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INTRODUCT ION

Based on a request by the National Aeronautics and Space Admin-
istration, personnel of the Center for Remote Sensing Research, Univer-
sity of California, have compiled a series of preliminary discussion
papers dealing with the subject of techniques for making worldwide
estimates of annual wheat production, with emphasis on the possible
role of remotely sensed data in the estimation procedure.

The material contained in this series of papers is not intended
to constitute an exhaustive or complete discussion of the subject, but
rather consists of information and thoughts on the subject resulting
from a few days of effort on the part of those involved. Hopefully,
however, these papers can provide a useful base for the much more thor-
ough and detailed studies which might follow. In some cases, the infor-
mation contained in the papers is based on extensive research conducted
in the past by the Center for Remote Sensing, while in others it has
been acquired through a rapid library search and may be quite specu-
lative in nature.

The techniques discussed have been Qeveloped with assumption that
only information in the public domain, i.e., excludi&g that acquired
by clandestine means, would be available. Remote sensing data sources
considered included those non-military satellites expected to be opera-
tional in the fall of 1974.

In general, our goal has been to ascertain what parameters might
be useful in predicting wheat production at any point in time dur}ng

the annual cycle, to ascertain the relative importance of each parameter,



and to speculate on ways in which these parameters might be estimated
or measur;d. In addition, it is felt that the variation in different
geographic areas and times during the crop growth cycle of the actual
list of parameters and their importance may be quite significant.

Specifically, the toP[§s>discussed in the attached papers consist
waﬁhe following:

. A discussion of the general procedure that might be used in
an operational inventory.

11. Statistical analyses of the relationships between a number
of pertinent parameters including acreage, yield, and production.

I11. A discussion of the estimation of crop acreage using remote
sensing data, based primarily on past work conducted at the CRSR.

IV. Possibilities for developing relatively.direct models to
estimate crop yield using primarily visual (i.e., spectral and textural)
inputs relating to the appearance of the crop at various times.

V. More sophisticated continuous and discrete function production
estimation models using a variety of environmental parameters in addi-
tion to those in (I1) above.

Vi. Multistage sampling techniques to be used in support of large
scale regional or worldwide crop inventories.

GENERAL RECOMMENDAT IONS

The work completed to date has indicated two general directions in
which future efforts should be directed to answer many of the questions
raised during this brief study. First of all, a very thorough search

should be made of sources of ancillary data available regarding both past




and current wheat production in the study areas which might be used to
supplement remote sensing techniques. It seems certain that particularly
within the U.S. Department of Agriculture's Statistical Reporting
Service, Economic Research Service, and Foreign Agricultural Service,
information and knowledgeable persons exist who would be invaluable

in a survey such as discussed here. Certainly it would be grossly
inefficient to bypass these sources. Secondly, of course, a great
deal of work would have to be done to test and verify the predictive
models discussed and to accurately ascertain expected costs of acquir-
ing and processing the necessary data before any informed decisions
could be made regarding the actual adoption of any particular system
on an operational basis.

A rapid, cursory study such as this raises more questions than are
answered. It is our hope therefore that at least some of the more
important and meaningful questions have been asked.

The first question that should be answered is '"How good have
estimates been in the past?"

The Department of Agriculture predicts wheat yield for both spring
and winter wheat. The predictions for winter wheat begin with a pre-
December prediction and then in April, monthly updates are given through
October. For spring wheat, the first prediction is made in June and
continues monthly through October.

The prediction for winter wheat yields on the average are more
reliable than the prediction for spring wheat. This is probably due

to the apparent variability in acreage planted to spring wheat from



year to year. The production estimate for months prior to harvest

were compared to the final after harvest for the period from 1956 to
1966. The average error for winter wheat predictions for these years
beginning in December were 8.4 percent, for April, 6.3 percent, for

May 5.4 percent, for June 5.4 percent, for July 3.0 percent, for

August 1.4 percent, and for September 1.3 percent. It is apparent

that as the growing season progresses, the estimates of yield get
better and better. However, there are some rather wild excursions

from these average predictions. In 1958, the December prediction was
off by 23 percent; in 1960 it was off by 17 percent; 1962 was off by

15 percent and in 1963 it was off by 13 percent. The first predictions
after the winter, made in April, were considerably better. However, in
1958 they were off by —18 percent; in 1960 they were off by —12 percent,
and in 1962 they were off by +12 percent. By May, the worst case error
was down to 11.2 percent; by June it was 9.4 percent, by July it was
down to 4.5 percent; by August it was down to 2.3 percent, and by
September it reached 2.6 percent.

The first estimate for spring wheat is made in June. The averages
are considerably worse. In June, the average error was 13.3 percent,
in July 9.9 percent, in August 6.9 percent, in Septemger 2.4 percent,
and October 1.6 percent. In June the excursions from the final value
were as high as 40.5 percent in 1961, 28 percent in 1958, 23 percent
in 1962, and down to a low of 12 percent in 1964. In July, the 1958
error was 24 percent; the 1962 error was 22 percent, and all other

values were below 10 percent. By August the worst case error was down



to 11.4 percent in 1958, and all other values were below 10 percent.

By September the errors were all below 6.7 percent.



I. GENERAL PROCEDURE

The following outlines the procedures that would be required to
use ERTS-1, ERTS-B, meteorology satellites, supporting aircraft data
and ground data to complete a global inventory of a single crop or
crop type such as wheat or cereal grains.

Step 1: Image of the Globe

First using ERTS-1 imagery now on file, a worldwide mosaic of all
of the land surfaces of the world would be created. This mosaic should
be generated by the latest in computer techniques where control points
from the imagery would be related to existing map control points and
satellite navigation data would be utilized. From the information
obtained through the mathematical analysis of this control information
and global information, all redundant "picture elements' would be
removed from digital tapes and a precision mosaic would be generated
and stored on tape. |If ERTS-1 imagery does not exist cloud-free for
the entire world, it could only be obtained from ERTS-B or other multi-
spectral data sources such as Skylab, which may allow the filling in
of holes in the digital mosaic. The major difficulty in accomplishing
this task would be the extraction of the control poiqts from the
imagery. It would need to be done only once, but would have to be
done for all areas where wheat is grown. |If navigational information
from the satellite is adequate, it may require only a few control
points per orbit rather than control points from individual frames as
is needed now. The major cost in such an operation is the computing

of the transform after the transformation algorithm has been determined.



The mosaic could then be converted to current tape format. From these
tapes, images could be produced for the next step which would be human

photo interpretation.

Step 2: Photo Interpretation and Agricultural Area Delineation

From the computer compatible tapes generated in the mosaicing pro-
cedure in the previous step, color composite images would be produced
for use in the photo interpretation stage. The resolution of ERTS data
may be more than adequate. Possibly, every other or every third point
and line of the image would be adequate to produce an image for delin-
eation of agricultural versus non-agricultural lands in the wheat grow-
ing areas of the world. |If every other point or every third point and
line were adequate, it would mean that a 300 x 300 mile area could be
delineated on one image in this gross agricultural-non-agricultural
separation step. This separation could be done directly on the hard
copy image. The image would be mounted on a digitizing system that
would not interfere with the photo interpreter's speed and accuracy
of delineation. A system similar to the graph pen currently in use at
Center for Remote Sensing, or possibly, an extremely high resolution
color CRT utilizing a light pen system could be used. The coordinate
information and annotation of the various areas delineated by the human
would be entered through a computer terminal by the interpreter. No
intermediate step of hard copy preparation or line following by an
operator after interpretation would be necessary. A portion of this
separation may be done automatically. For example, it has been demon-

strated that a single band of MSS data may be adequate to discriminate



water, unproductive bare soil, snow packs, and desert areas from every-
thing else. The photo interpreter would not be presented with the
problem of delineating these features, reducing his total interpreta-
tion time. This pre-processing could be put at the front end of the
system and eliminate further processing of this data during the inventory,
reducing the cost of processing significantly. The human input would
still be cost-effective in the separation of some wildland and urban
areas from agriculture. This combined human and computer stage would
significantly reduce the cost of further processing, and increase the
accuracy of the discriminant analysis that would follow. It would be
a one-time operation that would last for several years and would be
updated as needed rather than being completely redone as new agri-
cultural areas developed or old areas went to other users.

Step 3: Worldwide Stratification

The delineation produced by the photo interpreter and computer
would be used in conjunction with geographic, climatic, and cultural
information to stratify the world's agricultural land. These strata
would be non-contiguous in that they would be worldwide in nature. For
example, agricultural lands similar to those in Kansas would be identi-
fied in Chile, Australia, Europe, China, India, USSR, the United States,
Brazil and all the other significant areas of the world. This strata
would be based on cropping practices, soil types, local climate, geog-
raphy, geology, distance from coast, distance from river systems,
sources of water, and many other factors. This may be the most dif-

ficult and important step in the processing, in that it requires time



to gather many sources of information to make decisions on stratifica-
tion and it appears that much of the variation in wheat yield is
explained statistically through stratification. This step is another
one-time operation that would last for several years, requiring
periodic updating as local conditions changed. Much of the informa-
tion for this stratification already exists in terms of the climate
and geography associated with various land masses and has been com-
piled by several investigators.

Step 4: Training the Classifier

For any given date or series of dates of imagery that would be
used in the discriminant analysis, training sets would be developed for
each of the worldwide strata as defined. This training could be done
by conventional means. That is, extracting training fields from the
raw imagery, or perhaps when possible from low altitude aircraft
identification and spectral data acquisition at the same time. Exper-
ience has shown that in many cases it is necessary to identify and
train on crops other than the one of direct interest in the inventory
to give the discriminant analysis program alternatives to the crop of
interest when the spectral signatures are similar. This may be true
in some strata and not in others, but must be considered. By monitor-
ing environmental conditions throughout a single strata, transforma-
tions may be applied to the training set to allow the extension of the
spectral signature throughout the strata. Without this transformation
in the spectral signature to correct for varying conditions throughout

the stratum, very poor discrimination will result, unless weather



conditions, soil conditions, planting dates, and other factors influ-
encing crop maturity and spectral reflectance happen to be the same
worldwide for a given stratum.

With the large amount of data that must be handled in this world-
wide stratification, some automatic or semi-automatic means of process-
ing the data must be utilized. Because of the nature of the data, a
pattern recognition algorithm, similar to the one used for crop identi-
fication through spectral patterns, could be used. The variables
mentioned above that are important to the stratification would be
quantified in a unique, continuous fashion. These quantified param-
eters would be utilized as features in the pattern recognition algo-
rithm. For example, minimum temperature, maximum temperature, mean
annual temperature, mean annual rainfall, average pre-planting rainfall,
average post-planting rainfall, distance from coast, historical yield
per acre, variance of yield per acre, average field size, variance of
field size, wheat to non-wheat ratio, historically, soil productivity,
index of mechanization, and degrees latitude may all be variables that
could be used as features for the pattern recognition process. To
utilize this technique, areas where ground truth could be acquired
would be clustered into homogeneous or as nearly homogeneous types as
possible. These homogeneous areas or clusters would be used as the
training set for the classifier and all other areas of the world would
be matched by the pattern recognitibn algorithm to the training set.
After the data is made available to the computer the computational task

would be relatively simple and inexpensive.



Step 5: Crop ldentification and Acreage Estimation from

ERTS Multispectral Scanner Data

Within each of the strata as defined by the photo interpreter and
computer earlier, the training generated in Step 4 would be used to
classify the agricultural lands to separate wheat from all other crops.
With this discriminant analysis, an estimate of the acreage of wheat
would be obtained from ERTS data. This estimate would have errors
associated with classification accuracy, boundary effect, field size,
and crop condition. The analysis may be done on a point-by-point
basis, or it may be done on a sampling scheme where every other point,
every third point, every fifth, sixth, or tenth, point and line may
be considered. A clustering or blocked sampling scheme may be more
efficient than a point sampling scheme because field by field informa-
tion that may be useful in ratio estimation procedures described is
section VI. The sampling scheme will depend on the processing that
would be required in the subsequent steps in the estimation of yield
and corrections for acreage. A variable probability sampling scheme
where the human quick look estimate of wheat acreage for very large
contiguous areas would be used to determine the general location of
the areas where samples for computer processing would be selected. The
theoretical justification of this process is covered in section VI.
Because of the errors associated with this estimate, it could not be
‘the final stage in the area estimation procedure.

Step 6: Photo Ground Sampling

A sampling design as described in section VI of this report would



be used to subsample selected areas within the computer processed
areas accessible via aircraft and then, if possible, subsequent ground
samples of these areas to determine the relationship between the ERTS
acreage estimate, the photo ground acreage estimates, and the yield.
The size of the photo gound sample would be determined by the accur-
acies obtained in the remote sensing stage or the ERTS stage of the
estimation. The better job that can be done from the remote sensing
platform, the fewer samples that will be needed on the ground. In some
cases, no ground samples will be needed, only aircraft samples. When
there is a positive consistant linear relationship between the stages
in the estimation, very few samples at each stage will be needed. The
results of the sampling procedure would give the correction to the
acreage and yield information within each of the strata. After
experience is gained, sampling may be done on an adaptive basis where
samples obtained from previous inventories may be updated rather than
being completely replaced when an updated production estimate is made.
This sampling with partial replacement may be useful from year to year
as well as from month to month for a single year.

Step 7: Estimation of Yield '

Estimates of yield would be obtained directly in many cases by
applying a weighting factor to the acreages estimated for each of the
classes generated through the training and discriminant analysis in
Steps 4, 5 and 6. In some cases, spectral differences will not be
observed due to‘the actual yield and therefore, cannot be predicted by

training by subclasses associated with yield, therefore auxiliary



information would be introduced through the models similar to those
described in section 1V and V of this report to provide the yield
figures. Auxiliary variables such as rainfall, indexes of environ-
mental stress, or harvesting techniques would be used. The following

section discusses the relative importance of some of these variables.



11. RELATIVE IMPORTANCE OF PARAMETERS AFFECTING WHEAT PRODUCTION

From the data analyzed and information from existing production
models, it was determined that stratification of wheat producing lands
by soil type, cultural practices and general meteorological conditions
is the most significant step in reducing the variance of the estimate
total wheat production of the U.S.

It is also the most importnat parameter in consistently esti-
mating wheat yield per acre on a regional basis. After the stratifi-
cation is completed it was found that wheat yield and production was
a function of different parameters or combinations of parameters depend-
-ent on the stratum being studied.

To limit the computer effort but study this intra-stratum vari-
ability Arizona was selected to represent the irrigated wheat area,
Kansas was selected to represent the winter wheat area, and North
Dakota was selected to represent spring wheat area. Within each of the
selected study areas acreage planted, acreage harvested, acreage
abandoned, precipitation, and year were analyzed to determine the amount
of variation in production attributable to each and the correlation
between the parameters affecting production.

Arizona wheat production, comprised mainly of irrigated wheat,
seems to be the simplest production:estimation problem. In the past 5
years, because of development of new strains of wheat resistant to
lodging, the wheat production of the area has increased drastically.

In the period from 1965 to 1972, the production has varied some 82 percent.

Using linear relationship between planted acreage and production, the



error associated with the estimate of production is reduced to 3.5
percent with a worst case prediction of 5.2 percent. Using harvested
acreage, an improvement of only .l percent was achieved. No rainfall
information or other climatic variables were considered in this analysis
because of the small residual error after the variability due to
‘acreage was removed. It was found through examination of data that
reduced production has been due to low spring temperature and/or low
average temperatures, which may indicate incident radiation conditions
or temperatures below optimum for wheat production. The high correla-
tion between planted wheat and production is probably due to the con-
sistency of the environment and the fact that water is suppTied through
irrigation.

With U.S. winter wheat production as the dependent variable in
the regression analysis and planted area as the independent variable,
the error was reduced to 17.3 percent from the original 18.8 percent.
Adding rainfall (from the previous harvest through April) reduced the

variation to 10.8 percent. Using harvested area only, the error was

reduced to 15.7 percent. The difference between planted and harvested
or abandoned acreage was used as an independent variable reducing the
error to 8.8 percent. With abandoned and harvested a;reage and date
used as independent variables, the variation was 7.3 percent with a
worst case error in the above prediction equation of 8.8 percent.

With U.S. spring wheat the relationship is considerably different.
The coefficient of variation for total production is 12.1 percent.

When planted acreage is used as the independent variable to predict



production, the error is 7.9 percent. Adding rainfall reduced the
C.V. to 2.0 percent. When using harvested acreage only, the error is
reduced to 5.4 percent. When planted and harvested and percent aban-
doned wheat is used, the error is reduced to 5.0 percent with a worst
case error of 6.5 percent.

In summary acreage planted is the most important variable in
determining production in irrigated wheat areas. |In winter wheat areas
rainfall is the most important factor followed by other catastrophic
factors with area planted contributing very little to the overall
variability. In the spring wheat areas, acreage planted explains the
largest portion of the variability followed by rainfall with other
catastrophic factors contributing the least of overall variability.

The lack of correlation between acreage and production may be due
to the cropping practices used under the planting allocation imposed
by the government. However, acreage as an indicator may become even less
reliable as the less productive lands are forced into use by the
removal of planting allocations and higher prices paid for wheat in
the expanding food market. This lack of reliability would be due to
the higher probability of crop failure after planting on the marginal
lands and the increased response of the wheat crop to other variables

in the system under the higher stress conditions.



III. WHEAT IDENTIFICATION AND ACREAGE ESTIMATION

From data obtained in Maricopa County, Arizona, it appears
that multi-date and multi-spectral images will be required to sep-
arate wheat from all other crops present in an area. Wheat can be
identified and separated from all other crops in the last 30 days
prior to harvest. To do this, however, it requires multi-date and
multi-spectral imagery. The results of late season multi-spectral
discriminant analysis of four square mile test areas in Maricopa
County show a 100% identification of wheat on a field-by-field
basis with no crops being confused with wheat and no wheat fields
being confused with other crops. Two months prior to harvest, 84%
of the wheat fields were correctly identified. The 16% misidenti-
fied were all called alfalfa. However, compensating errors occurred
where alfalfa and barley were called wheat so that the overall acre-
age estimate after the compensating errors was 96%. These separ-
‘ations were made from all crops present, which were alfalfa, sugar
beets, cotton, safflower, barley, bare soil, urban and native vege-
tation. The study was conducted usiné 1970 black and white multi-
band imagery from the RB 57 photo flights. The images were scanned
in common register using a microdensitometer to simulate ERTS spec-
tral and spatial resolution. The study was aimed at total crop
inventory rather than a single crop inventory of wheat. It is
felt that training on all crops present is required to obtain the

high level of accuracy presented in this study. Discriminant



analysis using thresholding techniques on the-single crop of interest
will probably provide lower percentage corrects on field identification.
No studies have been conducted in identification of wheat under ERTS-1
at the Center for Remote Sensing Research because the 1972 image acqui-~
sition from ERTS started after wheat had been completely harvested and
the 1973 data that contains the wheat inventory information has not yet
been made available. It is felt, however, that the results from ERTS-1
will be at least as good as the results obtained from the scanning of

multispectral black and white imagery from aircraft.

It was indicated by Williams, Mrain, Baker, and Coiner, that
when the investigétor ﬁas adequate knowledge of local environment
and local crop cycle, planted wheat may be identified very early
in the season. In this study in Kansas, wheat was separated from
sorghum for grain, corn for grain, corn for silage, alfalfa hay, and
sugar beets. They discovered that, in September, wheat could be sep-
arated from all other crops 89% of the time. In compensation errors
where non-wheat was called wheat, gave them an overall accuracy of 99%
in the estimation of wheat, field-by-field and in acreage estimate.
The decision rules used by the photo intgrpreter were equivalent to th
those used in automatic discriminant analysis when hﬁman stratification
of the image was used as an initial classification. Therefore, it is
felt that in areas similar to Kansas the automatic classifier should
do as well. It should be noted, however, that in this study and in
the early identification of wheat in Maricopa County, Arizona, the
large percentage of the total estimate for wheat (20%) is from non-

wheat which would lead to a high variance in the estimate of wheat



over the long run. Thus reducing the confidence one would have in the
estimate of wheat acreage early in the season. Near harvest time nearly
all wheat is properly identified creating a high degree of confidence

in the results. Because of the high correlation in many areas between
vheat yield and wheat acreage planted, the confidence in the estimate
for wheat production would be correspondingly low for estimates made

early in the year.



Because of the spatial resolution of the ERTS system, the
proper identification of an individual field or "PIXEL" does not
guarantee acreage estimates within acceptable limits. To investi-
gate this source of error and the confusion class source of error,
two studies were conducted at the Center for Remote Sensing Research
to determine the relationship between ERTS acreage estimates and
acreage from high flight imagery. First, to investigate the field
size problem, randomly selected contiguous fields identified on
the output of the discriminant analysis were compared with the
actual planted acreage as interpreted and measured on high flight
imagery for alfalfa, corn, and asparagus. Second, to investigate
the field size and confusion crop problems simultaneously, sampling
units were selected using the procedure described in Section VI of

this report for asparagus.

Fifty-two fields were selected from the intensive test cells
within San Joaquin County representing corn, asparagus, and alfalfa.
Field size ranged from 15 to 550 acres. The linear model
Y; = Bo + By Xj + €; used to develop a prediction equation
where - e the photo ground estimate of the acréage of the field
and X; is the ERTS estimate of the acreage for the field and Euil S
the error associated with each sample. The coefficients a4 . re-
lating the ERTS estimate to the ground estimate were estimated
using the Least Square Procedure (LSE). From this analysis
the amount of variation explained by the regression relatonship be-

tween the ERTS and photo/ground estimates was computed for each of the



three crops, asparagus, alfalfa, and corn.

marized in Table 1

for the classified ERTS discriminant analysis

estimates of acreage.

The results are sum-

Table 1
ASPARAGUS CORN ALFALFA
Mean Square |Mean Square |Mean Squareg
Source Brror Error ErEer
Regression 224,007.85 150,780.01 82341.72
Residual 3368972 24 .83 524.23
Total 2273715257 150804 .84 82,865 .95

The results show that much of the variance of field size on
the ground can be explained by the estimate obtained from ERTS

data. There is, however, a significant difference between the ac-

s
o
/.

tual acreage measured on high flight imagery and the acreage esti-

Nt

mated from ERTS that is not explained by the regression relation-

ship and, furthermore, the regression relationship appears to be
dependent on crop type rather than being a general relationship

that can be applied to all crops.

The variation in the estimate for individual fields, while
significant, is only part of the problem of estimating crop acre-
age. The other part of the problem is the inclusion or exclusion
of areas because of misidentification during the discriminant an-
alysis procedure. To evaluate this problem an independent sample

of asparagus, one of the most difficult crops to obtain acreage



estimates for using discriminant analysis because of the confusion
with native vegetation and bare soil, was selected using the multi-
stage sampling procedure for agricultural acreage estimation.* It
was selected because the human can easily identify this crop on the
aerial photography that would be used as the second stage in the

acreage estimation.

Eight primary sampling units (PSUs) were selected proportional
to the acreage estimated by the discriminant analysis. The PSUs
were transferred to 1:120,000 Color Infrared imagery where the
area of the growing crop of fields identified by photo interpre-
tation as asparagus were measured. Plotting the Y;'s (photo esti-
mate) versus the X;'s (ERTS estimate) (Figure III.1l) indicates that
the relationship does not pass through the origin. Because of this,
the linear regression model Y: = go + By X5 t e was used and a
least squares estimate for Bo and By computed. The resulting
prediction equation was: T = -292. + 2.033 (Xi) .

The coefficient of variation of the mean of'the sample (Y) . 4

g (A
was 41%, which was reduced to 13.8% by the regression relationship

\
between the Xi's and the Yi's.

Although these studies did not specifically cover wheat,
they do document the problems of acreage estimation from relatively )}M

low resolution satellite systems and indicate an approach that can

be used to overcome the problem at the minimum cost.

*See Section VI of this report for a detailed description of the
method.



The confusion of wheat fields with surrounding grass lands
and other cereal grains may make the estimation of acreage with-
out sampling and regression estimation extremely unreliable. It
may, however, be possible to develop correction procedures that
can be applied more generally through detailed studies of the

wheat problem.



Iv. DIRECT PREDICTION MODELS

The simplest and Qossibly the most practical model in the
short run may be one which utilizes direct observation and measure-
ment of conditions at discreet times to estimate wheat yield and
production. Spectral characteristics, textural characteristics,
and area measurements in many.cases are highly correlated with
biological production and site conditions (Miller). With this
directly observed information and auxiliary information from wea-
ther satellites concerning.mean temperatures, mean rainfall by
month, and abnormally high or low conditions of rainfall and tem-
perature, we can provide most of the information necessary to com-
plete the prediction model. In exceptional cases where lodging,
freezing, excessive rainfall, draught, economic conditions, unusual
snow conditions, insect, and disease conditions, subtractions would
be made from yield to compensate for the area damaged, weighted by
the appropriate reduction factor. For most of the factors con-
cerned, adjustments would be made for conditions other than normal.
Initially, the production would be estimated based on historical
information. After data is acquired %rom the satellite, adjust-
ments would be made, both positive and negative, to bring the
estimate in line with the most current data. For example, with
winter wheat, the early estimate of planted area along with rain-
fall to date and current economic conditions, available seed and
labor, would be used to project the production of wheat. As time

passed and information was obtained on accumulated rainfall,



freezing conditions, snow cover (providing insulation and mois-
ture), and updated economic information, these would be applied
to the model at that point in time to predict total production.
This procedure would continue through the winter months to the
time of thaw, and the reiationship between thawing, rainfall,
the first appearance of green, and the winter's snowfall, would
be used to update the prediction. One of the most important,
directly observable parameters would be the appearance of green
after the spring thaw. The date of green and the textural pat-
terns associated with the green appear to be strong indicators
of the soil moisture and expected crop vigor associated with
annual plants. As the crop began to grow and mature in the early
part of the growing season, spectral characteristics such as the
ratio Dbetween the chlorophyll absorption band and the infrared
band could be used as an indication of actively producing tissue
(Miller). The length of time between first appearance of green
and the drying of the wheat is an indication of stored soil mois-
ture and temperature conditions associated with total plant pro-
duction and the subsequent yield of wheat. As the crop began to
dry, the patterns between the drying énd still green material
would be an indication of the residual soil moisture and soil
depth, and therefore, the expected yield from the area. These
characteristics of greening and drying would be observed and
quantified for both the wheat and annual grass lands to be used
as an index in the model for wheat production. This textural

information would also be very important in the classification



of site potential for growing wheat. In range studies (carneggie)
a high correlation between soil depth and the relative length of
the active growing season has been found. Coefficients are avail-
able for wheat produced for a given amount of rain on a given site.
Coefficients are also available that relate minimum and maximum
temperatures to biological productivity. Based on the information
obtained on meteorological or climatic conditions and site con-
ditions relating to soil fertility, it is felt that one of the
most important stages in the prediction of wheat yield will be

the stratification of the world's wheat growing areas into similar
areas relating to potential. This stratification or determination
of analogous areas will be extremely important to any yiéld pre-

diction model.

Another use of pattern recognition similar to the crop iden-
tification algorithms may be valuéble in the overall process of
predicting crop yield. 1In the final stages of predicing crop
yield, based on all of the input parameters measured during the
growing cycle within a given stratum, pattern recognition may be
the most efficient means of separating the areas into similar

yield classes.

For each field identified as wheat by the discriminant
analysis procedure of the spectral information from either single
or multi-date ERTS imagery, estimates for the various parameters
affecting wheat yield would be obtained. These parameters would

then be utilized as features in the pattern recognition program.



Examples of such features for the final yield prediction are total
rainfall prior to planting, planting date, minimum temperature
prior to emergence, snow cover, rainfall after emergence, pre-
harvest spectral characteristics, degree day, time from planting
to harvest, green wave duration (the time from greening to drying
of the wheat during the season), minimum temperatures at various
points during cycle, maximum temperature at various points during
cycle, estimates of soil moisture, estimates of rainfall post
planting, spectral characteristics of fields, and many other such
parameters. Many of the parameters would be estimated on a re-
gional basis, while others such as rainfall, may be estimated on
a more localized basis from overlayed meteorological information
from satellite sources. Other parameters would be estimated by
interpolating between point samples from non-scanning or non-

imaging satellites.



PROPOSED FUTURE MODELS FOR
WHEAT YIELD ESTIMATION

Section 0.5 Some Comments on Modelling

The act of constructing and utilizing mathematical abstractions
of real world systems or processes to gain information concerning
equilibrium conditions among system variables is called modelling.
Models can be time invariant, that is their response pattern for a
given set of inputs is constant. On the other hand, models that give
a different response for the same input set at different times are
termed dynamic. The model variables can be deterministic (zero variance)
or probabilistic in character.

The natural system we wish to model, wheat production, is governed
primarily by probabilistic rather than by deterministic relationships.
The first two of the three mathematical models proposed below reflect
this fact and are largely stochastic (probabilistic) in nature. It
is supposed here that a probabilistic model tends to provide the best
"fit" of a probabilistic real system. However, the third model des-
cribed has a deterministic emphasis. Inclusion here results from its
ability to be expressed as a circuit theory analogy. Hence this model
could potentially be simulated quickly through conventional circuit
analysis to give reasonable yield estimates at very competitive costs.

None of the three mathematical models need be considered the
""best'" to the exclusion of all others. Rather, it is proposed that if
fully developed each should complement and enhance the prediction
accuracy of the\other. Relationships among the models are suggested

for this eventual multi-model design.



Section 1.0 Introduction to the Form of Model Type |

The first mathematical model proposed to predict wheat yield is
composed of a series of polynomial regression equations. Each equation
allows estimation of yield at harvest or effective yield at market
based on the physical, chemical, biological, cultural, and economic
environment existing in any given preharvest time period i and based
on the most recent previous prediction of yield (if any). In this
discussion yield will be defined on a weight per acre basis. Then
the model for wheat yield based on any previous time i in the wheat

growth and pre-growth cycle can be expressed by the following equation:

f = bo + (b‘ Physical, + b, Physical, +...+'bCPhy5|calc)
arvest

+ (b Chemicall + bc+2Chemcial2 +.. .+ dehemicald)

c+l

+ (%+]Biological] < bd+zBiological2 TF s beBiologicale)

+b_,

+ (be+]Cultural A 2Cu]tural2 +...1+ b

Cu]turalf)

1 f

+(bf+]Economic + b, . Economic, +...+ b Economic )

1 f+2 2 g g eq.

o i

ik bg+]Y

'-]harvest(i-l#O) e
for i =1 to i = harvest or market = n

where
i = predicted yield at harvest or market based on
harvest  pre-harvest time period i



Physucalg, Chemlcalg,
Biologicalz, Cultura]z, = physical, chemical, biological,
cultural, and economic variables
Economigg that drive the wheat system.
These predictors are considered the
independent variables allowing
. prediction of the dependent
variable Yi
harvest
Y._4 = predicted yield at harvest or market based on
"harvest
pre-harvest time period i—l. Yi-l only
harvest
included in equation 1.1 if i —1 # 0.
b0 = vyield axis intercept

= Y —-b]X] —-b2X2 —a..—-kak

where the Xj represent the independent variables.

b]...b o - partial regression coefficients of Y. on
9 harvest

the independent variables defined above.

A

= the increase in Y. if Xi is increased one
harvest

unit while all other X variables are held constant

e, = an error term arising from either measurement
error of eventual Y (yield) or from stochastic
error resulting from tre influence on Y of
omitted independent variables

Alternatively we may state e, as eiqor eq (a given i assumed) where
q denotes a given set of values for the variables in eq. 1.1. Then
the basic assumptions in the above model are that:

(1) eq is a random variable with mean equal to zero and variance

o2 (unknown), alternatively stated as E(eq) =0, V(e ) = o2

q



(2) 2 and e, are uncorrelated, g # h(g and h representing gq

values), giving cov(e ,eh) = 0.
It fo]]owsﬂthat 9

E(Y ) =B, * B X +BX, +...+B X

I%arvest Iq ? 29 »-kq

where 8. are the population means of the corresponding bj’ and that

V(Y. ) =02 | and that Yi and. Y, , g#h, are uncorrelated.
lqharvest ggharvest harvest

(3) A final additional assumption necessary to carry out later F

and t tests is thateiq is normally distributed, i.e., e N N(0,02).

This implies that eg and e, may be considered independent as well as

uncorrelated.

Section 1.1 Derivation of Independent Variables

The above model is stochastic in that there is an error term attached

to the estimated yield, Y. . However, deterministic relationships
harvest

are often useful to arrive at values for some of the independent
variables Xj for a specific time i. Two examples of these deterministic
relationships are given below, one for temperature and one for
evaporative stress. Others could be added depending on the degree of
sophistication in the independent variab{es desired.

i)

Section 1.1.1 Temperature

To improve the prediction of plant response to the daily (diurnal,
2L hours) temperature cycle, four temperature variables are formulated.
A1l four variables are hypothesized (based on literature review) to be
strongly related either to the rate of net biomass assimulation in

wheat or its biological capability to function. These four temperature



Wiypes' are (1) tHe high temperature range (TRGot) at which wheat must
spend more of its energy reserves to remain alive than it can assimilate
(net negative biomass accumulation). Higher portions of this temperature
range give rise to denaturing of proteins and thus plant green biomass

destruction. An intermediate range of temperature (TR” ) allows

effective
net positive assimilation. At lower temperatures (TRcool) the plant
must use more energy than it stores to maintain itself and at still

lower temperatures (TR” plant protein destruction occurs. These

cold)’
temperature ranges, their threshold values, and integration (shaded
areas) over a 24 hour period are represented in terms of a diurnal

cycle in Figure M.l below.

TFime of Satellite fass ¢ NoARa NimbisS NCAAZ Nimbus S
F >

4
Rt 1
P’de-

zctive

| — ! coel

oy

4
cool {

Figure M.1.

The above diurnal temperature cycle can be expressed mathematically
as a cosine function. Actual diurnal cycles tend to have both their

positive and negative peaks skewed somewhat to the right (e.g., Gates,



1965). However, if the investigator is interested in integrating
temperature ranges over time to give yield predictions (X., in this

“{he €ocsine "f“ Y\(ﬂl‘ov\

case TA’ho TA” TA T Aallows a good approxima-

t’ effective’ cool’ A cold)
tion for these variables. More sophisticated diurnal cycle analysis
could use Fourier series to define a function more closely fitting
(i.e., lower residual sum of squares) actual cycle values.

The temperature at any point in time t may be represented by the

following deterministic equation:

T’t A cos((%233§>t —-%>'

where
T‘t = temperature at time t standardized to the scale of A
(see below)
t = 0 = 0 at 0000 hours
2k
_ _ 24
t = 1 = 5 at 2400 hours :
2T = w = the constant of proportionality between time
1 day displacement and angular displacement. Here
1 day (24 hours) corresponds to the period of
the cycle.
) = phase angle that describes the relationship between

the time T at T ax (maximum temperature point) and t =

0.

eq.

1

2




T
extreme ave.

MaX approx
A — pp —
Tmax Textreme ave.
approx
where
T measured at 1200 hours by Nimbus 5
T : _ and T measured at 1500 hours by NOAA2
max 2
approx
T ¢ = approximate average of diurnal temperature
PRLTeme aves extremes measured at 900 hours- by NOAA2
(could also be obtained by ground
measurements) .
T and T are the respective yearly averages of the
max extreme ave.
approx

above two variables.

Utilizing the above definitions we have

Tt —-Textreme ave
T't = = — eq. 1.3

ma extreme ave.

X
approx

where Tt = temperature in °C.

Tmax is used here to set A and ¢ since good satellite estimates of
this value (Nimbus 5 at 1200 hours and NOAA2 at 1500 hours, see Figure
M.1) exist while such measurements do not exist for Tmin' ¢ will be a
function of the time of year, shading, wind, and weather systems.

Only time of year will be considered in this treatment. Since seasonal
average temperatures lag potential solar beam irradiation averages
(0ort, Scientific American, 1970), the lowest average temperature day

of the year in the northern hemisphere will be selected as approximately




January 21 for

day having the average hottest temperature.

this example.

Adding 182.5 days gives July 23 as the

Review of the literature

(e.g., Gates, 1965) indicates that cooler days tend to have earlier

T;

peaks.
max

Hence for illustration,

1200 hours is taken as the time

of T _, for January 21 and 1430 hours for July 23. Then

_ 2m
¢Jan.21 12 hrs. x 5L i
6 W5 hre. x 5t = 1.2%
July 23 : " 72k :

¢Jan.22+July 22

¢July 24>Jan.20

Now to integrate to obtain TA

intersection of the lines T~ =

with T© =

Setting

J threshold

= 7+ (Juli

an Date — 2])(12;%35;%gdg<

%)

1.2!7 — (Julian Date — 203-5)(%@%';)(%%>

hot’ 0

L hot”’

A cos ((2m)t

Aeffective,

TA
coo

i =i , and T~
cool

A cos (CZW\ t — ¢)must first be found.

- ¢)

and solving for t will provide the needed intersections.

Then for T T have
Thor = & cos((2m)t — ¢)
, %
T ot = cos(en)t — ¢)
5 T’hot
arccos —¢ = (2m)t — ¢
T'
arccos ROt )
= t =>

E and TA
co

1d
T;

the

cold

eq.

1

b



Similar solutions hold for Tcool and Tcold and in general we have

T threshold
arccos ———p——— ¢
= t =>t s &
25 ]threshold 2threshold eq. 1.5
Now proceeding directly to the integrations we have
)
_ hot 4
TAor = //)f A cos((2m)t —¢) dt — T hot(tz = it ) eq. 1.6
t hot hot
lhot
t2cool
TAeffective - A cos ((2m)t —¢)dt _-TAhot eq. 1.7
t
cool
It ot -—‘t] <t2 —‘t]
photoperiod photoperiod cool cool

then use
t

. hotoperiod
TA photop A cos((2m)t — ¢)dt — TA eq. 1.8

effective hot

Y
photoperiod

]

where t sunrise — skylight period
photoperiod

¥

t

2 sunset + skylight period
photoperiod

Tentatively set skylight period as .75 hour.

t
2
TA = CO]d . T _ .
cold //,Jf~ A cos ((2m)t — ¢)dt — T cold(tz t, )
- “cold cold

4
cold
eq. 1.9



t=1 : t

1
TA = A cos((2n)t — ¢)dt + coolA cos ((2m)t — ¢)dt — TA

cool
t t=0

cool

eq.

It should be noted that the above integration limits are specific for

T and of Figure M.1. Different values

FhES CivE e = o

of these parameters may give rise to different integration limits.

A further refinement to the TA predictor will now be

effective

given. Review of the literature (e.g., Leonard and Martin, 1963)

indicates that rate of net positive assimilation of biomass is not

constant in the temperature range T to T . Rather a function
cool hot

relationship in Figure M.2 is indicated.

LY ig) h
)
|
Net= :
Production |
|
|
I
|
0 I
40" 77 &8
Tc ol Tc P'f' ;T"\o'f'

T emperatwe  (°F)
‘*Tem‘aerc&ure Values $rem Leonard Q Mactin (1363).

Figure M.2.

Hence a given temperature within the T to T range must be
cool hot

weighted according to its ability to give rise to net production. To

Iz

10

cold



perform this weighting procedure it is proposed that 1° to 2°C class

intervals be defined in the T~ tol I range in Figure M.1 and

cool hot

) under the cosine function between t and
cool

the area (TAeffective

t for each such class interval be integrated separately. Then
cool
each such area should be weighted by the average production for that

temperature class divided by the maximum production possible (Pmax)'

These weighted areas would be summed to give TA effective:

n P \

” - V

I8 ffective = Z_ (P )(TAV . egail
v=1 max effective

The three cardinal points for growth: T , and T

cool’ Toptimum hot

will vary according to the variety and strain of wheat and according
to its growth stage (Levitt, 1969). Data from Leonard and Martin (1963)

indicate that for most types of wheat, Tcool varies approximately from

38.5°F to 41.0°F, T V77°F, and T from 87.5°F to 88°F. A

hot

simplified approach would be to take the averages given by Leonard and

optimum

Martin and assume a constant production versus temperature curve through
the wheat life cycle. Or a curve could be fitted to temperature --

yield data by life cycle or growth stage to give production values

from T to Thot' Such curve fitting processes might utilize functions

cool

of the form

3
T+ b, T2+ b,T Bae, 112

Y = bo + b 3

1
or

Log ¥ = c_ + ¢ logT + c,T eq. 1.13



where T could be Tmax or Tmin measured on the ground or estimated with

satellite data, < should be positive and c, negative (Freese, 1964).

2

TAhot’ TA effective’ TAcoo]’ and TAcold may be added day-by-day to

give total figures for some time stage i of the wheat cycle. They may

then be used in the regression model of eq. 1.1 as independent variables

in the prediction of wheat yield Y,
'harvest



Section 1.1.2 Evaporative Stress

The second example of the use of a deterministic relationship to
provide input to a probabilistic model is given by the determination
of evaporative stress. Many sophisticated formulas can be given to
derive instantaneous evaporative stress (Federer, 1970). Most, however,
require one or more ground measurements of parameters not available
from satellites or most weather stations.

One apprach to determination of effective evaporative stress
using satellite data is a modification of the Eddy Correlation method

(Federer, 1970). Here vaporation, E, is defined as

. eq.
E = j?w’q'
where
P = air density as g/cm3
w' = instantaneous vertical component of wind
q = instantaneous deviation of specific humidity
(gHZO/ggir), q, from its mean
VF?f = average deviation of the instantaneous water-vapor flow
from its mean value.
Al
Now letting
q = QLSEZe (Federer, 1970) eq.
where e = vapor pressure and p = atmospheric pressure, we

may define an evaporative stress index, EI, as

EI = —f-‘-g eq.

<15

.16



5 = slope of vertical temperature structure near the surface
§ proportional to vertical wind
9 and q are as defined above

and negative sign to account for negative 5 under adiabatic lapse
rate conditions exhibiting decrease in temperature with an increase in
altitude (i.e., lack of temperature inversions).

Values for variables in eq. 1.15 and eq. 1.16 should be derivable
from Nimbus 5 and NOAA2 radiometer data. Future satellites with
improved spacial resolution would tend to give more ''area-specific'
data for those variables. For most accurate yield estimates,
meteorological data spacial resolution should be at the scale of
individual fields.

A probabilistic alternative to the determination of an evaporative
stress independent variable may be given by utilization of the surface

energy balance equation (Federer, 1970):

LVE = Rn—H-—S—M-—5n eq.

where \
LvE = energy used in transpiration
L = latent heat of vaporization
E = the mass loss of water

Rn net radiation

H = sensible heat (heat gained or lost by air above the surface)

Holi7




S = heat gained or lost by soil and vegetation

M = heat used in metabolism (primarily photosynthesis

minus respiration)

Sn = heat lost on freezing of snow and heat gained on

melting of snow.

All terms in the above equation have units of energy per unit
area per unit time and, when integrated over time, are expressed as
energy per unit area.

If it is assumed that most of the energy required for evaporation

is supplied by solar radiation (Federer, 1970), Rs, and

4-
Rn = (1 —a)Rs + ﬁth'— g0 T, eq. 1.18
where
Rn = net radiation
a = albedo (reflected solar radiation)
Rs = downward solac yadiation.
€ = absorptivity or emissivity gf the surface for thermal

radiation
¢ = is the Stefan-Boltzmann constant
th = thermal radiation emitted downward by the atmosphere

Ty = surface temperature



(1 —a)Rs = solar radiation absorbed

Q;th = thermal radiation absorbed
L S :
£6 1y = thermal radiation emitted
Then evaporative stress may be made a function of Rs via a model

as in eq. 1.19

’
E =y + b]Rs + e eq. 1.19

where bi and e are defined in a similar fashion to eq. 1.1 and E
equals predicted relative evaporative stress.

Since satellite data is or will be available on many of the
other parameters in eq. 1.18, their inclusion might increase the

A
accuracy of prediction for E. Thus

- L
E = bO + b] {:(l — a)RQ + bzi + b3T0 eq. 1.20
It should be noted that Rs on a clear day may be obtained by

the following equation discussed by Frank and Lee (1966):
I N . e » . o
ﬂsge«r = _ﬁ(,;z‘i- N g . Sm,g + $ s 8 - Coss L *°Sin u.‘-f‘) eq. 1.21
G5

%

Here

ear maximum potential downward solar beam irradiation

4«3

In = solar constant

r = radius vector, ratio of the earth-sun distance at a

particular time to its mean

8 = terrestrial latitude



o
]

solar declination

&
I

angular velocity of the earth's rotation, 15° per hour

r-f
1l

number of solar days

Solar energy transmitted on cloudy days may be significantly less
(Bates, 1965 and Connor, 1973) differentially by wavelength. Its
effect on evaporative stress and net biomass preduction should be a

point of further investigation.

Section 1.2 Model Type I.as a System of Regression Models

Once values for physical, chemical, biological, cultural, and
economic aspects of the environment have been obtained directly from
ground and/or satellite measurement or via deterministic and/or
probabilistic methods such as those just discussed, then those values
may be plugged into eq. 1.1. Equation 1.1 may be restated in terms

of a sum of environment vectors:

-k .o _ _ —_— s
Y, =4 + Tcb. + Pb, +E-b..+ S:b..
"harvest ° e e sy ©T3¢
.,..\__:_ —-—\b-A —_—
+ . s L ~ .
BLbﬁ(.-f‘ C C" +':»u'f‘Eﬂqch,n‘:+éL
where
—
Ti = a vector of temperature variables, e.g., TAhot’
/
Aeffective’ TAcool’ TAcold
— o
Pi = a vector of precipitation variables, e.g., mean
monthly ppt., 20-day moving average of precipitation,
snow depth
Ei = a vector of evaporative stress variables, e.g., EI,E

eq.

]

222



S. = a vector of soil variables, e.g., soil moisture, water

table level, soil depth, conductance, pH

B. = a vector of biological variables, e.g., percent of

field area infested by a pathogen or insect

C. = a vector of cultural variables, e.g., amount of
irrigation, fertilization, application of insecticides

and/or herbicides; planting and harvesting techniques

EM a vector of economic and market constraints

b = the vector of partial regression coefficients

corresponding to variables within the vector group X

Model Type Ican now be written as a system of regression models
yielding a wheat production prediction based on environment for
individual time periods and on previous predictions of yield. Use of

eq. 1.1 gives the system as

h —
i=1 Y = b «»ZX”BTr + e

\
]harvest L r=t
. ¥
t=2 Y = b + X 4 + e
2harvest 2,0 g Sl Vparvest e 2
o o
o o
o o
h — — -~
i=n Y = b = Z_ X bnr‘ + Yi—l b,\ h + €n
hharvest n,0 =i ne hervest RS eq. 1.23

—
” and bi " refer, respectively, to a given environment

where X.
i, s



-
variable vector v (e.g., T) and its corresponding partial regression

= S
coefficient vectors (e.g., by) for time period i. The Y. ,
harvest

A
represent the feedback components of Model Type I. Each Y._4

harvest
A 3
allows the Yi (i = some K) to be corrected for the environment
harvest
or sequence of environments (i = L"uK']) whose sum effect is
-~
represented by Y. &
harvest

The length of any time period i could be one day (24 hours).
However, longer periods of time corresponding to phenological stages
are most useful and efficient for modelling plant yield (Sauer,
unpublished). These phenological stages or phenophases include (1)
winter dormancy or first visible growth; (2) one or more vegetative
growth periods; (3) floral buds, open flowers, and ripening fruit;
and (4) buds, flowers, green and ripe fruit. The plant in a given
phenophase will tend to respond in a characteristic fashion to
environmental stimuli. A given order and magnitude of a set of
environmental events will tend to have a different effect on yield
according to phenophase.

Each combination of morphology and physiology defining a
phenophase may last several days to several weeks. Thus the applicable
time period for each regression equation in eq. 1.23 may differ. Then
to obtain values for the independent variables (predictors) in each
equation, values for individual days must be summed over the number
of days in the given pre-harvest time period i.

In additioﬁ to phenophases, other pre-harvest time periods might
include a set of pre-planting intervals. The environment of these
pre-crop periods could be used to provide early predictions of wheat
yield where water, temperature, or soil, etc., conditions might be

limiting.



It should be noted that when an environmental variable indicates
a pre-harvest termination of the crop (e.g., (1) death resulting
from a catastrophic event or (2) planting cancellation due to an
unsatisfactory pre-planting environment) for a given area, then the
yield prediction for that wheat life cycle is set to zero and i is
restl equal to one. The threshold values for such termination must

be determined for a given wheat strain before use of the model.

Section 1.3 Sensitivity Analysis for Model Type I

Part I: ANOVA

The first portion of the sensitivity analysis involves the con-
struction of an analysis of variance (ANOVA) table (see Figure M.3).
This table allows the investigator to determine the significant
independent variable or variables controlling crop yield response.

Each row pair in the table gives, first, the variation(given under
MS) about the average yield ;-hwwesf attributable to regression on
the particular independent variables utilized. The second row of
each row pair gives the error or variation about ;harvest not
attributable to the given regression. Assuming an appropriate model*,
dividing the error variation into the redression variation allows a
test of the null hypothesis that the regression coefficient equals
zero (Ho:ﬁ§ = 0). This test is carried out with use of the statistical
F distribution. Acceptance of Ho means that there is no statistically

significant change in wheat yield with a unit change in the particular

*“See Appendix I for a discussion of methods to determine the correct-
ness of regression models.
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set of independent variables. Rejection of H, at a given « (alpha)
or probability level (e.g., witha= .05, i.e., with 95 percent
probability) indicates there is a significant change in wheat yield
with a unit change in the particular set of independent variables.
In this case, it can be concluded that one or more variables in the
given set of independent variables are statistically important in
predicting wheat yield.

In order to determine which specific variables contribute most
to the prediction of yield (i.e., explain the most variation about
the average yield, ;%arvest> the following procedure must be utilized.
First a pair row analysis of variance is performed on a series of
regression equations, each succeeding regression equation including
one more independent variable. Then the contribution of each
independent variable, xj=ﬁ’ to prediction of yield is analyzed. The
procedure is to determine the additional reduction in variation about
;Barvest by regression on the particular independent variable, given
that the error or residual variation has already been reduced by
regression on a specified set of independent variables. Division

of the variation accountable to the given variable (MSx ) by the

J<§
error variance (MSx —-MSx ) allows a test of Hy - If
j=a>z, j#1 j=1
H0 is rejected for a given X , then it can be concluded that

XJ=R is significantly related to yield. By expanding this procedure

to a particular set of independent variables given that another set

has al ready been used to reduce the residual variation, a systematic



analysis of the contribution of each variable and each variable set to
the explanation in variation about yharvest could be conducted. Based
on this analysis variables could be eliminated from the regression model
to allow a more cost-efficient prediction of yield. Variables deleted
would be those tending to explain variation in a similar fashion to
other variables (i.e., significant correlation present) measured more
inexpensively and/or with greater accuracy. Such would be the case
where either variable or variable set gave a non-significant reduction
in the residual variation unaccounted for by regression firstly with

the other.

Part Il: Confidence About the Predicted Yield Given Xj Without Error

The second measure of performance of the model is the confidence
about the prediction Y, resulting from a given wheat cycle set,

harvest

g, of values for the independent variables during time period i. |In
this case these qu values are assumed to be determined without error.

Since Model Type | is probabilistic in nature, a statement of con-
fidence about predicted wheat yields can be constructed. This state-
ment consists of a claim that the actually observed yield, Yi ,

y harvest

will lie in a given value range, known as the confidence interval,
with a specified probability (commonly .90, .95 or .99). The confidence
interval is centered on the predicted value. This statement may be
alternatively described as a measure of how precisely the yield estimate
may be stated for a given level of confidence, that is probability.

The confidence interval, for a given level of confidence, around a pre-

dicted value of wheat yield may be defined mathematically as:



1
2
(v(y. )), = (u-1) eq. 1.24

CI =
Iqharvest !

T tg.f., 1-u/2)

where
t = a bell-shaped statistical distribution known as ''Students
t''; in terms of the present example it may be concep-
tualized as the difference between the predicted value
and the eventual actually measured value divided by the
standard deviation of the predicted value, for given
d.f. and a.
d.f. = degrees of freedom = (u—1) — KK — 1.
(u=1)
KK

number of wheat cycles on which the regression is based.

]

number of independent variables in the regression
equation.
o = the probability that the eventually observed wheat yield,

; , will actually fall within the calculated
9harvest
confidence interval; this probability is alternatively

known as the confidence level.

I\/\
v(Yi )
qharvest

estimate of the variance of the predicted wheat yield

assuming no error in the measurement of Xj'

In order to compute the confidence interval an estimate of the variance

for the yield prediction Y, for a given i and q must be determined.
harvest
It can be shown (Draper and Smith, 1966) that
//\
. -1
V(Y. ), =X, (X X)X, +s2 4 + 52
'Yharvest | 19 Y XX Yig R gy e Ty
harvest harves
eq. 1.25%
*Footnote: Note that Yi—- is treated as an independent variable and
harvest

is thus included here implicitly under all X notation except in
the subscript to s2.



where q = u, k = no. of independent variables in a given environmental

vector, and where

”E](Y. - Y, )2
g% " Q = g=1" '"9harvest 9harvest eq. 1.26
VieXa o, . ———— =
11 hk, i ‘harvest (u—1) KK — 1
= sum of squares due to regression
= ??—B’ E("-YA eq. 1.27
and where also
h  k  u-l ) _
2 A = — =
s = F . B s E AKX X. Y. Y.
y.xll"'xhk,yi—4 rel W= g0y 'V 19harvest "harvest
harvest
eq. 1.28
= R2 "
y'x”...xhk’yiml
harvest. eq. 1.29

Since the size of the confidence interval about a given wheat yield
estimate is one convenient statistical measure of the relative predictive
value of that estimate, a convenient representation of the CI should be
given. It is known as the confidence interval half-width. For standardi-
zation purposes it is necessary to express the confidence interval half-width

as a percent of the estimate. Thus we have

-

/\ ‘
cr = 100 [( Y (v(y ))i’ + (u-1) )f qu ] eq. 1.30
half-width ‘ 4 d.f., 1-a/2) 'qharvest ; harvest

as a measure of performance of the model.
Computation of CI half-width for given Xj (independent variable)
combinations will show the sensitivity of a time period i model to given

predictors for a given region of the world.

Part 11l1. Confidence About the Predicted Yield Given Xj with Error

The third measure of model performance is defined similarly to that
of Part |Il. The difference for this case is that the Xj (independent

variables) are measured with some error, expressed as

)



d =X-—%, § equal to the true value of the variable.

If V=Y =%, " equal to the true value of Y, and d and ® are

. = 2=
independent and normal with respective variances of ¢ and & ,

/’r/\
then we may determine V(Y ) . Keeping (1962) shows that by
"Yharvest 2
using the method of grouping V QBJ) may be estimated by
T R 2. _Z 2 " 2
= a » @ = S — SISEN S
V 6.) \/( A\ *‘ﬁJ d) 9 "zﬁ.j ’(J‘a 1 ﬁj S‘J eq. 1.31
AN v ——\
here /3‘ — Y<f3 TL' where the
J p— —
X(PVS XLr\I‘
Yi and the Xirv (for given irv) have been grouped into three
qharvest q

classes according to the relative value of the xirvq'

Then expanding and substituting into formulae given by Steel

and Torrie (1960) we have for q =

__/\
V(,Y\iq ) = Sg.x "'xk\( \{
harvest 2 X

2
S
(l) + %l- x‘ KkK \{ '\\.\a(o@d' (u \)

-\ pavvesTt

KK ; o A A 2
& [%'(S‘d “QFJVSXJ‘& + ﬁj Sxi)] (leg - Y(j. )

KK
+ ;L[jf; (Sé ﬁJ Se. )(Sa FXS",Q)]

25

CJ‘Z '—YLJ')(XJZ _YL',Q)

eq. I.3é*i

The confidence interval is thus

A
Y

'qharvest

s,
tas, - A V(Y‘Zlm ;;) & (U‘l)' (w-\)-kk -1 J'G.fq- 1.33

* Fostnsle IH(mn‘m\th\ OZ L[L sk 12 hedled sv.?“i(o;\[ﬁ& +5 @3@(«'{':‘6"\ .25
with respect o netadion



From this interval a confidence interval half-width for Y. may be
harvest

stated as a * percent of the estimate for a given o level of probability

(see Part 11). Computation of this quantity for given chombinations would

show the sensitivity of a time period model to given predictors and their

respective precision of measurement for a given region of the world.

Part IV

The fourth aspect of model sensitivity consists of the comparison

D = (v CI halfy, ... ~— (Y, CI halfd, .
Ay WiLH "harvest widthxj Withowe  eq. 1.3

iq -
harvest width™j PP &rror

This equation should be applied to all combinations of statistically

significant Xj composing models satisfying eiq assumptions.

Part V: A Measure of Accuracy of the Model

A measure of accuracy for Model Type I can be defined as the root
mean square error of the yield estimate about the actually observed value.
The accuracy of the model for a given time period i may then be expressed

as a percent of the mean observed value as follows:

¥ 3L

A o 2 —
AccfraCY = 100 - (E[Yi -—Yi ]2) SV eq. 1.35
of Y. "harvest harvest Iharvest

harvest

The model may be considered inaccurate or biased if an F-test involv-
ing the ratio of the mean square for predictions about their corresponding
observed values (representing lack of model fit) to the variance of
actually observed values indicates rejection of the hypothesis of no

significant difference between those two ratio components (after Draper




and Smith 1966). That is, the model is biased if
u A
g (Y, = }2 & uw—KK —1 |
a=1_"Inarvest 9harvest 5 B2 u—Kk=1, u - o
u o
z (Y, -, )2 2 (u=—1)
q=1 "Yharvest 'harvest
where o = a chosen confidence level for u — KK — 1 and u — 1
degrees of freedom.
From eq. 1.35 we have the mean square error for the yield estimate,
Yi , as
Yharvest
- - 2
MSE (Y. I E(Yi = e ) eq. 1.37
Yharvest 9harvest Yharvest

It can be shown (Raj 1968) that

MSE (Y. —— V(Yi ) + (B(Yi ))? eq.

harvest Yharvest harvest
_ B(Y.q ) 2
_ V(Yi Y (1 + _ harvest e
Yharvest c(Yi )
\ 9harvest
where V(Y. = 02(Yi ) and B(Yi ) represents the
harvest Yharvest harvest

bias associated with Y.
harvest

estimate of V(Y.
i
harvest

1f we let Y.
harvest

be defined as

Substituting into eq. 1.39 the appropriate

) and its square root, we can solve for B(Y,

harvest

represent the average of observed yield, then bias may

¥

1.36

1

]

.38

.39



B(Y, ) = it b o= % eq. 1.40
Yharvest 9harvest harvest
The important result to be obtained here (Raj 1968) is that as long as
B(Y. )
'"Yharvest <«
= - 0.1, eq. 1.h41
v, ))
harvest
the foregoing confidence interval sensitivity analysis will be relatively
unaffected.
Other methods of detecting model bias, as well as ways to correct it
are given in Appendix |I.
2,1: Model Type ||
A second probabilistic approach to mathematical modelling is that
offered by Markovian Process. In essence, this method involves defining
an initial state for wheat and then multiplying it by the probability
that this wheat state will give rise to a given wheat yield class at
harvest time. The mathmatical expression for this model is shown
below (Chorafas, 1965).
= =] [ 7] B ]
P11 Pi2 Piseo+Pig Yes1 ‘ Yoo
P2] § . eq. 2.1
r=2 s=2
Pn] Pn Pn3" Pnn Y Y
L _ L. =0 S=h
b —
(matrix of transition _ state state
S X
probabilities) vector vector
at at
t=1 t=2
(ti=l) (ti=harvest)



Prs are the conditional probabilities for the events Ys given that for
each such event a corresponding event Yr has occurred during the
immediately preceding trial. PrS may be defined by calculations of
relative frequencies from historical data. These frequencies are, of
course, dependent on past environments for a given time period, that
is, Prs = f(?,E;§,F,§;EiE§) where these vectors where defined in the
discussion of Model Type I.

The matrix of transition probabilities is defined as a stochastic
matrix if it is square, Préio, and the sum of each transition state
(row) equals one. A stochastic matrix in combination with the initial
probability P’ro completely define a Markoff Chain. A requirement for
a sequence of states to be considered a Markoff chain is that the

" transition probabilities must not depend on states earlier than the
operand.

To define the initial probability P/ro or state of the wheat

system, let Yr equal a predicted value of yield (i.e., a potential

yield class), Yt’ > at time equals i. Intervals of i might cor-
¢
respond to phenological states of wheat. Let Pt' represent

t t'{harvest
\

the stochastic (transition) matrix where tharvest represents time at

harvest with respect to initial time i. Equation 2.1 then becomes

—
N I=Y =Y Py
C P vt r £ . 15 r = 1l-»n
0=Y_ #Y - .
E .
k¢ P Y = 1-sn
ns r
stochastic t; state 1877
matrix vector harvest
state vector
< markoff chain >

rd

eq. 2.2



A
Given Yt‘ from a regression model as in Model Type I or from some
(&

- A
simpler predictor*, multiplication of Pt‘—»t' Yt‘ will give
A ™ “tharvest ¢
the probability distribution of Y_| , where o it is
Lharvest ™ “tharvest

based on past frequency data for the time interval t; to t(harvest.

-

Pt gives the conditional probabilities for attaining

e —pt 7
{7harvest
specific events (in this case specific harvest yield classes) given

that for each such event a corresponding event (potential yield class)

existed or was predicted to exist at time t;.

-
P should be constructed for each initial time i

t‘-—H:'Lharvest

selected in the growth cycle of wheat. The individual Pi ns will
]

represent the relative frequency at which predicted or potential

yield class r at time i will end up in class s at harvest time. The
frequency values will be obtained from actual observation of‘? at time
i versus the eventual yield, Y. It follows, similar to Model Type I,

that over time the predictive ability of the transition matrices

P A
Pt will be significantly improved as more Yt' versus Yt

lq »
t t‘harvest ¢

v
observations are made. This improvement process should be greatly

enhanced by more accurate assessment of factors controlling growth

A b
(hence more accurate Yt') andA%easurement of eventual yield provided

(&
by satellite data. |In the above sense, both model Types I and II

*Example of a simpler model:

Y, = actively = b +b.y -
L metabchzxnﬁ 0 1 ratio _
biomass
where X .., = reflectance in .005 xm band centered on .8 um

reflectance in .005 ym band centered on .68/4m

.8 mm band indicates actively metabolizing biomass
.68 um band indicates solar radiation absorption by plant chlorophyll

Reference (Tucker et al, 1973)

2.3



are capable of '"learning' via feedback from previous data.

2.2 Measure of Performance for Model II

The accuracy of the yield prediction for any given time period

i in Model II may be assessed by determining the probability in
-
the stector centered on the eventual observed value Y¢. . The
harvest
yield class interval on either side of Y. is obtained by
harvest
normalizing the observed yield to its population parameters and then

determining the yield class limit that will allow .5 - /2 probability

between it and Y¢.

harvest :
normalized.

The total interval around Y. will then contain

i
harvest .
normal ized

| —® probability, where & is a null hypothesis (HO) rejection level.

To normalize Yti we proceed as follows.
harvest
Yy, = z=v, =
harveStnormalized "Wharvest eq.
n
where
th L
w=w element of Yti population.
: harvest
m
n =z “t _ . N
w=1 harvest = population mean for a given time eq.
- m period i Y
> (“tiw TV ¥ =
&, =|w=l harvest harvest eq.
L m
0}1 = population standard deviation

m = number of members in population

2.4
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But since m is often much less than 50 we must considerlz' as a

sample mean Y and thus must use the t distribution to "4~ noemalize

Xt. . Then
i
harvest
Ytih est ST Ytiwharvest —-Yti
arvest-normalized harvest
S__
Yti
harvest
m
wWhere E: L . sample mean for a
iw . ; 4 .
7 ~ w=t harvest = given time period i
harvest
m -—
Y - 2 2
S'Y_ = Z(tiw Yti ) ]/
tR w=1 harvest harvest
i
harvest =
Sv- = sample standard deviation
18
"harvest
w o= wth member of sample
m = number of members in sample
For both z and t notethat there is only one Yt obtained

¥ |wharv—ast
per wheat life cycle. This situation implies an improvement in
estimation of means and standard deviations over time as more

Yt data become available.

iw
harvest

To find the yield class limits containing 1= o probability

centered on Yt we must calculate the following confidence
. 'harvest
interval:

Ve Y otaf, 1= 2) Y

i t.
rv
hanvest |harvest

\)

eq. 2.7

eq. 2.8

eq. 2.9

eq. 2.10



where d.f. = degrees of freedom = m-I.

letting t(d.f., l—-&/Z)SV- = C
Y
harvest
Y ‘ focial &

. .. . . &
we can obtain the probability in the YS vector '™ Hhe interva
centered on Yt from

"harvest
s=Y +C =

ti upper

prob = harvest
eq. 2.11
Y
S L)

S=Yti = & =Slower

" "harvest

If ¢ is not equal to an integer value then interpolation between

-—
interval bounding yield classes in YS is performed to obtain partial

yield class probabilities. |If either S lies beyond the

or S
lower upper

—
possible range of s in Ys then the confidence interval is expanded
in the possible direction an amount equal to the interval lost in
the other.

The proposed measure of accuracy for Model II can then be stated as

¥

= - X - |
Model II Accuracy (1 ) prob 49 , eq. 2.12

1 - X
Caution is stressed in the use of the measure as the number and numerical

width of yield classes may affect the outcome.

3.,\: Model Type III

Difference equations offer a third approach to mathematical modelling.
This deterministic procedure is defined by the following model (Smith and

‘Williams, in publication):



N
Y = Y + dY (t . ") eq. 3.1
dt
where
Yt = estimated yield at yield time t
yield
Yt = vyield status (e.g., biomass present) at
i the end of some previous time period ti
(e.g., a phenophase)
i
’ ti>Tyield
= rate of change in yield status from t, to
dt

tyield; this rate of change may itself

change according to, for instance, the

phenophase of wheat.

The solution to equation 3.1 may be obtained by substituting

Y (i t;) eq. 3.2

t.=>t,. - L
| Y\C\d th (= l-t'i_H

where

ol = the intrinsic rate of increase during time period ti

T.35.8.C.EN)
i Pttt €d. 3-3

where the function components were defined in the dis-

cussion of Model Type I.



Then equation 3.1 becomes

S

A
Yt =Y + e
yield i

This equation may be expressed as a circuit analogue and then solved

in an analogue computer or may be solved via digital computers. Accuracy
A

may be expressed as a percent difference between Y and the Yt
yield yield

observed evaluated with respect to Y For g=l,u observed wheat.
yield

life cycles, accuracy may be expressed as a mean value together with

a confidence interval for specified X (probability) level.

3.4



Appendix I: Correctness of the Model

Recall that in performing the regression analysis the following

assumptions were made about the errors (residuals),

A ‘
= Y — Y , g=1,u.

e. . L
'q 'qharvest (observed) |qharvest

These were that the eiq are independent, have zero mean, and a
constant variance 0. A final assumption necessary to conduct F tests
was that the eiq were normally distributed. If the fitted model is
correct then the residuals should not exhibit a violation of these
assumptions.

If the above assumptions for eiq are not met then bias will be

Pa
introduced in the yield prediction Y, . To determine if the

'"Yharvest

regression model is correct an analysis of the residuals is made.
This analysis may be performed firstly by plotting the ®iq as follows
(Draper and Smith1966): (1) overall to determine if the residuals resemble
a normal distribution with zero mean; (2) versus time, (3) versus

% , g=1,u, (see also Lee 1969), and (4) versus Xijq (independent

harvest

variables j for time period i) to determine trends in the resulting
pattern of residuals. The trend patterns may be of four main types:

(1) residuals lie in a horizontal band indicating a correct model
satisfying the eiq assumptions; (2) a widening or narrowing band
indicating a non-constant variance and implying that a weighted
least squares analysis should have been used; (3} a band of constant
width with positive or negative slope indicating the departure from

the fitted equation is systematic (e.g., negative residuals correspond

to low t's, Y. s, oF Xi' 's, positive residuals to high t's,
harvest J4



Y. 's, or X.. 's); or (4) an arched band of constant width
iq ijq
harvest ‘
indicating the need for extra terms in the model (e.g., quadratic
terms) or the need tor a transformation on the Y, 's before analysis.
harvest

Caution must be exercised in analyzing the pattern of residuals as
more than one trend may be present.

The second major method for analysis of the error terms, eiq’

involves statistics Tpr (Draper and Smith, 1966) for trend patterns

2 through 4 above. These statistics are:

1 |qharvest

e. Y

u
For trend 2: T ==2~ e, Y
21 iq
q=
>
=1 '9

For trend 3: T = iqharvest

Tl] should equal zero if this trend is not present.

u
-3
For trend 4: TIZ = E::ei Yi .
q=1 9 "harvest



VI. PROCEDURE AND STATISTICAL MODEL WHERE GROUND DATA
IS AVAILABLE

This section outlines a general ground data collection and
sampling scheme that optimizes processing of remote sensing data
and ground data by reducing the ground data needed through infor-

mation gained from ERTS data for the inventory of a single crop.

The models proposed here rely heavily in the first stage
on the information extracted from the spacecraft data by both
human and computer to provide the desired accuracy of the esti-
mate. The second stage is based on low altitude aircraft photo-
graphy of sampling units selected using the satellite imagery.
Because estimates of yield per acre of wheat are needed, two

stages are required to obtain adequate information.

Q;The first stage of the model starts with the human strati-
fication of spacecraft imagery. At this point, political and
administrative boundaries may also be superimposed on the imagery —
to define the geographic area of interest.ééﬁext, to train the
discriminant analysis program, fields identified as wheat by
ground data or photo interpretation are located on small-scale

photos for extraction from the ERTS digital tapes.

The number of training fields required for each crop class
depends on the variability of the spectral signature of the

wheat present. This variability is caused by such factors as



different cropping practices, local soil difference, genetic
variations, and local climatic conditions. These fields are
identified on and extracted from the spacecraft imagery and
supplied as training to the discriminant analysis to obtain a
point-by-point identification of wheat for the entire area by
strata (as defined by the human interpreter). This provides an

initial estimate of the acreage of wheat by strata.

The discriminant analysis results must then be sampled in
some manner to determine the relationship between the discrimi-
nant analysis estimate and the true value or ground estimate of
the resource. Sampling units (SU's) are defined by breaking
the entire area into rectangular areas which in the case of the
ERTS study were based on the coordinate grid generated by the
MSS system. The size and shape of the rectangular areas is
determined by the accuracy requirements, thé change in variabil-
ity of the estimates by the SU's as their size is changed, the
cost of making further estimates on‘the SU's on conventional

imagery.

Because the variance of the acreage and yield estimate
appears to be proportional to the ERTS estimate the variable
probability sampling will provide the most efficient sampling

design.



Variable Probability Sampling Model

Variable probability sampling and the associated estimators
is a special case of the "mean of the ratios estimator" where
samples are allocated proportional to the expected variance of
the X5 estimate. For this model, the total value of the ith SU,

denoted by X;, is evaluated using an indicator function.

M J
T le jZl "n'3
where Ly = 1 4f Cor = J

{Im = 0 otherwise

Cy = crop class for the mth "pixel"
(picture element) of the SU, as
determined by the discriminant
analysis,

M is the number of "pixels" per SU,

Vj is tﬁe expected yield per "pixel"
of jth wheat class

J = the number of crop classes.

The value (vj) is assigned to rank the wheat strains and
condition classes by their relative yields. Then (n) points
are then selected from the list of SU's proportional to their

estimated value.




The selected SU's are then carefully transferred to the
corresponding high flight photography where precise field size
measurements are taken. From high flight images, low altitude
images, ground identification and historical data, an estimate
of the area of wheat (A;) in the SU is determined. Yield per

acre (Y;) for the field identified as wheat is made using con-

ventional ground sampling methods.

The total production for the area (T) is estimated using
the probability of selection (Pi) and the photo/ground estimate

of SU value (Y;) by

g
I
S
I
4]
|.<

The variance of the estimate for T is

2 i = Y 2
— E: P, et - &
n d=1

N
s = Var (T)

P



If the photo/ground estimate (Yi) were perfectly propor-
tional to the remote sensing estimate (Xi), only one ground
sample would be needed to determine the proportionality con-
stant. More realistically, however, the number of ground sam-

ples (n) for the inventory would be estimated by:

Nt2 s%2
no= 2 2 A2
N (AE) +ts’T‘
AE = allowable error, in units of wheat production
t = from "Students t" tables and
s@z = defined previously

This variable probability sampling model is appropriate
when a single parameter such as acreage or yield of a single
crop, value of all the crops present, or demand for irrigation
water is desired and the source of X5 is proportional to Yi'
It must be replaced by a regression sampling model if the re-
lationship between the ERTS estimate and the ground estimate

does not pass through the origin.



It has been found that when this occurs consistently,
either confusion classes occur in the same strata, causing
acreage to be added (Figure VI.l) when non-wheat is called
wheat, or acreage is subtracted (Figure VI.2) when wheat is

placed in a non-wheat class.

Ground (Figure VI.1)
Acreage
ERTS Acreage
Ground %X:$ (Figure VI.2)
Acreage 2
= 9
.\l
1

ERTS Acreage



When this occurs the Least Square estimators are appro-

priate using either model

Yi = Bo* BiXi+t ey
where Y; = photo/ground estimate for the
ith sampling unit
X; = the ERTS estimate for either
ith sy

Bo & By to be estimated using the Least
Square error procedure based on the n

sampling units.

The estimate of the total acreage for the area is then

A = - -
Y = Y+ g (k - x)
n
T - L)y
= T 3
S = |
n
§=LZX1
n =1
N
* 1 }‘
X=—-—1Xi
=
n = number of samples selected

N = total number of samples



Due to the complexity of the estimators for the variance
of the parameters estimated and the associated sample size cal-
culation, they are not presented here. The determination of
sample size n 1is similar to the determination of n for the

variable probability sampling model described earlier.

SUMMARY

The estimates of precision and accuracy are essential to
the final acceptance of the estimates from the production model
by the agencies currently producing and utilizing the estimates,
and to the peace of mind of the investigators presenting the
results. Therefore, the extension of these estimates to analo-

gous areas throughout the world is an important area of study.

The application of these techniques to the wheat production
problem will also be essential to obtain the estimétes of accuracy
and precision acceptable in the model at a cost that will allow

effective application of the entire program.
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