single class I and the identity of it
The difference between verified and labeled data is that the.verified
data must be labeled a posteriori while the labeled data is labeled prior
to taking the sample. In both types of samples, one knows with certainty
the label of the population from which the samples came.
The purpose is to estimate the vector or proportions o =

(a],az,...,ap)T which defines the function p(x) in (1.2). If a,



denotes the proportion of vectors in the mixture from class Hi and N

the total number of vectors in the region, then
A'i = (].]) N o.,i (].3)

is an estimate of acreage of crop class Hi , as a function of an estimate
of the proportion &i and as . Hence, our interest is to estimate
well.

Three different types of data are available for estimating the
elements of o arise naturally in the application involving remote
sensing from space. They all are maximum Tikelihood estimators for «

using

(a) unlabeled data,

(b) classified data, or

(c) verified data, respectively.

The cost of acquiring unlabeled data is less than the cost of acquiring
classified data which is in turn less than the cost of acquiring verified
data. The computation of sample size allocations when samples from more
than one type of data are available arises naturally. In the case of
sample design one can control the type of data to be selected and the
optimal mix of sampling can be accomplished. It is important to note
that one always has available a random sample of unlabeled data; hence

if Cu denotes the cost per unit of taking unlabeled data then

Cv = Cu < c, = KVCu

CC = Cu + C. = chu



are the per unit cost where (, and C  are the costs of classifying
and verifying in unlabeled data point respectively. The values Kv and

K~ are multiplicative constants that give in addition to an additive

c
model a second multiplicative representation of the costs.

One would expect Cu < Cc < C, 1in most space science applications.

v
It is important to note that in the space application unlabeled data is
available as basic for two of the three methodologies for estimating o ,
~ and except for missing data that the totality of unlabeled data is

also available. The cost of machine processing every vector is a
realistic limiting factor for unlabeled and classified data while the
cost of resources to visit each location for verification is the major
limiting factor for obtaining verified data.

However, it is not intuitively clear which type of data contains
greatest amount of information for estimating a for a fixed sample
size. The purpose of this paper is to compute and order with respect
to magnitude the information content of the tﬁree types of data, and
discuss the implications of that ordering for the space application.

The term information content of the data is defined as the inverse

of the Cramer-Rao matrix lower bound for unbiased estimators for a .

This is the matrix form of Fisher's Information.



IT. INFORMATION CONTENT OF VARIOUS TYPES OF DATA

2.1 Fisher's Information: Let X denote a random observation from a
multivariate (p-variate) population whose p.d.f. is defined by (1.2).

If we denote the parameter vector by o = (a],...,a )T then by the

m-1
usual theory (Cramer [2], Rao [3]) the (m-1 x 1) random vector

o it _ (2.1.1)

n
9 a

is such that

E[S] = ¢
and
T azﬂnggx! ' aztng(x} def
E[SS']=-E [ "% 5o = - E {Ba. T = Aa) (2.1.2)
1 J

where A(a) denotes Fisher's information for o contained in the

sample X .

if X1,...,X denote a random sample from a multivariate population

n
whose p.d.f. is defined by (1.2), then the Fisher's information for «

contained in this sample can be shown to be
Tq .
E[SS]=nAa) . (2.1.3)

Furthermore, A-](a) is the Cramer-Rao lower covariance matrix bound
for unbiased estimators of the vector o . That is,

if & is any unbiased estimator for a , then the covariance matrix A(a)

will never be less than A-](a) . Note that if A and B are fwo positive



definite matrices of the same size and A - B 1is positive semi-definite
then we say B is less or equal to (when A - B = ¢) than A .
From (1.2) it follows that

m-1

DRCENORY LR R NG (2.1.42)
e !

p(x)

Z o [p (x)-p,(x)] + p(x) . (2.1.4b)
551

It follows from (2.1.1) that
p.(x) - p(x)

J
m
£ By

J

py(x)-py(x) .
= e ’ (2:1.5)

and

35 [p;(x)-p,(x)1lp, (x)-p,(x)]

= - (2.1.6)
Sy [p(x)7
Therefore, the information for a is given by
def 95"
AMa) = :-E[a—l] t’ . (2.1.7)
ay ’

(m=-1)x(m-1)

Fisher's information can be seen as the information contained in a

random variable X ébout the parameter o . This should be interpreted



as the extent to which, on the average, the accuracy of estimating the un-
known parameter a can be increased as a result of the observed value x
of the random variable X .

In the ensuing sections of this paper, information for o con-
tained in unlabeled, classified and verified data, defined earlier will
be ordered.

Above, information is defined in terms of unbiased estimators.

2.2 Likelihood Function. If X1,X2,...,Xn denotes a simple random sample

from p(x) defined by (1.2) then the likelihood function is

Lu(X],...,X ) =

n
n g p(X.) (2.2.1a)

: [ o ] (2.2.1b)

the 1ikelihood function for unlabeled data.

Let X],XZ,...,X denote a simple random sample from p(x) which

n

has been classified according to a rule R = (R],Rz,...,R , then each

)
data vector Xk » k =1,2,...,n generates through classification new

data defined by the random variable Yi(xk)’ i=1,2,...,m , where

Yi(xk) 1 if X, € Ri (2.2.2)

k

0 if Xk £ Rk

whose joint p.d.f. is for each Xk a multinomial



m
ny oy Oy (X)) = g | (2.2.3)

[}
3
——d
R
(S8
—
=]
o
.
_—~
x
SN
a
x

the probability of classifying I(Xk) in Hj .
The likelihood function for classified data follows from (2.2.3),

and is

b= L(Y](X]),...,Ym(x]);...;Y](Xn),...,Ym(Xn))

C
n m Y.(X,)
=0 1 g i‘tTk
k=1 i=1
n m m Yi(xk)
= 1 I Y a.P(il])
k=1 i=1]j=1
) h (2.2.4)
= 1 a:P(i]J) 2.2.4
i=1 | j=1 J ]
where
n
N = g Y. (x,) (2.2.5)



the number of sample vectors in Ri .

tet I1(X1)’I2(X2)""’In i

(X_) denote a random sample whose labels

are known with probability one, that is, the data has been verified, then

T(L) =1 if I, e
=0 if Ik £ Hj
then the p.d.f. of T = (T],...,Tm)T for each Ik is
] " ) m : ]ti(Ik)
9eeo s = H Q.
T]""’Tm 152 n i=1

The Tikelihood function of a verified sample is

Ly = LTy (1)) aee T (1) 55Ty ) e aT (1))

v
n om T-(1,)
= T H[ai]1k
k=1 i=1
m n.
= 1 [ai] !
i=1
where
T oT.(1)
nER= Tl ) 5
T2y Tk

the number of individuals in the sample from Hi -

2.3 Information for o Contained in Unlabeled Data.

(2.2.6a)

(2.2.6b)

"{2.2.7)

(2.2.8)

Let the following denote the information for o contained in

unlabeled data: X o X ¢

R



(m=1)x(m-1)

Using (2.1.2), (2.2.1b) and synthetic division, it can be shown that

10

(2.3.1a)

for i =3
. ai+u o m-1
M3 -(aiam ) 1o (ogtan) By, - o kZ] %54
k#i
a m=1
- L z o
a]+:am =1 J Jm
j#i
and for i # j
u V] ’ mel
_Aij - E; 1 - (ai+am)Bim - (aj+am)8jm - kg] ak}3m+amBij (2.3.1b)
k#1,J
where

P.
_ i
0 < Bij -[ —FGA}— dx <1 (2.3.1¢c)

and Bjk = Bkj , forall j # k.

When Bij =B,

My(@) = n(1-8){A};} (2.3.2a)

where
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a.ta
pAYo = 1M g o= (2.3.2b)
LV H
m

When m = 3, the p.d.f. of a random variable X from a mixture

population (unlabeled data) is

p(x) = G1P1(X) + agpy(x) + agp4(x) (2.3.3a)
where

o + 0 & ag =] (2.3.3b)
and

oy Z_O > Gy > 0, ay > 0. (2.3.3c)

It follows from (2.3.1a) - (2.3.1c) that the information contained in

unlabeled data is .given by

u u
Ay Ay
Au(a) =
u u
ARy,
where
(1-0,) | a,a a0
Au = 2 1 - 2-3 B_|2 - (]-0,2)8]3 = .,Il_z. 823 (2.3.4a)
no %3 =% -ay 23 |
(1-a,) | a0 o
u _ 1 143 1%2
Fr el R el PR el ER I WE (2.3.4b)
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N =l[1+a38 - (1-0,)8 1 . (2.3.4c¢)

127 "1 T g 12 - (T-op )8

13 23

Note that one minus (2.3.1c) can be regarded as a distance measure.

h h

That is, when the it and jt

populations are fc]ose together":or "far
apart" then (1'Bij) will be small or 1arge,.respective1y. In fact,
several investigators [3], [5], [6] , have employed a form of (2.3.1c) -
as a probabilistic distance measure for feature selection. While Cover
and Hart [8] have shown that zaiajBij corresponds to the a§ymptotfc
nearest neighbor probability of error, this motivates a possible
estimating procedure (see section 4. ) using a nearest neighbor procedure.
It is of interest to consider the behavior of Bij in terms of a

popular distance measure as the distance between the ith and jth popula-

tions diverges. This behavior is described in Lemma 2.3.1.

Lemma 2.3.1: Let the distance measure between the ith and jth populations
be given by

| p;(x)

bys = [p, (x) - pj(x)] log EET;T dx . (2.3.5)

If Aij ~x forall 1 # 3, then Bij +0.
Proof: Toussant [4] has shown that
1
A..\~-
1(43)° %
OfBijfz(4> :

Note that as Aij - o then

1
(3)°F ~o
! .
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Note that (2.3.5) is known as the divergence between two distributions.

For normal distributions with equal covariances, (2.3.5) reduces to

the well known Malhanabis distance.

The f011owing example can clarify some of the concepts introduced

above:

Example 2.3.1:

X 5, 0<x<1 x=1, 1<x<2

P](x) = {2-x, 1<x<2 , pz(x) = { 3-x, 2<x<3 , p3(x) =

0 , o.w. 0 , o0.w.

p(x) = apy(x) + a,p,(x) + azpa(x)

_ _ _ 1
Let .a1 = a2 = a3 =3 then

4

P, (x)p,(x)
B - 1 2 dx = (2-x) (x-1) d
12 : p(x) & f%—(z-#x-]) %

2
=[ 3(2-x) (x-1)dx
1
2
/(3x-2-x2)dx
1

1
2

3
23 3/ (3-x)(x-2)dx =
2

o
]

N~ N o

X=2, 2<x<3
4-x, 3<x<4
0 , o.w.
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To conclude this section, a result that follows from Lemma 2.3.1

is given.

Theorem 2.3.1: Let Aij be a distance measure defined by (2.3.5).

If Aij + o for all i#j then ,

Au(a) - Av(a) = n{Agj}

where
a.to
LO) for i = j
(o 5[0 /
im
Y-
1 1 )
o for i #j .
m

Proof: Using equations (2.3.1a) - (2.3.1c) and letting Aij + » , the

Theorem follows from Lemma 2.3.1.
Note that (2.3.2a) can be written as

A, (a) = n(1-B)A(a) | (2.3.6)

The information matrix Av(a) is the information for o contained in
verified data. This is a topic of the next section.

2.4 Information for o Contained in Verified Data

Let Ti(Ik) be defined as in (2.2.6a). It follows from (2.2.7)

that
m ni
£n LV = £n [igl a; ]

n; £n[a;] , (2.4.1)

n
ne--13

m=1 m-1
izl n; £n[ai] +n n - jgl aj] .
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m
since ) a, =1.
=1

9 4n L

From (2.1.1) then Sj'= ™ it follows that
J
3 4n L
_ Vo o_ oV
Sv_ aa {Sj}
where
2 [ 7
S, = — [ n. £n a.} (2.4.2)
J aaj =y ! i
n.: n
i AT
J n
In matrix notation
S, = Aqn ’ (2.4.3)

where the (m-1)xm matrix A, is given by

[ 1
- g D 0 0O -=—
(l-l O.m
1 ol 0 0=e
A = "2 *m
& . S (2.4.4)
L] 0 L ]
00 0...004— -1
R %m-1 c’lm__
and
= T
n = (n],...,nm) .
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Note that by the Cramer-Rao theory the expected value of S is the

zero vector which we will verify directly.

E[Sv] = E[Aaﬂ
= AaE[n]
=n b, a since s multinomial (n,aj) for 3 =1,...,m.
Now,
i .
Loo..o -+
1 m * 0
0 Lo..o o
1 %m . = * (2.4.5)
Aaa = . . . 3 = ° = Q
1
0 e e o o 0 e Qa 0
L %n-1 amJ o
Thus,
E[SyJ=¢ . (2.4.6)

The information matrix for o when sampling from verified data
can now be computed by finding the covariance matrix V(SV) of Sv

using (2.4.3) and (2.4.6), that is,

A, v(n) Al (2.4.7)



where V(n)

multinomial vector variate; that is,

V(n) = n[Diag(a],...,am) - aaT]

From (2.4.7), (2.4.8) and (2.4.5),

. Ty A IF
Av(a) Aa[D1ag(a],...,am) - oo ] By

. T
Aa[D1ag(a],...,am?] A,

For exemplary purposes consider the case when

b -2
1 3
A =
(o1 1 1 ?
e
r,1 1
% %3 93
AT W TS N
93 %5 O3
a]+a3 1
9% 93
1 %%
@3 O3

is the covariance matrix of the n =

17

(n1,...,nm)T , a

(2.4.8)

(2.4.9)

m= 3, then since

(2.4.10)

Then we verify this sample generating the sample
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. , . T
T],...,Tn , where Ti (T11""’Tim) :
For estimating a, should we disregard the unlabeled sample or consider
the joint sample (Xi’Ti) s 1 =1,...,n? The joint p.d.f. of

(X1’T'l) 9 i =1,...,n 15

plx, ftedplt] 5 %,

px;>t;) 14 i i

i - (t11""’tim)

tij m tij
[pj(xi)] _H ]

[o;
j=1 4

"
W= 3

J

SR
[a; ps(x)]1 | (2.4.11)

1]
n43

j=1

To answer the above question consider the following theorem.

Theorem 2.4.1: The amount Qf information for a contained in the obser--

vation (xi’ti) is equal to the information for « contained in the

observation t, alone.

Proof: Taking the logs of both sides of the equality in (2.4.11), we see that

Now taking derivative with respect to aj we have

m
3 £n p(x,,t.) o # j§] ki 40 e _ 3 &n o(t;)
) o5 ) os ) o5 :
Therefore,
. aZan(xi,ti) . azﬂnp(ti)
9 ag 8 % )

J
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Thus, it follows from Theorem 2.4.1 that for estimating o« the
joint sample (Xi’Ti)’ i=1,...,n contains no more information than

the sample T.',...-,Tn alone.

2.5 Information for o Contained in Classified Data.
Using the likelihood function given in (2.2.4) for a random sample

‘defined in (2.2.2), it follows that

m

L= iZ] N; £n g,

m-1 : m-1 m-1
= iZ] My €n g, + N - igl N, Jen 1 - _Z 95

since

)

g. = 1.
izl

m
Also, from (1.3.6) and } o, = 1 that
i=1

m-1
9; =_Z]Gj[P(iU) -P(Hm)] + P(i|m) (2.5.1)
J:
and
aa;f P(i[j) - P(i[m) . (2.5.2)
c 9 £n LC
From (2.1.1) and S’ = ——— it follows that
J ] “j
c m 1
s¢= 7 N, —[pmj) - P(ilm)] (2.5.3)
b VY

or in matrix notation
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_ el
Sg = Mgglh 6 (2.5.4)

where the (m-1)xm matrix [Aﬁ]T is defined by its elements

a*is = PUI3) - P(i]m) , (2.5.5)
Vg1 00 ... 0

0 9o o ... 0

G = ¢} : S ’ . : 9 (2.5.6)
0 . gm

and
. _ T ‘
N = (N],Nz,...,Nm) . (2.5.7)

Note that by the Cramer-Rao theory the expected value of SC is

the zero vector which we will verify directly.

(s ] = Elax;;)T 67T R
= [o*;;17 67 LD
= (#1767 (Ng) (2.5.8)
where
g (91,92,-..,9m)T
or
g =G | (2.5.9)

where
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J=(1,1,....07T.
It follows from

P(il3) =1
1

I~ 3

1

for j =1,2,...,m that

[A*ij]d =9 (2.5.10)

and in turn from (2.5.8) and (2.5.9) that
= -1 _
E[Sc] = N[A*ij] G G =9 ., (2.5.11)

The covariance matrix V(Sc) of Sc can now be computed using

(2.5.4) and (2.5.11), that is
v(s,) = tA*ij]T TN (2.5.12)

where V(N) is the covariance matrix of the N = (Nl’NZ"“’Nm) , a

multinomial vector variate, that is

N[6-6JJ' G] (2.5.13)
NG(1-d376)

V(N)

N[G-Poox P]

where

m=




From (2.5.10, (2.5.12), and (2.5.13)
A (o) = V(S.) = N[A*ij]T G'][A*ij] ,

the information for o contained in classified data.

For completeness we state the following theorem.

Theorem 2.5.1:

hela) = A (o) as P 1
where

P = {P(i]3)} .
Proof: In matrix notation,

g = Pa .

Let P~>1, then g+ a and

1 for i=j#m
A*ij = Avij =(-1 for i=m
0 o.w.

that is,

e2

(2.5.14)
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~ i .51 1 L1
A () = [T, ;-Jm_]][Dwag(g]—,u_,a—)] ------- (2.5.15)
H m JT
m-1

where Im 1 is a (m=1)x(m-1) 1identity matrix and

_ il
'Jm_] - (‘]:']’---a'1)
m-1
Thus,
_ T A-1 V 9T s 1 1 Vo9 _
Ac(a) = [A*‘ij] G [A*'ij] [A'ij] [d1ag( -CW""’EH: )][A'IJ] = Av(a)
as P-~>1.

For exemplory purposes consider the case when m = 2 , then since

(8517 = [P - PQ2) L P2IY) - P(2[2)]

g 0
G=[1 .
0 9,

L
9] =1 '92 ’
P(]l]) =] -P(Z“) and

O
—
n
n
~
n

1 - P(]IZ) ’
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then

2
¢ (o) = N[P(]';;;“W : (2.5.16)

A
Suppose further, that if there are no errors in classification, that is,

P(1]1) = P(2]2) = 1

then

and

Note that for this case, A;](a) is the variance of a sufficient

N

statistic a] = T% for o in a binomial probability density function.
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ITII. THE MAIN RESULT

3.1 The Ordering of the Information for a .

For the two population case (m=2) , the information for

contained in unlabeled, verified and classified data are given respectively

by
_ N(1-B) [ Py(x)p,y(x)
Au(a) = o, , Where B = =l dx (3.1.1a)
,Rp
_ N
A (a) = G, (3.1.1b)
and
_N[P(1[1)-P(1]2)7?
A (a) 3,5, . (3.1.1¢)

The similarity of Av , A and Au is striking and one notes in

Cc
this case an obvious ordering exists, that is

A, (a) > A (a) = (3.1.2a)
and

A, 2 A @) (3.1.2b)

The inequality (3.1.2a) holds since



_ N _ 2
Ac(a) = 9192 [P(1i1) - P(1]2)]
_oare(1ln) - p(112) 72
—[aﬁ(H1 +(MPOTEID %]
However,
g-l = Ct«lp(] ]) + (‘-(‘l 2] IZ
g, = 1 - g
implies

99, = o (1-0,)[P(1]1)-P(1]2))? + alg POMD-P(11)]

— P(1]2)[1-P(1]2)1] .

Let

o < [Pal-pa[2))*
¢ 9:9
oy 1-(11

Since 0 < RC <1 , one can conclude for m = 2 , that

or

N
/\c(a) < m = /\v(a) .

From (2.6.1a) and the fact that

def
0 < Ru = 1 -8B < 1

26

(3.1.3)

(3.1.4)
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implies that (3.1.2b) holds, that is, for m=2

Au(a) < Av(a) 5

In this section, we will establish the following ordering of the

information for o :

Ac(a) < Au(a) < Av(a) . ’ (3.1.5)

(Note that if A and B are two positive definite matrices of the
same size and A - B is positive semi-definite then we say "B is less
than A".) This result will be given in a corollary to a Theorem proved
by Rao [ 3.].

Note that classified data defined in (2.2.2) is a explicit trans-
formation of the unlabeled data. Knowing this, it follows directly from

the following Theorem due to Rao [3] that

Theorem 3.1.1 (Rao): The matrix Ax - A; is semi-positive definite,

where Ay s the information matrix in a measureable function T
of X.

The ordering between A, with Au and AC is not as straight-
forward. The ordering (3.1.5) is proved in corollary 3.1.1 which will
be proved very similarily fo the proof of Theorem 3.1.1 once the
following three lemmas are proved. _

Suppose one takes an unlabeled sample and then classifies it, then

let



2= (xTY00) . Y0 = (VLK) ey (X))

when Yj(x) = 1,0 if xe¢ Rj 5 X Rj respectively.

Lemma 3.1.1: The p.d.f. for Z fs given by

P2l7) - 0, ouw.
Proof:
pz(z) = p(x,y)
= Pr(Y(x) = y|X=x) p,(x)

Now (3.1.6) follows from

1 if Xeg Rj and yj = 1 for some j =

PLY(X) =y [X=x) =
0 0.W.

since Pr(Yj(x) = 1 and Yk(x) =1)=0 for j#k.

Recall from Sections 2.3 - 2.5 that

_ u
u T Byl
_ v
SV = {Sj} ’
- c
SC - {SJ} ’

for j=1,...,m-1

px(x) s if X e Rj and yj =1 for some j =1,..
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(3.1.6)

1ye..,m

(3.1.7a)

(3.1.7b)

(3.1.7¢)
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where

p.(x) - p_(x)

u_"j m 3.1.8a

SJ’ p(x) ( )
T. T

s}’=al-d—'ﬂ (3.1.8b)
J m
m Y.

sJ? = _z] g—‘ Bis ' (3.1.8¢)
i=1 %4

fOY‘ j= ],...,m-] °

Furthermore, we know that

E Su = E Sy = E Sc =9 (3.1.9)

Lemma 3.1.2:

(i) ELs,|v=y] = s ' (3.1.10a)

(i) E[SV|X=X] = Su (3.1.10b)

(i11) ELS,I¥=y] = S, - (3.1.10¢)
Proof

(i) For each j=1,...,m-1, it follows from (3.1.8a) that

x) -p, (x)
o -f WL o) o

Let



where ]k indicates that i 1 . Then it follows from Lemma 3.1.1

that

x)

b R0 Ly
E[Sj”’y(k)]‘f 36 9, T
R

o= [P(k|3)-P(k|m)]
k

(Note that g, = h(y(k)).)
Thus, in general we have
Yk

m
E[SY|Y=yl= § = a,.=55,3=1,2,...,m1.
CE[S{1Y=y] k§1 g kg T Sjo 3T 2

(ii) For each j =1,...,m-1, it follows from (3.1.8b) that

t t

E[SY|x=x] = ¥ o M F(E]x)
J o
{t|p(t]x)>0} J m
Flegy 0 f(Ex)
- o - a
where
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f(t]x)

Note that f(t[x) = —s p(x[t)f(t)

p(x)

Hence, it follows that

- gjpj(x) ) a p-(x)
ajp(x) o P(x)

v
ELS} X

p~(X)-pm(X)

= _l’ETIT"_"_ = s; ,forj = 1,...,m=2 .

(iii) Suppose y = Y (k) for k = 1,...,m , then for j = 1,...

it follows from (3.1.8b) that

eyl Yg)
ST RO LIRS

J m

It can be easily shown as follows:

flt,.\ Y k)
flegg) vy = —HE - Y ()

g 1t) )
h(Y(k)7

; Pr(Y(k)=]|t(j)=]) j
I
P(k|Jj)a,

IR §
Ik

= Q(j|k)

31
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Thus,

Vi1 Q1K) 0(mlk)
JRHES T :

ajP(k]j) o P(k|m)

@59k Iy
= L [p(k[5) - P(km)]
9y _
9y
In general, we have
v m yiAi'
E(Sy|Y=y) = ¥ XML =5%, for j=1,...,m1.
: i1 94
Lemnal 5 0h3e i) Efses Ny
cu C
Ty _
(i) E(Susv) = A,
(i31) E(S.ST) = A
cv C
Proof
Ty _ T (o7
(1) E(S.S,T) = E{E(SS, |¥=y)}

s
E{SE(S, |Y=y)}
It follows from Lemma (3.1.2) that

= Ty o
= E{SCSC } AC .
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(ii) and (iii) are similarly proved.

Corollary 3.1.1:

(1) A,-A,

n
o

1
(i41) A=h. = Dy

where D1, D2 and D3 are positive semi-definite matrices.

Proof:

(i) Since ESC = ESu = ¢ , then by definition, the covariance
matrix of Su--SC is given by

E(5,-5.)(S,-5.)" - (3.1.11)
Now (3.1.11) can be written as

E(S,S, -5, Sc +5.5, #5.S, ) = ES S, T-ES S, -ES S, +ES.S, | -

It follows from Lemma (3.1.3) that

T _ T
E(Su-Sc)(Su-SC) = Au-AC-AC+AC

A - since - is symmetric.
" AC 5 Ac symmetric

Since by definition, (3.1.11) is positive semi-definite, then Au-!\c
is positive semi-definite.

(i1) and (i11) are similarly proved.
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uopjeuOu] PaLsLsse() ITW = I My
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(L=0) ¢ o/(ln-Cn) - ¢
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In Table 4.2 values of information are given for various values
of A, k and a; when og = ko? and p(x) 1is a mixture of two

univariate normal p.d.f. The value selected for o? =1 and n=1.

4.2 Conclusions

The surﬁrising result that classified data has the least informa-
tion is espécia]]y important since current practice in processing remote
sensed data is to classify the unlabeled data. It is true that it may
be easier to classify than compute the maximum 1likelihood estimates for
a using unlabeled data. Hence classifying the data would be a necessary
task. The information in classfied data is neariy equal to but always
less than the information in unlabeled data.

Note also, if the expense to verify data is sufficiently small
then the unlabeled data taken remotely from sapce is. not needed. A random
sample of locations on the earth's surface is sufficient to estimate
o . The satellite data is of no value except to randomly select sites
for verification.

If training data and test data are in reality classified data
(that is, unlabeled data classified by photo interpreters) one can and
should expect loss of information. However, training data and test
data are in fact verified or labeled (ground truth with no classifica-

tion error) one should expect better results in estimating o .



Table 4.2. Information A for Various Types of Data (v,u,c) Versus
Values of the Parameters (k,A,a]).

. |Type of k=1 £
4 Data A= 2 3 1 2 3
0.1 v 11.11 | 1.1 {1 .11 | 1111 | 11717
u 1.15 | 4.57 | 7.98 0.60 | 2.38 | 5.51
g 0.65 | 2.66 | 5.78 0.47 | 1.68 | 3.79
0.3 v 4.76 | 4.76 | 4.76 4.76 | 4.76 | 4.76
u 0.88 | 2.51 | 3.76 0.62 | 1.81 | 3.09
c 0.60 | 2.01 | 3.41 0.48 | 1.48 | 2.69
0.5 v 4,00 | 4.00 | 4.00 4,00 | 4.00 | 4.00
u 0.82 | 2.20 | 3.21 0.68 | 1.77 | 2.77
& 0.59 | 1.86 | 3.00 0.61 | 1.47 | 2.50
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