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1. AGRICULTURAL SCENE UNDERSTANDING

Task 1, Agricultural Scene Understanding, consists of four sub-tasks
which have the common objective of increasing our understanding of the
energy-matter interactions in agricultural scenes. The tasks are: (A)
LACIE Field Measurements, (B) Thermal Band Canopy Modeling, (C)

Forestry Applications Project, and (D) Soil Classification and Survey.

A. LACIE Field Measurements

I. Introduction

Major advancements have been made in recent years in the capability
to acquire, process, and interpret remotely sensed multispectral measure-
ments of the energy reflected and emitted from crops, soils, and other
earth surface features. With the initiation of experiments such as the
Large Area Crop Inventory Experiment (LACIE), the technology is moving
rapidly toward operational applications. There is, however, a continuing
need for quantitative studies of the multispectral characteristics of
crops and soils if further advancements in the technology are to be made.
In the past, many such studies were made in the laboratory because of a
lack of instrumentation suitable for field studies. However, the appli-
cability of such studies is generally limited. The development of sensor
systems capable of collecting high quality spectral measurements under
field conditions has made it possible to pursue investigations which would
not have been possible a few years ago.

A major effort was initiated in the fall of 1974 by NASA/JSC with the
cooperation of the USDA to acquire fully annotated and calibrated multi-
temporal sets of spectral measurements and supporting agronomic and meteoro-
logical data. Spectral, agronomic, and meteorological measurements have
been made on three LACIE test sites in Kansas, South Dakota, and North Dakota
for three years. The remote sensing measurements include data acquired by
three truck-mounted spectrometers, a helicopter-borne spectrometer, two air-
borne multispectral scanners, and the Landsat-1 and -2 multispectral scan-
ners. These data are supplemented by an extensive set of agronomic and
meteorological data acquired during each remote sensing data collection
mission. The data collection program is illustrated and summarized in
Figure A-1.

The LACIE Field Measurements data form one of the most complete and
best documented data sets ever acquired for remote sensing research. Thus,
they are well-suited to serve as a data base for research to (l) quantita-
tively determine the relationship of spectral to agronomic characteristics
of crops, (2) define future sensor systems, and (3) develop advanced data
analysis techniques. The data base is undoubtedly the largest of its type
now available for research purposes. It is unique in its comprehensiveness



in terms of sensors and missions over the same sites throughout the growing
season. The calibration of all multispectral data to a common standard is
also unique. Finally, the kind and quantity of supporting agronomic and
meteorological data is impressive compared to most remote sensing experi-

ments.

During the past 18 months, several key milestones were reached. The
first of these was completion of data processing for the 1974-75 and 1975-
76 data. These data, including over 75,000 individual spectra, are avail-
able from the data library. Significant improvements were made in the
second and third year data acquisition and processing procedures; and,
additional data evaluation and verification steps were implemented. Lastly,
data were distributed to researchers at five different institutions.

At the beginning of the project, Purdue/LARS was requested to provide
the technical leadership and coordination for the project, as well as assume
major responsibilities for the acquisition, processing, distribution, and
analysis of the data. This report summarizes our activities and results of
the past 18 months (June 1976 through November 1977) since the final report
for the previous contract was prepared.

The second section of the report summarizes our activities in acquiring,
processing, and distributing data. The third section discusses calibration,
verification, and correlation of the spectral measurements--a fundamental
aspect of the entire effort. The fourth section describes the results of
analyses of the data performed thus far. The concluding section presents
recommendations for future field measurements work.

II. Data Acquisition, Processing, and Distribution

This section describes the field measurements data acquisition, proc-
essing, and library functions performed by LARS during this contract.

a. Data Acquisition

Data acquisition activities during the past 18 months have included
two summers of data collection in Williams County, North Dakota. The sites
of data collection were the North Dakota State University Agricultural
Experiment Station near Williston, the calibration location at the intensive
test site (ITS #1960), and a commercial wheat field used for acquiring canopy
modeling data. The activities were a continuation of those begun during 1975.

At the agricultural experiment station, spectral bidirectional reflec-
tance factor, radiant temperature, agronomic parameters, and meteorological
conditions were measured for experiment designs containing 60 plots in 1976
and 70 plots in 1977. The treatments represented major agronomic factors
affecting the growth, development, and yield of spring wheat and other small
grains.
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At the calibration location in the intensive test site, spectral
bidirectional reflectance factor data were collected over gray panels used
to calibrate the FSS (helicopter-borne spectrometer) and aircraft multi-
spectral scanner (MSS) data. Also during 1977, additional measurements
were collected in parallel with the FSS and the NASA truck spectrometer

systen (FSA4S) to deternine how vell the data from the three instruments

were correlated.

At the modeling field, Landsat band reflectance factor measurements,
photographic, and agronomic measurements were collected. The data is to
be used to help develop and test canopy models. In addition, during 1976,
spectral bidirectional reflectance factor and radiant temperature were
measured at view angles distributed over the complete hemisphere for
several sun angles during the day.

Additional details describing the data acquisition are provided in
the LACIE Field Measurement Project Plans [1, 2].

1. 1976 Data Collection

Agriculture Experiment Station. Data were collected over 60 spring
wheat and other small grain plots. The layout of the experimental plots
is illustrated in Figure A-2. There are three overall experiments includ-
ed in the plot design - small grain, planting date, and seeding rate.
Some data, when time allowed, were collected for a fourth experiment -
other crops. The other crops were in separated locations at the experiment
station. The dates of data collection over the plots and corresponding
wheat growth stages are illustrated in Figure A-3.

The spectral bidirectional reflectance factor data were collected by
the Purdue/LARS Exotech 20C field spectrometer system (Figure A-6). Prob-
lems were experienced with the portable motor-generator set which supplied
AC power. Frequency variations caused the data signals to be wow modulated.
An algorithm was implemented which corrected the data signals absolutely,
i.e., no assumptions were made. The correction used to eliminate the tape
recorder wow worked very well. The results indicate that the error due to
the wow modulation was reduced to practically zero. A report has been pre-
pared which describes the algorithms and the results of the correction.

Meteorological measurements, including air temperature, barometric
pressure, relative humidity, wind speed and direction, and total irradiance,
were recorded continuously during each day that spectral data were collected
(Figure A-6).

Detailed agronomic measurements were made for each plot at the time of
spectral data collections. These measurements included: growth stage; canopy
height; percent ground cover; percent green, yellow, and brown leaves; stems
per meter row; leaf area index; fresh biomass; dry biomass of leaves, stems,
and heads; and surface soil moisture and condition. Grain yield was measured
at harvest. The agronomic data are supplemented with vertical and oblique
views of each plot at the time of data collection.
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Wheat
Date Plot Numbers Growth Stage

0 10 20 30 40 50 60
L} 1 T T |

May 30 &\_\X\\;&\_\\\%\S&&\\N Tillering

sune 6  AANNNNNNNNNNNNNWNNNNY] - Tillering

June 13

sune 20~ ANNNNNNNWNXNNNNNNNNNNY  sten Extension

June 27 |
July 4 [~ 7

m Heading
July 11

NNNNNNNNYY - Heading
July 18 = ANNNNNNNNNNNNNNNNNNYY Ripening
LANLANRNNN AR

August 1 |- \\\\\\\\\\V Ripening

August 8 L };\\\\\\\\\\\\\\\ N Ripening/Harvested

Figure A-3. Summary of data collection dates, plots measured, and spring
wheat growth stages at the Williston Agriculture Experiment
Station during 1976.



Calibration Measurements. Spectral bidirectional reflectance factor
measurements of gray panels were collected at the intensive test site three
times (May 28, June 25, and July 28) during the summer in support of the
FSS and aircraft MSS data calibration. Measurements were collected over
the brightest gray panel (panel 1) having a nominal reflectance of 557 which
is used to calibrate the FSS. Measurements were also collected over the
four darker gray panels which along with the bright panel can be used to
calibrate the aircraft scanner data. These measurements have also been used
for instrument verification and instrument correlation of the FSS, FSAS, and
Exotech 20C.

Canopy Modeling Measurements. Canopy modeling data including Landsat
band reflectance factor measurements, profile and angular photographs, and
agronomic measurements were collected four times during the summer (June 19
and 21, July 17 and 31). The data collected and procedures used were for-
malized in conjunction with Colorado State University and the Environmental
Research Institute of Michigan. The data were collected over four separate
locations within the modeling field to sample the field.

The Landsat band radiometer data were collected six to eight different
times during the day. The photographic data included angular photos at 10°
intervals from 0° to 50° zenith angles both with the row and across the row.
Photographs were also collected illustrating the profile of individual wheat
plants. The agronomic data included plant counts, plant height, leaf area
index, biomass, plant condition, head area, and stem area.

An experiment was also designed to collect angular spectrometer data.
Data were collected for the experiment only when time, resources, and weather
conditions were adequate. In other words, the agriculture experiment station
plots were the first priority. Angular measurements were collected three
times during the summer (June 21, July 17 and 31). The data set consists of
spectral measurements over the range of 0.4 to 2.4 ym made at approximately
hour intervals at five zenith and eight azimuth angles.

2. 1977 Data Collection

Correlation Experiments. Data were collected in conjunction with the
NASA truck interferometer system (FSAS) and the NASA helicopter-borne spec-
trometer (FSS) to determine how well the data from the separate systems
compare. The Purdue/LARS Exotech 20C spectrometer system was driven to
Finney County, Kansas during mid-May. Poor weather conditions postponed
the experiment until May 22. Data were collected with the FSAS on May 22,
23 and 24. The FSS didn't collect data with the trucks since it was in
South Dakota during that week.

The experiment, designed in cooperation with personnel from NASA/JSC,
included measurements of the five gray panels, the new light gray panel used
to calibrate the FSS, a green color panel and measurements to determine the
extent of reflective interactions.



Unfortunately, the data collected by the FSAS system was later lost.
To complete the experiment, the FSAS was driven to Williams County, North
Dakota during mid-July where the Purdue/LARS field spectrometer system
was stationed. A complete correlation data set was collected by the truck-
mounted systems on July 13 (see Figure A-7). Data for the correlation
studies were collected with the FSS on July 15 and August 4. These data
along with the Purdue/LARS Exotech 20C data collected in late May in Finney
County, Kansas will be used to verify the correlation of the different
instrument systems and determine if any problems exist.

Agriculture Experiment Station. Data were collected over 70 spring
wheat and other small grain plots using the Exotech 20C field system and
an Exotech 100 (Landsat band radiometer) field system. A new experimental
design and layout of treatments was used this year which made collection
of data more efficient and will improve the statistical soundness of the
data (see Figure A-4). The key aspect is that, for example, if only a
portion (16 or 32) of the plots can be measured in a day, they are a com-
plete statistical unit, i.e., replicated treatments. The small grains
treatments were expanded and given increased emphasis in the new design.

Six sets of data were collected over the plots (see Figure A-5).
Excessive cloud cover during the first half of June caused a three week
break in data collection. The Exotech 20C field system (see Figure A-6)
collected high wavelength resolution data over as many plots as possible
once during the day. The Exotech 100 field system (see Figure A-6) was
built during early June. The system was designed to collect lower spectral
resolution data over all plots several times during the day to study diurnal
reflectance changes. The system consists of a boom and platform mounted
on the top of a van, the Exotech 100 instrument, a hard copy data logger,
and two operators. One operator, on top of the van, levels the instrument
and verifies the target location. The other operator records the data and
drives the van. During operation the Exotech 100 radiometer is positioned
four meters above the ground and 3.5 meters away from the van. The system
collected a set of data over all 70 plots in an hour. The measurements
were repeated every 90 minutes. The system performed very well and it is
recommended that data collection systems of this type be used in the future
to increase the number of treatments and/or replications which can be
measured compared to high spectral resolution truck-mounted systems.

The same agronomic and meteorological measurements were made in 1977
as in 1976.

Calibration Measurements. Spectral bidirectional reflectance factor
measurements of the canvas calibration panels were collected at the inten-
sive test site on June 29, July 17, and August 4 in support of the FSS and
aircraft MSS data calibration. Measurements were collected using the Indoor
Exotech 20C [3] on September 14 at Purdue/LARS. With the Indoor Exotech 20C,
the spectral bidirectional reflectance factor of the helicopter calibration
panel (gray panel 1) was measured by comparing the gray panel directly with
pressed barium sulfate as opposed to an intermediate standard of painted
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Wheat
Growth Stage

Seedling/Tillering
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Stem Extension

Early Heading

Heading
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Ripening/Harvested

Summary of data collection dates, plots measured, and

spring wheat growth stages at the Williston Agriculture

Experimental Station during 1977.
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Purdue/LARS Exotech 20C Field System, Purdue/LARS Exotech 100 Field System,

Weather station near the experimental Portion of the experimental plots
plots. illustrating variations in maturity,
height, and biomass.

Figure A-6. Illustrations of data collection systems and
experimental plots at Williston, North Dakota
Agriculture Experiment Station.
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Purdue/LARS Exotech 20C field Purdue/LARS Exotech 20C field
system at calibration site in system and NASA/JSC FSAS at
Williams County, North Dakota. calibration site in Finney County,

Kansas for correlation experiments.

Purdue/LARS Exotech 100 tripod- Purdue/LARS Exotech 100 tripod-
mounted field system at calibra- mounted field system at modeling
tion site in Williams County, field in Williams County, North
North Dakota. Dakota.

Figure A-7. Illustrations of data collection systems at the

calibration site and modeling field in Finney County,
Kansas and Williams County, North Dakota.
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barium sulfate. Additional aspects of the calibration procedures and data
acquisition are described in the Calibration and Verification section.

Canopy Modeling Measurements. At the modeling field, radiometric,
photographic, and agronomic data were collected in support of the wheat
canopy modeling studies (see Figure A-7). The modeling data collection
activities differed from past years in that a fairly complete set of data
were collected over four plots at the agriculture experiment station and
only a partial set of data were collected over a large commercial field.
Usually modeling data are collected only over a large commercial field,
but the commercial fields of spring wheat in the area had been planted
two to three weeks earlier than normal and were therefore past the tiller-
ing stage before our data collection began.

Following discussions with Mr. Malila of ERIM, it was decided that
the first priority was to collect modeling data over four plots at the
experiment station in order to obtain data for investigating the detection
threshold of wheat. Modeling data were collected in a commercial field
when time and weather allowed. The dates on which modeling data were
collected on the four plots are: June 1, 18, 19, 23; July 3, 4, 5, 7, 14,
20, 28; and August 8. Data were collected at the commercial field on
July 19, 22, 23, 25; and July 18.

The modeling data include Landsat band reflectance factor measurements,
profile and angular photographs, agronomic measurements, plant counts, plant
height, leaf area index, biomass, plant condition, head area, and stem area.

b. Data Processing and Distribution

The data being processed for the field measurement project at Purdue/
LARS are of two basic types, multispectral scanner data and spectrometer
data. The data are from three sites: Finney County, Kansas; Williams
County, North Dakota; and Hand County, South Dakota. The multispectral
scanner data includes that from the 4-channel Landsat MSS, the ll-channel
MMS on the NASA-P3 aircraft, and the 24-channel MSS on the NASA-C130
aircraft. The spectrometer data includes that collected by the NASA/ERL
Exotech 20D field system, the NASA/JSC Field Spectra Acquisition System
(FSAS), the NASA/JSC Field Spectrometer System (FSS), the Purdue/LARS
Exotech 20C field system, and the Purdue/LARS Exotech 100 field system.

The data is processed into comparable formats in order to make mean-
ingful comparisons of the data acquired by the different sensors at different
times and locations. The spectrometer tapes (EXOSYS format) contain the
spectral bidirectional reflectance factor measurements along with the
corresponding agronomic and meteorological measurements. Processing of
the Exotech 20D, Exotech 20C, and FSS spectrometer data includes keypunching
the associated agronomic and meteorological data which is then integrated
with the spectral bidirectional reflectance factor data. The FSAS spectrome-
ter data are converted from the NASA tape format into EXOSYS format; i.e.,
NASA/JSC includes the agronomic and meteorological measurements with the
spectral data before it is sent to Purdue/LARS.
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Processing scanner data is a straight conversion from the original
format (either Landsat bulk or Universal format) to LARSYS Version 3
format. The Exotech 100 bidirectional reflectance factor data is presently
stored as hard copy, listings, or cards.

In the past 18 months, 116 Landsat frames, 108 aircraft runs, and
85,000 spectrometer runs have been reformatted and entered into the field
measurements data library. The data processing/reformatting status is
summarized in Table A-1. 1In addition, four dates and two dates of 1975
Landsat-2 data collected over the Finney County, Kansas, and Williams
County, North Dakota, intensive test sites, respectively, were registered.

The general organization of the LACIE field measurements library is
illustrated in Figure A-8. The data in the library includes multispectral
scanner data, spectrometer data, photography both aerial and ground, agro-
nomic observations, meteorological measurements, flight logs, and verifica-
tion reports. The data formats are either tape, film, or hard copy.

All of the spectrometer data indicated in Table A-1 as being in the
library, plus flight logs, mission reports, and photography have been
distributed to researchers at Texas A&M University and the Environmental
Research Institute of Michigan. Also, data have been provided, upon approval
from NASA/JSC, to Goddard Institute of Space Science and the NASA/Goddard
Space Flight Center.

A Field Measurements Data Library Catalog providing information on
what data are available was prepared for present and future users of the
data [4]. The catalog is divided into separate volumes - one for each
crop year during which data were collected. Each volume lists the data
by site, date, and instrument type. Brief descriptions of the data are
also included.

A document providing examples of the field measurements data (Landsat,
aircraft, FSS, Exotech 20C, Exotech 100, and ground observations) was
prepared in a limited quantity. Two copies were provided to NASA/JSC;
parts of one were later sent to NASA/Headquarters. An additional report
containing examples of the spectrometer data in the form of spectral
reflectance curves is currently being prepared. This document is being
prepared to illustrate the major sources of variation in the reflectance
of wheat and related crops and will contain labeled examples showing
variation in wheat spectra due to differences in maturity, biomass, soil
color, and soil moisture, as well as comparisons of spectra of wheat and
other crops. An introductory text will explain and illustrate how the
data have been acquired.

ITI. Spectral Data Calibration, Verification, and Correlation

a. Calibration Techniques

A key objective of the LACIE Field Measurements program has been the
acquisition of calibrated spectral bidirectional reflectance factor data.
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Calibrated data are required in order to: (1) facilitate comparisons of
data from different sensor systems and (2) compare and relate spectral
measurements made at one time or location to those made at other times or

locations.

Three major sensor types were used to gather spectral data: truck-
mounted spectrometers were used on agricultural experiment station plots;
a helicopter-borne spectrometer was used for agricultural fields; and an air-
borne scanner was used on agricultural fields and experiment station plots.
The data from these instruments were related through the use of five 20x40
foot gray canvas panels and related to the reflectance of pressed barium
sulfate. Figure A-9 shows the initial laboratory comparison of the painted
barium sulfate reference panels to pressed barium sulfate. The painted
reference panels serve as reference surfaces for the subjects measured by
the truck-mounted spectrometers. The truck-mounted spectrometers also com-
pare the painted reference surfaces with the canvas gray panels which are
used as reference surfaces by the helicopter and airplane-mounted instru-
ments. Since the airborne instruments measure the reflectances of fields
having many Landsat pixels, these data may be used to calibrate Landsat
data to reflectance units.

Landsat
Aircraft
Laboratory Truck-Mounted and
Spectrometer Spectrometers Helicopter
Canvas
BaSO BasoO
4 %% Calibration
Laboratory Standard Field Standard Standard Fields

Figure A-9. Calibration method for LACIE field measurements data.
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The truck-mounted spectrometer relied on frequent reference to painted
barium sulfate panels to determine the spectral bidirectional reflectance
factor of the subject. The helicopter spectrometer used frequent reference
to the gray panel having a nominal reflectance of 55%. The airborne scanner
was calibrated by reference to the five gray canvas panels. Calibration and
correlation procedures are described in detail in the Project Plan [2].

Significant characteristics of the procedure described in Figure A-9
are: (1) all spectral reflectance factor data are related to pressed barium
sulfate and (2) each instrument periodically measured the reflectance of
the 20x40 foot gray panels. These procedures enabled the comparison of
instrument performance under nearly ideal conditions and provided a basis
to evaluate system performance as described in IIb, IIIb, and IIIc of this
report.

Key milestones in the development of calibration techniques to date are:

(1) Documentation and implementation of standardized procedures
for field measurements involving truck and helicopter spectrom-
eter data and aircraft scanner data. November 1974. [1].

(2) Improvement of calibration procedures for helicopter data.
January 1976 and April 1976. [5,6].

(3) Development of the hardware and procedures to enable indoor
measurement of the reflectance of painted reference panels and
determination of the bidirectional reflectance properties of
the painted and canvas reference panels. March 1975. [3].

(4) Application of field measurements data to calibrate aircraft
scanner and Landsat MSS data. July 1977. [7].

(5) Side-by-side instrument comparison studies using canvas gray
panels by the JSC FSAS, Purdue Exotech 20C, JSC FSS, and NASA
MSS. July 1977. [8].

The important task of bringing the instruments together for comparative
tests was attempted throughout the project, but was not accomplished until
May and July 1977. The data is being processed for analysis. The results
of this analysis should provide some definitive answers relative to calibra-
tion procedures.

Fundamentals of the Calibration Procedures. The essential field cali-
bration procedure consists of the comparison of the response of the instrument
viewing the subject to the response of the instrument viewing a level reference
surface. The term bidirectional reflectance factor has been used to describe
the measurement: one direction being associated with the viewing angle (usually
0° from normal) and the other direction being the solar zenith angle.
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For the natural situation, however, some of the light incident upon
the subject and scene is due to scattered sunlight. The effects of this
non-directional component (skylight) of the incident radiation have been
assumed to be small with the basis for this assumption being the qualitative
consideration that the skylight component is small compared to the direct
component and that the reflectance of the subject surfaces is approximately
lambertian. The alternative of measuring the diffuse component for the
reference and the target has been avoided due to the added uncertainty
associated with the additional measurements and required computations.

The uncertainties involved in the two measurement situations were
analyzed. During the past quarter an adequate treatment of the analysis
was made possible by: (1) sufficient field experience to provide quantitative
estimates of the uncertainties involved in the measurements and (2) recent
work which quantifies the limit of error associated with the assumption that
hemispherically irradiated agricultural scenes will appear to be lambertian

[9].

The technique of directly computing the reflectance factor is analyzed
with the assumption that the skylight is uniformly distributed and that the
reference surface is lambertian. It has been shown that:

R.(6,4;0,0) = R(8,4,0,0) [1 +K; =K, (6,0)]

where RF is the reflectance factor with respect to the reference surface

measured without regard for the skylight; R is the reflectance factor of the
subject measured if the sky were black (i.e., no scattering); K,(6,¢) is the

ratio of the diffuse to the total irradiance at the time of the measurement;
and K; is the amount which the bidirectional reflectance distribution function

(BRDF) of the subject (viewed along the normal) differs from the BRDF of a
lambertian reflector having the same normal - hemispherical reflectance.

The subtractive technique of measurement of bidirectional reflectance
factor is described as:

L' (8,9) - L' 5 o L' (8,0)

L'S(e,¢) - L'd,S L'D,S(e’q))

R (9,$30,0) =

where L't is the response of the instrument to the total irradiance and

L'd ¢ is the response of the instrument to the shadowed target, and L'D .
] 3

is the computed response of the target to the direct component of the irradiance.
The s subscript is associated with measurements of the reflectance surface.

To provide a basis for comparison, an "'ideal'" measurement was also treated.
This corresponds to a hypothetical measurement under black-sky conditions:

L'}, (8:0)

R(6,¢5 0, Y T
(6,45 0,0) NGRS
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Analysis of the limit of uncertainty associated with these three tech-
niques yields the following limits of relative uncertainty:

Ideal
AR il NEAL
=R [:ﬁ A l] I + tan6A0
D,s
where R is the true reflectance factor, NEAL/L' is the ratio of the noise

D,s
equivalent radiance of the instrument to the direct component of the radiance
of the reference surface and the tanfA® term derives from the uncertainty
involved in orienting the reference surface to a level position.

Subtractive
AL AL
A—i: [%+1:l° IZJI:IEAL+taneAe +Fl +i'_0
D,s dly d,s
where ALT/L'd . is the relative uncertainty associated with shadowing the
<)

target and ALO/L'd . is the relative uncertainty associated with shadowing
b

the standard.

Direct

AR 1 NEAL
=== ° -+ — 3 - o ———— + eAe
R K; * Ky (1-K5) l 0-% %) R IJ L,D _ tan
b

where K; and K; have been described previously. It can be seen that, if
Ky and K; are 0, the direct technique passes to the ideal technique. If K;

is 0, the direct technique is superior to the ideal technique in that the
additional radiant power flux supplied by the diffuse component of the
irradiance will improve the relative uncertainty by providing a greater
signal-to-noise ratio.

Using published and measured values for K; and K, and typical limits

of relative uncertainty associated with field measurements, the limits of
relative uncertainty for each technique have been evaluated and graphed in
Figures A-10 and A-11. The values for K, were chosen to represent moderate

and very noticeable haze conditions. Otherwise, it is assumed that a typical
instrument is making reasonable measurements under worst case conditions.
K1 was selected to be positive since that represents the worst case condition

for the direct technique.
Figures A-10 and A-11 show that the direct method is superior to the

subtractive method in all respects over the range of reflectances encompassed
by environmental scenes and that for moderate haze conditions there is
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scarcely any difference between the limits of relative uncertainty associated
with the direct technique and the ideal technique.

b. Field Measurements Data Verification

An important part of the field measurements project is the acquisition
of high quality, calibrated spectral measurements. To a large degree, this
depends on having timely and quantitative methods available for determining
data characteristics. This information can be used (1) for identifying
sensor deficiencies which can be corrected and (2) by data analysts in
selecting data for analysis and in interpreting analysis results.

In April 1976 a document describing the technical recommendations of
Purdue/LARS for data quality evaluation and verification for the spectrom-
eter and aircraft scanner systems was prepared under NASA contract NAS9-14016.
The recommendations pointed out the importance of the verification tasks
which had been implemented since the beginning of the field measurements
project and included tasks which NASA/JSC and Purdue/LARS needed to implement.

Due to limited resources, not all of the recommendations could be
implemented and some of those that were could not be implemented as quickly
as desired. The recommendations for aircraft and spectrometer verification
tasks are summarized below along with dates indicating when the tasks were
implemented.

* Aircraft Multispectral Scanner Data

1. A record of total irradiance at the aircraft calibration site
as a function of time to determine the illumination conditions.
[NASA, June 1976]

2. Histograms of data to determine detector operation, bit drop-
ping or favoritism, dynamic range, sensitivity, and saturation.
[NASA and Purdue, May-June 1976]

3. Implement a set of machine programmable quantitative measures
to be used during the reformatting process to determine the
quality of the data. [Not implemented]

e FSS Data
1. A record of the total irradiance at the helicopter calibration
site as a function of time to determine the illumination con-

ditions. [NASA, June 1976]

2. A calibration uniformity test. After a cosine correction for
sun angle the calibration spectra should be nearly identical.
[Purdue, January 1977]

3. Histogram tests for the processed data to indicate proper A-D
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conversion. These tests would be similar to those described
for the scanner data. [Not implemented]

4. A system performance test utilizing measurements of a series
of gray-scale calibration panels. [NASA and Purdue, May-July
1977]

- Truck-Mounted Spectrometer Data (Exotech 20C, Exotech 20D, and FSAS)

1. Operational procedures which include frequent checks of
alignment of field of view. [Purdue Exotech 20C, Nov. 1974;
ERL Exotech 20D, July 1975; JSC FSAS, October 1976]

2. Calibration procedures using large barium sulfate field
standards [Purdue Exotech 20C, November 1974; ERL Exotech
20D, March 1975]

3. A record of total irradiance at the site as a function of
time. [Purdue Exotech 20C, May 1975; JSC FSAS, June 1976]

4. A calibration uniformity test similar to the one described
above for the S-191 data [Purdue Exotech 20C, November 1974]

5. Histogram tests for verifying analog to digital conversion
similar to the ones described for the scanner data. [Purdue
Exotech 20C, 1974]

6. A system performance test including measurements of gray-
scale calibration panels. Spectra would be examined for
continuity, form, and magnitude. [Purdue Exotech 20C,
November 1974; ERL Exotech 20D, March 1975; JSC FSAS,
October 1976]

The results of the verification tasks completed are available to the
users of the data. Results of the FSS calibration uniformity test are given
below.

Results of FSS Calibration Uniformity Test. Each of the calibration
panel runs for each date was normalized with respect to sun angle (see
equation A-1) and plotted.

CV, =V _/cos B (A-1)
where
Vt = FSS response to calibration panel at time t,
CVt = Sun angle adjusted, FSS response to calibration panel at time t,
6, = solar zenith angle at time t.
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(See Figures A-12 and A-13 for examples). Ideally the sun angle adjusted
response curves would fall on the same curve. This assumes that the calibra-
tion panel is a lambertian reflector, which is a good assumption down to 50°
off normal. The situations which will cause the curves to be quite different
are:

1. Data being collected on a cloudy day.

2. Not filling instrument field of view with the calibration panels.
3. Instrument instabilities.

4. Shadowing of the calibration panel.

It should be understood that a review of these curves does not neces-
sarily give the whole story about all of the data collected on that day.
However, a review of the plots does point out particular flightlines which
the analyst may want to pay closer attention to. The values given with the
plots (coefficients of variation) attempt to place some quantitative value
on the variation of the curves so that dates can be compared. A summary of
the average coefficients of variation is given in Table A-2. The average
coefficient of variation is not computed with band centers 1.425, 1.475,
1.825, 1.875, and 1.925 pm since they represent regions of strong water
absorption.

The results in Table A-2 indicate that there is significantly less
variation on the adjusted calibration responses for the 1975-76 crop year
than for the 1974-75 crop year.

c. Spectrometer Correlation Studies

The truck spectrometers including the NASA/ERL Exotech 20D, the NASA/
JSC FSAS, and the Purdue/LARS Exotech 20C have collected data over five
gray panels which are deployed at the intensive test sites for the aircraft
and helicopter systems. The data collected by the spectrometers over the
gray panels were used to compare the spectral measurements of the different
spectrometers. The assumption made is that the reflectance of the gray
canvas panels does not change appreciably with time during a crop year.
Experience has shown that the reflectance of the panels changes very little
with time. The bright gray panel used as the FSS calibration panel changes
the most (2-3%) during the crop year because of dust collecting on the sur-
face as the helicopter hovers over it.

Plots of the spectral measurements are shown in Figures A-14 to A-18
for gray panels 1 thru 5, respectively. Gray panel 1 is the brightest and
gray panel 5 is the darkest. Each plot represents the average of all spec-
tral measurements by a given spectrometer for a given year.

Analysis of the data shown in Figures A-14 to A-18 indicate that
there is a significant variation in the different spectrometer measurements
of panel 1. The variation may be caused in part by a variation in the
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Table A-2. Summary of FSS calibration panel response variations.

Williams Co.,
Finney Co., Kansas N. Dakota Hand Co., S. Dak.
Ave. Coef.* Ave. Coef. Ave. Coef.
Date Variation Date Variation Date Variation

1974-75 Crop Year

11/05/74 .13 6/5/75 .09

3/20/75 .09 6/22 .08

4/8 .09 7/10 .09

5/14 <03 7/18 .06 Not
5/21 ol 2 7/27 .02

6/2 .04 8/5 .04 Applicable
6/9 .10 8/15 .04

6/17 .09 8/23 .06

6/26 .04 9/1 .08

7/6 .09

1975-76 Crop Year

9/16/75 .05 5/13/76 .01 10/15/75 .06
10/3 .24 5/28 .01 10/30 =
10/21 .04 6/17 .01 11/5 .04
11/11 .03 6/25 .01 5/11/76 .03

3/18/76 =02 7/6 .03 6/1 .03

3731 205 7/20 .03 6/19 .05

4/18 <02 7/28 403 7/8 .04

5/6 203 8/9 .02 7/31 .03

6/12 .06 8/19 .08

6/30 .07

1976-77 Crop Year

9/28/76 .01 5/8/77 .04 9/21/76 .02
10/15 .03 5/24 .03 10/21 .03
11/3 .03 4/21/77 .04

3/8/77 .02 5/10 .04

5/3 .02 6/16 .05

* Average coefficient of variation (standard deviation/mean) for all
FSS bands except those at 1.425, 1.475, 1.825, 1.875, and 1.925 um.
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actual reflectance of the panel, since the panel is washed about every six
months. Some of the instruments measured the panel before it was washed and
some after it was washed. Also, the margin of error associated with the
1975 Exotech 20D measurements is probably larger than that for the other
instruments, since an optical misalignment occurred during the period of
their data collection at Garden City in 1975. A review of the gray panel
data indicates that the misalignment may have occurred around June 1, since
before this date the gray panel measurements are consistent.

The analysis of the gray panel data also indicates that there is an
offset in the spectral measurements made by the Purdue/LARS Exotech 20C
field system at .73 um. This is the wavelength where the silicon detector/
filterwheel combination ends and the lead sulfide detector/filterwheel
combination begins. The cause was found to be a combination of filterwheel
deterioration and a nonlinearity in the electronics processing of the signal
from the silicon detector which affected the .60-.73 um wavelength region.
Both of these problems were corrected for the 1977 data collection year.
Figure A-14 also indicates a systematic difference between the FSAS and
Exotech 20C measurements of gray panel 1.

Correlation of the data is summarized in Figures A-19 and A-20 and
the linear regression analyses given in Table A-3. The correlation plots
and the linear regression analyses include data for six wavelengths selected
from the wavelength spectrum being measured. If the data from the instru-
ments were correlated perfectly, the points would fall on a straight line

(r2 = 1 for regression analysis), have a slope of one (c; = 1), and pass

through the origin (co = 0).

The information indicates that the gray panel data from the instruments

are highly correlated. The r2 values are high-for both the FSAS versus Exotech
20C comparison (.998-1.000) and the Exotech 20D versus Exotech 20C comparison
(.999-1.000). The gray panel spectrometer data is the most closely correlated
in the 0-30 percent (BRF) range, i.e., gray panels 2 thru 5.

The analysis of the correlation of the spectrometer data collected for
the field measurements project is not complete. The task of developing and
following procedures to calibrate and correlate the data from different
spectrometers in a field environment is being accomplished and for the first
time quantitative information is available.

The analysis results so far in comparing four spectrometers of two
different types (filterwheel and interferometer), collecting data in loca-
tions hundreds of miles apart (Kansas and North Dakota) and at different
times of the year are very encouraging. The reflectance data for the four
gray panels used to calibrate the aircraft scanner data has a correlation
better than .99 and agrees to within 47% of value. The reflectance data for
panel 1 is within 10% of value for the FSAS and Exotech 20C data at two
different sites with the panel on two different platforms. It is expected
that the cause(s) of the systematic differences will be determined during
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Table A-3. Linear regression analyses of spectrometer gray panel data.

+BRF Wavelength (um)
Range Regression
(percent) Coefficients* 0.45 0.60 0.70 1.0 1165 2,20
1975 Data
ERL Exotech 20D vs Purdue/LARS Exotech 20C
0-60 r 0.992 0.998 0.999  1.000 0.999  0.998
Cy -3.6 -3.2 Jol -1.7 -1.8 -1.7
Cyq 1.199 1.087 1.032 1i.1:07 1.089 1.096
0-30 r2 1.000 1.000 0.999 0.998 0.997 0.994
Cy -1.7 -2.0 -2.1 -1.3 -1.0 -0.8
= 1.050 0.997 0.961 1:.072 1.022 1.005
1976 Data

NASA/JSC FSAS vs Purdue/LARS Exotech 20C

0-60 r 0.998 0.999 1.000 1.000 1.000 0.999
Co =1.8 =2 =20 152 0.8 0.6
c, 0.916 0.897 0.884 0.897 0.924 0.942

0-30 r2 0.994 1.000 1.000 0.999 0.999 0.999
Co =1.5 =15 =15 0l 7/ 0.3 0.1
c, 0.898 0.854 0.853 0.942 0.966 0.987

*Regression Equation: y = co + c X

+Bidirectional Reflectance Factor



A-38

the next contract year when the data collected during May and July of 1977
in the correlation experiments have been studied.

IV. Data Analysis

The spectral and agronomic measurements which have been acquired
during the three years of the LACIE Field Measurements program are being
analyzed to provide a quantitative understanding of the relationship of
reflectance to the biological and physical characteristics of crops and
soils. Knowledge of how important agronomic factors affect reflectance
is necessary for optimal use of the current Landsat technology as well
as for design and development of future remote sensing systems.

The primary data analyzed to date are the spectrometer data acquired
by the truck- and helicopter-borne systems. These data are particularly
useful because the spectral data are acquired in very small wavelength
bands and are calibrated in terms of bidirectional reflectance. The
narrow wavebands (i.e., complete spectra) permit simulation of the response
in any specified waveband. In other words, the analysis is not restricted
to a fixed set of bands such as Landsat MSS or one of the aircraft scanner
systems. Calibration of the data permits valid comparisons to be made among
dates, locations, and sensors. Additional advantages of these data compared
to Landsat are: no boundary pixels, higher spatial resolution, higher signal-
to-noise ratio, and a more complete sampling of the crop through the growing
season.

The analyses reported here were initiated in the spring of 1977 when
data sets and resources for analysis became available. The analysis of
much of the data has not been completed; future results may confirm or
contradict results obtained to date, possibly altering conclusions which
may be drawn from the analyses. In many ways, this section should be
viewed as a status or preliminary report of our results rather than a
final report. Continuation and completion of the analyses described here,
as well as additional analyses are planned in the new SR&T contract to
LARS.

a. Objectives
The overall objective of this task is to quantitatively determine
the spectral-temporal characteristics of wheat, small grains, and confusion

crops. The specific objectives are:

(1) To determine the relationship of agronomic variables such as
biomass and leaf area index to multispectral reflectance.

(2) To determine the effects of cultural and environmental variables
on the spectral response of wheat.
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(3) To determine optimal times and wavelengths for discriminating
between wheat and other crops.

(4) To determine optimal times and wavelengths for discriminating
wheat from other small grains.

b. Approach

The data used to date for analysis were collected during the first
two years of the field measurements program at the agriculture experiment
stations (AES) in Garden City, Kansas, and Williston, North Dakota, and
at the intensive test sites (ITS) in Finney County, Kansas, and Williams
County, North Dakota. The general approach taken has been to analyze band
means for the Landsat MSS and proposed thematic mapper bands.

Plots of the reflectance data were made to verify data quality and
to qualitatively assess the information contained in the data. Regression
and correlation were used to relate biological and physical parameters
such as leaf area index, biomass, percent ground cover, height, and maturity
stage to spectral response. Analysis of variance and covariance and discrim-
inant analysis were performed to determine the threshold of detection and
separability of wheat from other cover types. Details of the specific ap-
proach to each objective will be discussed in the results section.

c. Results and Discussion

The objectives of this task were pursued in two areas: spring wheat
in North Dakota and winter wheat in Kansas. In each location, both FSS
data from the intensive test site and truck-mounted spectrometer data
from the experiment station were analyzed. The results will be discussed
by location and objective.

1. Spring Wheat in North Dakota

This section describes the analyses which have been performed using
data from both the agriculture experiment station and the intensive test
site in North Dakota. For each analysis objective, details of the approach
and results are discussed.

Relationship of Agronomic Variables to Reflectance. This objective
has been investigated with the 1975 and 1976 AES data and, to a lesser
extent, with the 1975 ITS data. Knowledge of the relationship of agronomic
factors and reflectance is important in the crop identification problem for
determining when wheat is detectable and when it can be distinguished from
other crops. The ability to accurately assess a crop's condition and to
predict crop yields by remote sensing techniques will depend on how well
variation in key agronomic factors can be explained by the crop's reflec-
tance. The general approach taken to this problem has been:

(1) Correlation of agronomic variables, squares of agronomic vari-
ables, reflectance in Landsat MSS and proposed thematic mapper
bands, and ratios of reflectance values.
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(2) Polynomial regression fitting reflectance as a function of one
agronomic factor.

(3) Regressions predicting the value of an agronomic variable using
the reflectances in either the Landsat MSS or proposed thematic
mapper bands.

Extensive sets of ground observations were acquired at the Williston
experiment station including leaf area index, percent ground cover, maturity
stage, fresh and dry biomass, height, leaves per plant, stems per meter row,
and green leaf weight.

First, agronomic variables were correlated with one another. The
results of this study can be useful in several ways including reducing the
number of factors which must be measured in the field in future experiments.
The correlations presented in Tables A-4 and A-5 were calculated for the
1975 and 1976 experiment station data, respectively.

Growth stage and plant height are very hiﬁhly correlated; growth
stage is also highly correlated with both fresh and dry biomass and with

percent green leaves. Percent ground cover is highly correlated with number
of stems, leaf area index, and fresh biomass.

In general, the correlations were higher for the 1976 data. More
confidence can be placed in the accuracy of the measurements made in 1976
due to the experience gained in 1975. For this reason, results from
correlations of agronomic variables with reflectance will be discussed for
1976 data only.

By correlating the agronomic variables available in the two years with
spectral reflectance, it was found that many agronomic factors are highly
correlated with spectral response at some wavelengths: height and percent
ground cover in the visible, leaf area index in the near infrared, and leaf
area index and biomass in the middle infrared (Tables A-6 and A-7). More
than 80% of the variation in leaf area index (leaf area per unit ground
area) is accounted for by reflectance in the chlorophyll absorption region
(0.63-0.69 um) and more than 90% by reflectance in a near infrared region
(0.76-0.90 um). Correlations of reflectance with leaf area index, plant
height, percent ground cover, and growth stage generally were improved by
using one of the narrower bands of the proposed thematic mapper rather
than a Landsat MSS band.

Tables A-6 and A-7 show the linear (Pearson) correlations of reflec-
tance in the Landsat MSS and thematic mapper bands with several agronomic
variables measured at the experiment station in 1976. Two correlations are
presented in the tables: one is the correlation calculated using all data
collected during the year and the other is calculated using only the data
collected through wheat heading. The latter correlation is higher for many
agronomic variables. The relationship between leaf area index and reflec-
tance is approximately linear (Figures A-21 and A-22), so the two cor-
relations are quite similar in magnitude. Reflectance of wheat throughout
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Table A - 4. Linear correlations of agronomic variables (Williston, 1975).

Leaf

Growth % Stems/  area Dry
Stage Cover Height Meter index Biomass

Growth Stage 1.00% <55 .88 .14 231 .85
1.00 .08 =81 202 -.28 .86

% Cover 1.00 « 10 259 .76 «22
1.00 .40 () .61 .08

Height 1.00 iz .49 285
1.00 07/ 12 .81

Stems/Meter 1.00 .56 -09
1.00 <59 .04

Leaf area index 1.00 .41
1.00 -.03

Dry Biomass 1.00

1.00

* Upper number is for data from seedling through heading stage of maturity;
lower number is seedling through ripe stage of maturity.
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Linear correlations of agronomic variables
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(Williston, 1976).

Leaf Fresh Dry

Growth 7 Stems/ area bio- bio- 7
stage Cover Height meter index mass mass Green
Growth stage 1.00%* .65 +96 .24 .58 .91 94 -.92
1.00 .48 <97 .14 .34 .76 <82 -.84
% Cover 1.00 ST 218 .89 .80 .68 -.52
1.00 .65 .74 .84 .74 245 -.35
Height 1.00 .39 .66 .94 .95 -.92
1.00 .28 .45 .91 495 -.82
Stems/meter .00 238 253 3 -.19
.00 .81 .50 il -.07
Leaf area index 1.00 .79 .62 -.46
1.00 .65 < 37 -.09
Fresh biomass 1.00 .96 -.84
1.00 .81 -.64
Dry biomass 1.00 -.91
1.00 -.80
% Green 1.00
1.00

* Upper number is for data from seedling through heading stage of maturity;
lower number is seedling through ripe stage of maturity.
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its growing season typically is curvilinear in nature with the minimum (or
maximum, depending on wavelength region) occurring just prior to grain ri-
pening when the wheat has maximum leaf area and greatest plant height (Figures
A -23 and A-24). This quadratic relationship accounts for the substantial
increase in correlation of reflectance with growth stage using only the data
acquired through heading. The change in the correlations of dry biomass with
reflectance are due not to a quadratic relationship but to scatter in the data
at the end of the season.

In determining polynomial regression equations to fit reflectance as a
function of one agronomic factor, it was found that the relationship for most
variables was linear during the measured time interval. In general, a quad-
ratic term in the agronomic variable did not add significantly to the fit of
the regression. The major exception to this was the relationship of date or
growth stage to spectral reflectance which has been illustrated in Figures
A -23 and A-24.

Finally, regression equations were derived to predict the value of an
agronomic variable from reflectance values in one or more wavelength bands.
All possible regressions were run to select an "optimal'" subset of wavelength
bands for prediction of each agronomic variable. In the prediction of per-
cent ground cover, four variables appeared to be the best subset size for

prediction and the four bands giving the highest R2 (.91) were .45-.52, .52-.60,
.76-.90, and 2.08-2.35. To predict leaf area index, however, the inclusion of
only four variables yields a slightly biased regression equation, requiring
five variables to achieve unbiasedness. If four variables are selected, they
are .63-.69, .76-.90, 1.55-1.75, and 2.08-2.35. If five variables are selec-
ted, they are .52-.60, .63-.69, .76-.90, 1.55-1.75, and 2.08-2.35. This
analysis demonstrates the importance of having information from the middle
infrared region of the spectrum to predict agronomic factors. An analysis

to compare these results with those which can be obtained using the four
Landsat bands is in progress.

A similar study to relate agronomic factors and reflectance is being con-
ducted using the 1975 data from the Williams County ITS. Only percent ground
cover, growth stage, and height were measured. Some preliminary results indi-
cate that the correlations between these variables and reflectance is not as
high as with the AES data. Analysis of this data is still in progress.

Further studies to relate agronomic factors and reflectance are being
carried out using multi-year data from the experiment station. AES data from
1977 and ITS data from both 1976 and 1977 will be analyzed. Investigation of
the correlation of agronomic variables with ratios and other transformations
of reflectance values is in progress.

Effects of Cultural and Environmental Variables. Only 1975 data from
the Williston experiment station have been used to date to investigate
effects of cultural and environmental variables on the spectral response
of spring wheat. The results must be considered only indicative of effects
present due to the confounding effect of time of day which was found to be
an important source of variation in initial studies.
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There appeared to be a significant difference on all dates and at all
wavelengths between wheat planted on recrop and fallow land; however, this
factor is completely confounded with measurement order and blocks. Differ-
ences in variety appeared in the near and middle infrared regions of the
spectrum. The effect of nitrogen was highly significant on July 10, when
the wheat was heading. Effects of planting date seem to be significant at
some wavelengths throughout the season.

Analyses of data acquired in two other years are being performed for
confirmation of these results. In addition, any information acquired in
1977 about time of day effects will increase confidence in results of this
nature.

Discriminability of Spring Wheat from Other Cover Types. FSS data
acquired on the ITS in 1975 have been analyzed to determine the discrimina-
bility of spring wheat from other cover types. Three cover types had
sufficient data available to permit statistical analysis: spring wheat,
pasture, and fallow. The discriminability of these three cover types was
assessed in first the univariate (single bands) and then the multivariate
(multiband) case.

A univariate analysis of variance was performed on spectral reflectance
for each Landsat MSS and proposed thematic mapper band for the nine measure-
ment dates. Cover type produced a significant effect at the 17 level for
nearly all times and wavelength bands indicating that spring wheat, pasture,
and fallow could be easily identified at particular growth stages.

Subsequently, univariate multicomparison analysis were carried out to
determine which cover types were distinguishable at particular maturity
stages and wavelengths. Newman-Keuls range tests at the 5% significance
level were used for testing. Results indicated that wheat and fallow
were not separable at any wavelengths in June as the wheat still resembled
bare soil. By July 10, all three cover types were separable in the near
infrared wavelengths. Later in July, all three were differentiable at most
wavelengths. In mid to late August, wheat and pasture looked alike in the
middle infrared, but were separable elsewhere. These results are illustrated
in Figures A-25 to A-28.

Discriminant analysis was performed to use multiband information in
assessing the separability of these three cover types. The percent correct
identification of wheat obtained with this data set probably is an upper
bound for that obtainable at the same growth stage with satellite data.

The method used (linear discriminant functions with three classes) should
provide a lower bound on discriminability for this data set which could be
improved by using higher order discriminant functions and more spectral
subclasses. Prior probabilities were chosen proportional to the amount of
training data in each category.

The first analysis performed used all the data for deriving the dis-
criminant functions and the same set of data for assessing the discrimina-
bility (Figure A-29). The percentage of wheat scans which were correctly
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Figure A-29. Discriminability of wheat on nine dates using Landsat
MSS and proposed thematic mapper bands.
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classified generally increased with maturity stage until the wheat reached
the ripe stage for both the Landsat MSS and thematic mapper bands. The
high percentage of wheat correctly identified on August 5 1s considered

to be an artifact of the small data set acquired on that date. On August
15, only 80% of the wheat was correctly classified. This low figure was
due to the wide range of variability present in the wheat at this time.

The six proposed thematic mapper bands performed about the same as the
Landsat MSS bands for wheat identification until late in the season when
the thematic mapper bands appeared to have greater power for discrimination.
The reason for this can be observed in Figure A-28; separability of wheat
from fallow and pasture at this time is achieved in the middle infrared
region of the spectrum which is not available in the current Landsat satel-
lite. On the average by this method, over 907% of the wheat scans were
correctly classified on each date.

On June 5 and 22, although most wheat is correctly identified, many
fallow scans are incorrectly classified as wheat. The proposed thematic
mapper bands exhibit a distinct advantage over the Landsat MSS bands in
avoiding errors of commission (other cover types being incorrectly identified
as wheat). From July on, pasture and fallow are each identified with high
accuracy (85-100%) by the thematic mapper bands while the corresponding
accuracies with Landsat MSS bands are only 64-98%.

Discriminant analyses were also performed using disjoint training and
test sets and several training methods. Some results (Table A-8) show
reasonable accuracies are achieved by three methods of training: a 50%
sample of fields, a 25% sample of fields, and a systematic sample of 257%
of scans. Systematic sampling showed generally higher accuracies than
sampling by fields and larger samples generally achieved higher accuracies.

Good discriminability can be achieved among these cover types at many
individual dates, but if spectral information is available at more than one
maturity stage of the wheat, even better results can be obtained (Table A-9).
June 22 and August 15 together do not provide sufficient information for
discriminability as some information during the middle of the growing season
is required. Most other combinations of two or three measurement dates pro-
vide accurate identification of wheat, with pasture and fallow generally
being identified with 95-997 accuracy.

This objective cannot be pursued with data from the Williston AES, but
analyses are planned and underway to investigate the discriminability of
spring wheat from other crops on the intensive test site in both 1976 and
1977.

Discriminability of Spring Wheat from Other Small Grains. The data
currently available for analysis were inadequate for drawing definite
conclusions concerning the separability of spring wheat from other small
grains although some indications of separability could be obtained.

In 1975 on the intensive test site, only two fields of rye were
available on all dates and one field of oats was measured on two dates.
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Table A — 8. Proportion of wheat scans correctly identified by several
training methods.

Method

Mission 507% sample 257% sample 25% sample
Date of fields of fields of scans
6/5 79% 98 98

80 85 97
6/22 80 62 84

84 65 87
7/10 96 87 97

98 93 97
7/18 98 94 93

98 99 95
7127 99 83 94

98 91 96
8/5 99 96 100

97 98 100
8/15 64 77 75

68 79 78
8/23 88 89 88

89 94 98

* Top number is using Landsat MSS bands; lower number is using proposed
thematic mapper bands.
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Table A-9. Discriminability of spring wheat, fallow, and pasture using
information from two or three growth stages.

Dates

Landsat MSS

Percent Wheat Correct

Thematic Mapper

6/22 and 8/15
7/10 and 8/23
6/5, 7/27, and 8/15

6/22, 7/18, and 8/23

80

96

97

98

84

99

99

99

Table A-10. Correlations of agronomic factors and reflectance (Garden

City, 1975).

Data To All Data
Ripening Used Used
Wavelength
Band Height Ground Cover Height Ground Cover
«5=.6 -.80 .83 -.47 .61
(6= 7 -+ 80 .87 -.38 .55
.7-.8 029 55 -.03 .27
.8-1.1 42 .68 .05 235
«45-.52 -.80 «87 -, 50 .66
.52-.6 -.80 .82 -.47 .61
.63-.69 | — 7] .88 ~.36 .55
. 76-.9 .48 o2 .10 .40
1.55-1.75 -.82 .76 = 7.1 -.,70
2.08-2.35 -.80 -.87 -.68 =R
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These data are insufficient for a sound statistical assessment of discrimin-
ability, although qualitative evaluations of the data showed that some
discriminability may be possible if there are differences in maturity

stage.

One problem encountered in analysis of the AES data was that differ-
ences between small grains were confounded with effects due to the time of
day measurements were acquired. The results of an initial investigation
on spring wheat clearly indicated that the time interval required to measure
all plots of an experiment is an important source of variation and should
be minimized. Knowledge was gained which enabled a better experimental
design for the third year. Time elapsed during measurement of an experiment
was minimized and data were acquired several different times during the day
on each plot which permits a covariance analysis.

2. Winter Wheat in Kansas

This section describes the analyses which have been performed on the
agriculture experiment station and intensive test site data from Kansas.
For each objective, the specific approach and results are discussed.

Relationship of Agronomic Variables to Reflectance. Two agronomic
variables, height and percent ground cover, were measured at the Garden
City experiment station in 1975. These two variables were highly correlated
(R = .86) using only green data, but high correlations should not occur if
all data throughout the growing season are used and measurements are ac-
quired properly.

Correlations of height and percent ground cover with reflectance in
each of the Landsat MSS and proposed thematic mapper bands were computed
(Table A-10). Both variables show high correlations with reflectance in
the visible and middle infrared wavelengths, with correlations being higher
when only data through heading were used.

In deriving polynomial regression equations to fit reflectance as a
function of one agronomic factor, it was found that the relationships were
approximately linear in the measured time interval. Illustrations of
reflectance in the visible and near infrared regions as a function of
percent ground cover are given in Figures A-30 and A-31. Date or growth
stage is related to reflectance in a quadratic manner as illustrated in
Figures A-32 and A-33.

Finally, regression equations were determined to predict the value of
an agronomic variable from reflectance in one or more wavelength bands.
All possible regressions were run to select an "optimal" subset of wave-
length bands for prediction of each agronomic variable. Two thematic mapper

2
bands gave a higher R~ for prediction of both height and percent ground
cover than did all four Landsat MSS bands. This improvement appears to
be due to the presence of a middle infrared band which is always selected

. 2
as important. The R~ values are generally near maximum for about four themat-
ic mapper bands and the regression equation becomes relatively unbiased for
either four or five bands.
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Reflectance of several varieties of winter wheat (Finney
County, Kansas; April 16, 1975).
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Analysis is currently underway for the 1976 experiment station data.
No analyses to relate reflectance with agronomic factors have yet been
conducted with intensive test site data.

Effects of Cultural and Environmental Variables. Statistical evalua-
tion of the effects of cultural and environmental variables was not feasible
due to the incomplete designs obtained and the confounding effect of time
of day. Qualitative evaluations were performed for several variables such
as wheat variety, nitrogen level, and residue management. Figures A-34
to A-36 show that there is little difference in the spectral response of
three varieties of wheat throughout the growing season.

Discriminability of Winter Wheat from Other Cover Types. FSS data
acquired in 1975 over the Finney County ITS was analyzed to investigate
the separability of wheat from other crops. All results obtained are
considered very preliminary and are not presented for that reason. A
greater understanding of this problem should be achieved through analysis
of the 1976 and 1977 FSS data which are believed to be of higher quality
and over a more representative test site.

Discriminability of Spring Wheat from Other Small Grains. Only data
from the Garden City experiment station supported this analysis objective
as no small grains were measured on the ITS in either 1975 or 1976. Again,
due to time of day confounding and incomplete data sets, no quantitative
statistical evaluations were carried out. Even qualitative indications
must be regarded as very preliminary due to the difficulties mentioned
above and the limited sample. It appears that early planted wheat and rye
may be identified at some times due to differences in growth stage, but
that other small grains are fairly similar to one another.

d. Plans for Future Analysis

The results which have been obtained to date in the LACIE Field
Measurements data analysis task must be considered preliminary. Before
evaluation of the results from the project can be made, analysis should
be completed on the data from all three years of the measurement program.
In particular, from the knowledge gained to date, the following analyses
have been planned:

(1) Conduct similar analyses to those described here on the
complete data sets for three years from the experiment
stations and intensive test sites.

(2) Study in greater depth the effect of time of day on spectral
response.

(3) 1Investigate the use of basis functions to represent and
discriminate spectra.

Analyses of the three years of data acquired will continue to inves-
tigate the problems of relationship of agronomic variables to reflectance,
differences in reflectance due to cultural and environmental variables,
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and the detection and discriminability of wheat from other small grains

and cover types. Statistical techniques including analysis of variance,
regression, correlation, and discriminant analysis will be used. The
purpose of these continued analyses is to confirm the results which have
been obtained to date and to seek an understanding of how spectral response
changes between locations and between years in the same location.

Secondly, an analysis will be made of the data acquired during 1977
by the Exotech Model 100 at the Williston experiment station. Analysis of
this data should provide an understanding of how reflectance varies ac-
cording to the time of day and should enable a more accurate analysis to
be made of data acquired by the field spectrometer systems where a sub-
stantial time interval may elapse during the course of measurement acqui-
sition.

Investigation of the use of basis functions to represent and discrim-
inate spectra is already underway. The basis function approach shows much
promise theoretically in that it permits the use of a greater portion of
the available spectral information. The approach needs to be tested in

practice, however, and physical interpretations for the basis vectors
defined.

V. Conclusions and Recommendations

The LACIE Field Measurements project, directed by Purdue/LARS, has
successfully acquired a substantial amount of high quality spectral
measurements during the past three years. A majority of the data have
been processed and provided to investigators who are now wsing it in
research programs. The spectral data are supported by numerous and, in
many ways, quantitative agronomic and meteorological measurements and
observations. Together the spectral, agronomic, and meteorological data
form what is undoubtedly the most comprehensive data set available for
agricultural remote sensing research. Analysis of these data are now
well underway and the results should help provide a basis for the continued
development of remote sensing technology.

One of the key aspects of the LACIE Field Measurements spectral data
is that they are radiometrically calibrated. Calibration enables valid
comparisons of measurements from different dates, sensors, and/or locations.
The procedures for field calibration of spectrometer data have been tested
and refined during this period and the knowledge gained can now be applied
in future investigations. A large amount of information on how to success-

fully obtain reliable spectral measurements was acquired and is being
documented.

A system encompassing all phases of experiment planning, data acquisi-
tion, data processing, and data storage and retrieval has been developed
and successfully operated. This capability will be valuable for future
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rescarch programs. The experience and knowledge gained from the LACIE

IField Measurements project can be the foundation for the fileld measurements
research required for the development of a global food and flber information
system.,

Although the project acquired a large number of spectra, the s?mple
of crop, soil, and weather conditions over which the data were acqulr?d
was small even for wheat. Each of the three years in each site was differ-
ent in terms of the weather and the crop response to it. However, the crop
cannot be treated as a constant even if the weather did not vary significantly
from year to year. Changing economic conditions and advancements in agric?l—
tural technology will bring changes in crop and soil management (e.g., Tinlmum
tillage) and even the crop itself (e.g., introduction of semi-dwarf varieties
of wheat). Measurements of wheat and its confusion crops should be continued
over additional years if the full potential of the current efforts is to be
achieved.

And, as we look ahead to the development of a global food and fiber
information system utilizing remote sensing techniques it is critical to
begin to make field measurements for crops other than wheat. One of Fhe
lessons which should come from the LACIE Field Measurements project, is
the importance of establishing viable field measurements data acquisition,.
processing, and analysis efforts before results upon which to base the design
of a large-scale effort are needed. Five years for planning experiments and
acquiring and analyzing data would not be too long since at least three years
of data should be available for analysis to obtain the information needed for
system design.

The primary sensors used for LACIE Field Measurements were spectrometers
capable of producing high resolution spectra. In the future a new approach
to the collection, processing, and analysis of field measurements data will
be needed since it will not be feasible to simply expand upon the LACIE

approach as might be indicated by the increased number of crops which should
be included in future efforts.

An approach similar to the one tested by LARS during the past summer
is recommended. Use of a simpler instrumentation system (i.e., multiband
radiometer) will make the collection, processing, and analysis of spectral
measurements more economical and will allow more measurements to be made.
Such instruments could be utilized at more sites than was possible with
the currently available high spectral resolution spectrometer systems. And,
it is more observations of crops and soils under a variety of different
conditions (not detailed measurements of a limited number of locations and
crop conditions) that are really needed to increase our understanding of
the spectral characteristics of agricultural scenes. There will be a con-
tinuing need for the high resolution spectrometer system to be utilized in
field research, but greater emphasis should be placed on systems which can
be used to economically and accurately make large numbers of measurements.
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Analysis of the LACIE Field Measurements data, although not completed,
is beginning to provide new knowledge and understanding of the spectral
characterisitcs of wheat and the biological and physical factors affecting
spectral response. For example, the relation of spectral reflectance to
leaf area index and biomass has been quantified. This is important to
understanding when in its development wheat can be identified using remotely
sensed data and what the condition and potential yield of the crop may be.
Analysis of the data should be pursued with resources commensurate with the
amount of data collected if the potential benefits of the LACIE Field Measure-
ments project are to be fully realized.
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B Thermal Band Canopy Modeling

I. Background

The final grain yield of wheat crops has a strong dependence on the
moisture stress during the growing season. It has been demonstrated that
moisture stress can readily be evaluated by comgaring the wheat bilomass
temperature to the surrounding air temperature. »2 Plants with adequate
moisture available are cooler than the surrounding air due to transpira-
tion. But, transpiration is inhibited in water stressed plants and con-
sequently the temperature of water stressed plants increases. An advan-
tageous technique for determining wheat canopy temperatures of large
areas is by remote sensed thermal radiation measurements.

On days without significant cloud cover there exists a temperature
gradient in the wheat canopy. Also, the soil temperature is greater than
the wheat biomass temperature. This feature of crop canopies has two
significant influences on determining the moisture stress of the crops:

(1) The radiance temperature of a wheat canopy measured from an
overhead position is an integration of the soil temperature and the
various temperatures of the wheat. A knowledge of the various canopy tem-
peratures that exist must be attained in order to assess the overhead
radiance temperature.

(2) Many models used to predict moisture stress assume one biomass
temperature. Therefore, an understanding of the temperature gradients
in wheat canopies could aid in the development of more realistic and gen-
eral models to predict water status and final grain yield.

II. Introduction

The goal of the thermal modeling task is to gain an understanding of
the relationship between the canopy temperatures (biomass and soil) and
the canopy geometry. To achieve this goal the following working objectives
were set:

1. To relate canopy parameters including: radiance temperature
measured from an overhead position, vertical temperature
profile, soil temperature, and canopy geometry.

2. To determine wind velocity effects on the wheat canopy.
3. To observe diurnal thermal phenomena.

4. To determine the quality of the laser technique in providing
geometric characterization of the canopy.

The measurements required to accomplish the above goals are: vertical
temperature profile, overhead temperature, soil temperature, air temperature
profile, and canopy geometry. The thermal measurements were obtained on
two thermally different canopies; one canopy shielded from the wind, the
other canopy was under prevailing wind conditions. The geometric character-
ization was obtained from measurements performed on the shielded canopy.
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III. Theory of Method

The method used to relate the vertical temperature profile and the
overhead radiance temperature is:

1. Determine the canopy geometry.

2. Divide the canopy into 10 horizontal layers.

3. Determine the average temperature of each horizontal layer.
4. Sum the product of the average temperature of each layer and

the fraction that the layer contributes to the total view, for
all 10 layers, that is,

10
T= 3 |x.T. % /"
i=1 [T1

: s & : -
where x, = fraction the i i layer contributes to the total view, Ti =

average radiance temperature of the ith layer, and T = predicted
overhead radiance temperature.

IV. Test Site

Spectral-thermal measurements were made on June 28, and July 1, 1977
on wheat canopies under different environmental conditions. All measure-
ments were made on the Larry O'Brian farm adjacent to the University of
North Dakota Agriculture Research Station at Williston, North Dakota. The
wheat had the following agronomic description: hard red spring wheat,
fully headed, approximately 82 cm in height, row spacing 17-18 cm.

Figures 1 and 2 illustrate the procedures for the data acquisition and
the location of the instruments used for the thermal measurements.

Ve Experimental Procedure

The Dynarad 209A thermal scanner, an optical-mechanical scanner and
display unit, was used to determine the vertical temperature profiles
(Figures 2A,B,C). The scanner utilizes reflective optics and a dichroic
mirror to focus the image with an optical resolution of 1.74 milliradians
and a total field of view of 10°. The detector is mercury-cadmium-
telluride, operating in the 8 to 14 micrometer spectral region and is
mounted in a liquid nitrogen cooled dewar. All thermal image data was
recorded on a Sony video tape recorder (VTR), model 2850.

The wheat canopy, planted in north-south rows, was observed from the
east and west directions. The west canopy was shielded from the wind by
a 2.4 meter high polyvinyl barrier to provide a virtually motionless canopy
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Equipment setup for thermal measurements taken on Larry 0'Brian Farm
adjacent to University of North Dakota Agriculture Research Farm in

williston, North Dakota.

East Canopy
< 2) Row Spacing
.

Figure B-1.

17-18 cm

i
s L Canopy Height
\ﬁ O _ proximately 82 cm
@,‘(/ f
g——‘ 9
()

|
©® Soil Thermistor | \@F
@ Thermister Stake | I 48.3 cm
|
|
Hot Blackbod)"‘\ /_ Cold Blackbody
® I 11:25 m

10. 1m

1|
P
Vo
Vol 5.28m
(|
| |

D Dynarad X ¢

—P-

Thermal Camera A ‘

Ny 109field of View

Iy

I

| “ 5.28m

, |

|

y—/T".L\_ 1 10. 1m
Cold Blackbod ‘ \ Hot Blackbody
L/—Wind Barrier | | 11,25m
: I \ 48.3 cm : 14.25m
(D B |
| — West , | Canopy i:
I IO)
O== .
| //' |
Y
:@ /‘G El\ |
/

@ =0
| = ‘®|
| ‘1
|
l
|




(A) West canopy as viewed by Dynarad
Thermal Scanner.

(B) Dynarad Thermal Camera setup
east canopy in background.

Figure B-2. Test site and experimental procedures at Larry O'Brian farm
adjacent to University of North Dakota Agriculture Research
Farm in Williston, North Dakota, July 1977.
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West canopy: Blackbodies, thermistor stakes,
and wind barrier.

Overhead Radiance Temperature measured
with PRT-5 on east canopy.
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(Figure 2A,B,C). The east canopy was not shielded from the wind and pro-
vided a canopy under prevailing conditions. The purpose of the two types
of canopies (with and without wind velocity) was to determine the effect
of wind velocity on a wheat canopy and to provide a motionless canopy for
determining geometric characterization using the laser technique.

The Barnes Precision Radiation Thermometer, model PRT-5, was used
to measure the overhead radiance temperature at a zenith angle of 0°
(Figure 2D). The PRT-5 is an optical-electronic unit that is designed
to give equivalent blackbody temperatures from -20°C to 75°C. The radia-
tion detector is a hyperimmersed thermistor bolometer mounted in a con-
trolled reference temperature cavity. The optical elements are an objective
lens which defines the instrument field of view (nominal 2°) and a spectral
filter which limits the measurements to the 8 to 14 micrometer spectral
region.

The PRT-5 was mounted on a support, which could be rotated, 2.75 meters
above the soil. An average overhead radiance temperature was obtained by
taking measurements at six positions across the front of the canopy behind
the fourth row. At each position the PRT-5 was rotated at 30° increments
in a semicircle; a total of 42 measurements were obtained for each set of
measurements. This procedure provided an average of the soil and biomass
temperatures.

The laser technique yielded the necessary data to determine the geo-
metric characterization of the wheat canopy. This technique consisted of
pointing a laser at the canopy at a zenith angle of 0° and measuring the
height of the intersection between the laser beam and wheat canopy. From
this information it is possible to determine the fraction that each hori-
zontal layer contributes to the total normal view.

Thermistors were used to measure the soil temperature and air temper-—

ature profile within the wheat canopy; see Figure 1 for thermistor probe
placement.

VI. Summary of Measurements

A total of 24 sets of thermal data were collected: 8 on June 28, and
16 on July 1, 1977. Half of the data sets were collected on the east canopy
and half on the west (motionless) canopy. All thermal measurements on each
canopy were collected in a 10 minute period in the following order: ther-
mistor, PRT-5, thermal scanner. The data sets were collected in pairs; an
east data set and a west data set were acquired within 10-15 minutes of each
other. In addition to the thermal data five sets of laser data were col-
lected for a total of approximately 2000 data points.

The radiance temperature profiles were obtained using the Dynarad and
the VIR. The thermal scanner display unit was operated in the line scan
(A-scan) mode and had an illuminated grid on front of the display screen.
The temperature reduction procedure consisted of the following:



1. The top and bottom of the canopy were located with respect
to line scan position.

2. The tape was viewed on the display unit to locate a 10-15
second time span where the instrument sensitivity did not
change appreciably.

3. The line scan was set for the blackbody location. A polaroid
photograph was taken showing the hot blackbody as a high peak
on the grid and the cold blackbody as a low peak on the grid.

4. The line scan was set at the bottom of the canopy then moved
up at regular intervals (7.5 cm) while each position was
photographed.

5. The canopy scale readings were related to the blackbody scale
readings.

6. The scale readings were converted into temperatures in a
linear calibration.

7. The temperatures are then plotted on a temperature versus
height graph. See Figure 3 and Table 2 for results.

The overhead radiance temperatures measured with the PRT-5 are given in
Table 1. Each value is an average of 42 measurements and is an integration
of all canopy temperatures as observed from an overhead position.

The geometric characterization of the wheat canopy is determined by
the following method. The canopy is divided into 10 horizontal layers,
one soil layer and 9-10 cm horizontal layers within the wheat canopy. The
fraction that each layer contributes to the total normal view is calculated
by dividing the number of hits in each layer by the total number of hits
in all of the layers. A hit is the intersection between the wheat or soil
surface and the laser beam.

where, xi = fraction the ith layer contributes to the total view, Hi =

: < .th . .
number of hits in the i~ layer, and H = total number of hits in all layers.
Figure 4 shows the results of the determination of vertical biomass distri-
bution.

The soil temperatures are given in Table 1. The air temperature pro-
files are given in Table 3.
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Table B-1. Canopy temperatures: Soil temperature, measured and predicted
overhead radiance temperature, and temperature gradient.
Soil Overhead Overhead Temperature
Time Temperature Measured Predicted Gradient
Set GMT Canopy (°c) (°c) °¢) (°C/cm)
1 1408 East 157510 17.4 = =
1 1426 West 22552 21.4 = =
2 1610 West 29207 29.1 27.4 -0.108
2 1620 East 26.4 2720 24.4 -0.055
3 1810 East 3723 3257 311.18 -0.146
3 1828 West 41.8 40.4 36.1 -0.105
4 1908 West 47.8 43.2 42.1 -0.078
4 1922 East 43.8 36.7 37.4 -0.154
5 2008 East 42.4 36.0 565 =02132
5 2024 West 45.4 42.3 89256 -0.092
6 2109 West 43.1 40.4 379 -0.096
6 2122 East- 41.1 34.4 34.9 -0.140
7 2205 East 38.3 33.7 34.6 =0r138
7 2221 West 3852 363 3329 -0.076
8 2334 West 3207 09 2933 =031
8 2349 East 31.0 2885 294 -0.082




B=11

Table B-2. Radiance temperature profiles July 1, 1977.

Temperature Profile (°C)

East Canopy

Height
Above
Soil
(cm) 1620 1810 11992 2008 222 2205 2349 Time (GMT)
0* |26.4 373 43.8 42.4 41.1 383 31.0
5 2259 30.6 35.4 35.4 3152 35.0 3059
15 2273 26.4 Sl 30.8 29.9 332 30157
25 21.4 24.0 27.8 2700 26.6 30.5 27.6
35 2059 22.8 26.2 2558 24.4 26.4 25.8
45 20-9 21.4 24.8 24.4 22.8 26.4 24.6
55 20.0 18.8 23.6 23.8 20598 25.6 23.9
65 19.0 20.0 22..9 2350 21052 250 23.8
75 190 18.8 22.6 2352 20.8 25.0 24.3
82 1210 18.8 2250 22.8 20.8 25.0 24.5
Temperature Profile (°C)
West Canopy
Height
Above
Soil
(cm) 1610 1828 1908 2024 2109 2221 2334 Time (GMT)
0* 29 41.8 47.8 45.4 43.1 3802 32%:3
5 29572 33.4 35.4 33.8 33108 i85 2655
15 26.1 30.0 Sk 32.8 32.2 29.7 25005
25 2339 27.4 27518 31.4 30.16 27eS 24.8
35 2207 2652 26.2 30.4 29.4 26212 24.2
45 2005 2550 24.8 30.0 28.4 25.6 23.8
55 21890 24,2 23.6 29.4 27 2528 23055
65 21550 24.6 22:.9 28.2 2757 25.5 23.9
75 21.0 24 .4 22.6 2756 26.8 24.7 24.1
82 21.0 24.0 22.0 26.8 26.9 24,7 24,1

* All soil temperatures were measured with thermistor probes.
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Table B-3. Air temperature profiles within wheat canopy 1 July 1977.

Temperature Profiles (°C)
East Canopy

Height
Above
Soil
(cm) 1408 1620 1810 1922 2008 2122 2205 2349 Time (GMT)
96 18.5 24.1 27.3 28.4 29.4  30.9 30.5 27.9
76 19,1 24.7 27.8 29.2 29.1 30.6 30.7 2757
31 19.6 28.3 31%9 34.3 33.1 33.8 34.4 28.8
6 L9295 34.5 38.3 37.1 36.3 36.2 29.8
0 17.0 26.4 373" 438 42540 S T8 808 R 3]0
Temperature Profiles (°C)
West Canopy
Height
Above
Soil
(cm) 1426 1610 1828 1908 2024 2109 2221 2324 Time (GMT)
96 2116 26.4 29,61 29.1 3.3 32.1 30.1 27.8
76 2135 26.7 31.4 29.3 31.4 32.1 30.2 27.6
Sil 23.2  30.1 35.8 31.9 35.0  33.3 320312807
6 2202 32.0 36.3 36.7 36.6 36.3 34.6 30.2
0 2252 29.7 41.8 47.8 45.4 43,1  38.2 32.3
Table B-4. Regression analysis of soil and overhead radiance temperature,
1 July 1977.
Regression Analysis: 5
I
East: T = 6.971 + 1.21 T . 9482
prt
= 6.38 + 0.708 T . 0.9670
soil
Tprt = 7.10 + 0.68 Tsoil 0.9785
West: T = 1.058 + 0.905 T 0.9803
prt
=4.80 + 0.760 T 0.9969
soil
T = 2.26 + 0.884 T .9898
prt soil
i = Predicted Overhead Radiance Temperature
Tprt = Measured Overhead Radiance Temperature

.. = Soil Temperature
soil
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VII. Results of Model

The data collected on July 1, 1977 provided all of the canopy para-
meters used in the model to predict the overhead radiance temperature. Tem-
perature profiles were obtained for most of the data sets and average tem-
peratures for each horizontal layer of the canopy were determined from the
temperature profiles and soil thermistor temperature measurements. The
results of the predicted overhead radiance temperature are given in Table 1.
Figure 5 shows the predicted vs measured overhead radiance temperatures.

The east and west points are located on different curves therefore, linear
regression was performed on each set of points with regression coefficients
of 0.948 and 0.980 for the east and west curves, respectively.

VIII. Discussion of Results

The model used to predict the overhead radiance temperature gave results
that provide insight into the thermal characteristics of the wheat canopies.
Figure 5, the graph of the measured versus predicted overhead radiance tem—
perature, reveals a measurable effect of several environmental parameters on
the model and on the measurements used in the model including: solar power
and position, wind velocity, air temperature, and canopy geometry. An
analysis of the above parameters and their effect on the model provides an
explanation for the difference between the east and west data points of
Figure 5.

The most noticeable characteristic of Figure 5 is the difference between
the east and west data points. Most of the east predicted overhead temper-
atures were greater than the measured temperatures but, the west predicted
overhead temperatures were all less than the measured temperatues.

The parameter with the largest variation between the east and west
canopies is wind velocity. The wind velocity affected the following: canopy
temperatures, temperature gradient, and canopy geometry.

The soil temperature was less in the east canopy (with wind) than the
west canopy due to an increase in convection in the east canopy. The wheat
biomass temperature was reduced in the east canopy because the evapotran-
piration was enhanced by the wind velocity. Table 1 shows the temperature
gradients that exist within the wheat canopies. A larger temperature grad-
ient existed in the east canopy (with wind velocity) than in the west canopy.

To determine the effect of wind velocity on canopy geometry, linear regres-
sion was performed on the following temperatures: measured overhead and soil,
predicted overhead and soil; for both east and west canopies. The results
are given in Table 4 and show that the overhead radiance temperature
exhibits a stronger dependence on the soil temperature in the west canopy
than in the east canopy. Therefore, the movement in the east canopy, due
to wind, resulted in a reduction in the fraction the soil layer contributed
to the normal view. The soil is the warmest layer during the day. Conse-
quently, the model using the geometric characterization obtained from a motion-
less canopy predicted high temperatures in the east canopy (with wind). Early
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Figure B-5. Measured versus Predicted Overhead Radiance Temperature

for two different wheat canopies. East under prevailing
wind, west shielded from wind, July 1, 1977.
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in the morning before the solar irradiation penetrates the canopy to the
soil, the soil may be the coolest part of the canopy. Then, the effect of
using the geometric characterization obtained from a motionless canopy on a
canopy with wind velocity would be the opposite. The model would predict
overhead radiance temperatures lower than the measured temperatures.

The solar azimuth angle had an effect on the east canopy thermal
measurements during the late afternoon. The radiance temperature profile
of the east canopy increased instead of a continual temperature decrease
that usually occurs after solar noon. This increase in the temperature pro-
file was attributed to the direct solar irradiation on the front vertical
plane of the canopy viewed by the Dynarad thermal scanner, (and not an
increase in moisture stress) because the overhead radiance temperature was
declining when the temperature profile was increasing.

It has been shown that wind velocity has a significant influence on
the thermal characteristics of wheat canopies. Figure 6 shows soil temper-
ature minus overhead temperature versus overhead temperature for both the
east and west canopies. The east and west data points are located on two
different curves. The east canopy (with wind) has a larger soil minus
overhead temperature difference than the shielded west canopy. This shows
that a unique relationship between soil temperature and overhead radiance
temperature may exist for every wind velocity.

The maximum soil temperature and overhead radiance temperature measured
occurred at approximately solar noon (1900-1930 GMT) for both the east and
west canopies. The vertical biomass temperature gradient was relatively
constant from 1600 to 2200 GMT with a decrease in both canopies at 1510 and
1410 GMT for the east and west canopies respectively.

The laser technique provided good geometric characterization of the
west motionless canopy but, the application of the motionless geometric
characterization to a canopy with motion will result in the following error.
The laser technique yields a high value for the soil layer's contribution
to the overhead view. Therefore, using the motionless geometric character-
ization in the model to predict overhead radiance temperature will give a
high predicted temperature. An automated system to perform the laser tech-
nique would be required to correctly characterize wheat canopies with wind
velocity. This is due to the following: the measurements (height of inter-
section between the laser beam and canopy) must be performed with much
greater speed, due to the canopy movement, than can be achieved with the
manual technique. Furthermore, the required number of data points to
achieve a desired statistical confidence level would be greater due to
greater variability of the canopy.

IX. Applications of Results

Generally, the models used to predict the moisture status and final
yield of wheat crops require the leaf (or biomass) temperature and the
surrounding air temperature. Idso, Jackson, and Reginato '»> have developed
the "Stress Degree Day' concept to predict final yield. They hypothesized
that final yield is linearly related to the stress degree day accumulated
over some critical period.
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where Y = final yield, SDDi is the midafternoon leaf temperature minus

air temperature on day i, and b and e are the beginning and ending days
of the summation procedure.

Idso, Jackson, and Reginato applied the "Stress Degree Day" concept
to thermal measurements they obtained on a 72x90-m field of winter wheat
(Triticum durum Desf. Var. Produra) in Arizona. The field was divided
into six north-south rectangular plots. The six plots were irrigated dif-
ferently in order to observe plots with different moisture status, ranging
from very dry to very wet.

The thermal measurements were made with 2 and/or 20 degree field of
view Barnes PRT-5 radiation thermometers. The 20 degree F.0.V. PRT-5
viewed the canopy from overhead positions at zenith angles of 0° and 45°.
The 2 degree F.0.V. PRT-5 viewed the canopy at an angle such that only
plant parts were viewed.

They reported results for all angles were equally good with regression
coefficients of around 0.976.

The above experiment was done on wheat canopies under different mois-
ture stress but, other environmental conditions, such as wind, were close
to being constant for all plots due to the close proximity of all the plots.
Therefore, the "Stress Degree Day' concept as presented by Idso, Jackson,
and Reginato shows the relationship between final yield and the summation
of leaf temperature minus air temperature but, it does not contain the
leaf temperature dependence on wind velocity. Consequently, the '"Stress
Degree Day'" concept would predict different final yields for two canopies
with the same moisture stress if the wind velocity significantly varied
(between the two canopies) for the summation period. This is due to the
following two effects: (1) the wind changes the thermal characteristics of
the canopy, (2) the wind changes the canopy geometry.

The summation procedure of the "Stress Degree Day" concept should
reduce the effect of variation in environmental condition. But, it is
apparent that the application of the concept to canopies under different
environmental conditions will require an understanding of the canopy ther-
mal and geometric responses to environmental conditions, including wind
velocity. Once the effect of wind velocity on canopy parameters is deter-
mined for various wind velocities then, the success of predicting water
stress and crop yield will be improved.

X. Summarz

The thermal measurements and geometric characterization provided the
necessary data required to determine the relationship between canopy and
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environmental parameters including: solar power and position, wind velocity
canopy temperature, and canopy geometry. The model used to predict over-
head radiance temperatures is a powerful tool to assess the relative depen-
dence of the overhead radiance temperature on the different parts of the
canopy (heads, leafs, stem, and soil).

The significant results can be summarized as the following:

1. Wind velocity has a significant influence on the overhead
radiance temperature and the effect has been quantized. It
alters biomass and soil temperatures, temperature gradient,
and canopy geometry.

2. The temperature gradient of the wheat canopy is relatively
constant during the day.

3. The temperature gradient is a function of wind velocity.

4., The laser technique provides good quality geometric character-
ization, and an automated system would be required to character-
ize canopies with wind velocity.

The results of the measurements and the analysis indicate the strong
and weak aspects of the experiment. The major contribution of the experi-
ment was to show the effect of environment conditions on wheat canopies and
to demonstrate the relationship between canopy parameters and radiance
temperature. A limitation of the experiment was the quantity of data col-
lected, a result of budgetary restrictions. As a consequence, it 1s dif-
ficult to provide thorough quantitative results, but the qualitative analy-
sis has provided an understanding of the thermal phenomena that exists in
wheat canopies. Also, the experimental results provide insight into the
relative importance of various canopy and environmental parameters.

To gain a comprehensive understanding of the various environmental and
canopy parameters that have an influence on remotely sensed thermal measure-
ments a large quantity of measurements on canopies under different environ-
mental conditions would be required. Also, more data will be required to
determine the discrepancy between the measured overhead radiance temperature
and the predicted temperature.

Most of the important parameters needed to assess the impact of the
various environmental conditions on crop canopies could be obtained from
the thermal and geometric measurements used in the experiment to relate
canopy parameters. In addition, an automated system that could perform the
laser technique on canopies with motion would be required. Measurements
that would aid in future analysis would include wind velocity profile within
the wheat canopy, soil temperature distribution, and solar power distribution
within the wheat canopy (using laser technique).3 With these additional
measurements, the heat transfer processes in wheat and other canopies could
be analyzed more comprehensively. Also, with an increase in the amount of
data acquired with an automated system to perform the laser technique it
might be possible to assess the canopy geometric response to moisture stress.



By gaining an understanding of the important parameters affecting crop
canopies, models such as the '"Stress Degree Day'" could be applied to a larger
range of conditions and crops.
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C-1. Forestry Applications Project.

The overall thrust of the FAP activity has been the continued
development of key elements in the design of forest inventory systems
utilizing Landsat data and computer-aided analysis techniques. During
the current contract period, FAP activities have involved four specific
tasks, as follows:

1. To complete work initiated in 1976 for defining the
acceptability of Landsat acreage estimates as input
to a forest inventory design.

2. To complete the work on defining and documenting an
efficient and cost effective method of developing an
optimal set of training statistics for mapping forest
cover.

3. To make a comparison of five different classification
techniques in terms of cost, accuracy, and the character-
istics of the output products.

4. To define the objectives and scope of the forestry research
activities to be pursued by LARS within the FAP year program.

The first three of these objectives have each resulted in significant
findings, as described in the following three sections of this report. As
reported in the last Quarterly Progress Report, activity on the fourth
task was considered to be finished at that time, since discussion with
FAP personnel indicated that there would be no forestry applications re-
search as part of the LARS SR&T program after the current contract period.

It should be pointed out that this report contains only a synoposis of
the complete final report involving Task 2 (i.e. definition of an efficient
and cost effective method for developing an optimal set of training
statistics for mapping forest cover). The synoposis contained herein
briefly documents some of the key aspects of the complete study. LARS
Technical Report No. 112177 contains the complete findings of this study.
However, because of the size of Technical Report 112177, it is not being
appended to this final contract report, but copies have been forwarded
to the FAP Program Office at J.S.C., and for those interested, copies can
be obtained upon request from LARS or from the FAP Program Office.
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C. FORESTRY APPLICATIONS PROJECT

Gk I. Introduction

Background. Personnel at LARS have been working with the Forestry
Applications Program at NASA/JSC since 1974. Our major thrust during this
involvement has been in assessing the applicability of computer-assisted
analysis techniques to forest mapping and inventory. Specifically, over
the last year-and-a-half our focus has been in the application of Landsat
collected and computer-analyzed data to national forestry inventory.

This report will discuss our recommended approach for using remote
sensing techniques to meet a portion of the forest information needs im-—
posed by the 1974 Resources Planning Act. Examples of how the existing
Landsat data and computer-assisted techniques can benefit on-going Forest
Survey will be drawn up on. Suggested inventory procedures together with
recommendations for additional work in forest inventory will be outlined.

Objective. The results which follow are the culmination of work under
the objective to: Develop inventory methods using remote sensing technology
with application forest and range land information needs.

II. Approach

Problem Definition. The objective we were given was nebulus in that
it did not contain a well defined problem statement. Therefore, our first
task was to identify the portion of the problem we could most affect with
the limited resources we had available. We accomplished this by collecting
and reviewing pertinent forest inventory literature. The bibliography in-
cluded with this report identifies the material reviewed. This literature
can be grouped into the following categories: Forest Service publications,
forest mensuration and statistics texts, symposia proceedings and UN-FAO
inventory manuals.

The 1974 Resources Planning Act (RPA) and the 1975 Resource Assessment
were emphasized heavily during our initial re¥iew. These documents best de-
fined needs and requirements for information on a national scale whereas
the other literature dealt with specific needs and situations. Table 1 is a
distillation of the RPA needs and their relationship to remote sensing inputs.
Based on analysis of Table 1 and previous experience with Landsat data, we
determined that the satellite data could be most useful for estimating the
areal extent of various resource cover types. Furthermore, area estimation
was not discussed extensively in any of the literature we reviewed. There-
fore, we identified our problem in terms of determining if computer-assisted
analysis of Landsat data could provide accurate areal estimates of gross
forest cover.

ITI. Current National Survey Situation
Intuitively, the estimation of the total area in forest type should

be an important variable to any sample design. The only discussion of the
importance of area is related to on-going Forest Survey, Therefore we



Table C-1. Summary Review of Resource Planning Act Assessment (1).

Unit of Measurable Beneficient

System Measure by R. S. to Decision
(2) (3) (4)

Timber

Type Area + D

Ownership Area 0 I

Productivity Volume 0 I
Range

Type Area -+ D

Ownership Area 0 I

Productivity Volume 0 I
Water

Type-Impounded Area + D

Flowing Area 0 - I

Use Volume = I
Fish and Wildlife

Habitat Type Area + I

Population Estimates Census - I
Recreation and Wilderness

Participation Census = I
Human and

Community Development Economic = N

(d)

(2)
(3)

(4)

ref: The Nation's Renewable Resources-An Assessment, 1975, USDA-
Forest Service.

General classification of units of measure reported in (1).

Measurable by remote sensing techniques.

Includes all measures possible from satellite and/or aircraft

systems.

+ Directly measurable from satellite or aircraft data alone.

0 Measures can be inferred with the support of ancillary type
data.

- Measure which is not even indirectly affected by satellite
or aircraft inputs.

Benefit of Remote Sensing inputs to Decision Process.
Inferred based on inputs.
D - Direct not utilizing other inputs.
I - Indirect utilizing other inputs.
N - Not Obvious.



undertook an evaluation of current Forest Survey requirements to determine
if we had identified a valid problem.

The initial activity of any survey involves the measurements of the
areas present in each class of interest. For discussion purposes these
classes will include: forest, water, and other. Once acres have been
estimated for an area, sample points will be allocated within the area and
identified by photo-interpretation. The allocation of points may be pro-
portional to areas or they can be optimized for some specific variable if
enough information is available for the resource being studied.

The sample points thusly selected are further categorized as being:

a) commercial forest by timber type, commercial size class
(i.e. poletimber or sawtimber) and stand density or stocking

b) non-commercial forest

c) non-forest with or without tress

d) water

Once points have been selected and interpreted a subset or sample of
the points identified as forest are ground checked. Extensive information
is collected about the merchantable as well as the growth characteristics
of only the commercial forest plots. This ground information is then
expanded back over the entire sample area to give an estimate of the total
forest resource of the site. The above example assumes that the initial
estimate of acreage from the aerial photo-interpretation was correct. Be-
cause survey rarely enjoys the luxury of new aerial photos (new being dated
within a year of the survey), acreage estimates must be adjusted to reflect
changing land use patterns. Since Landsat data is theoretically available
on a timely basis, changes in land use trends would be identified on this
data and allocation of the photo and field samples should therefore be im-
proved although not optimized. The basic requirement would then be that
the acreage estimate provided from the Landsat data analysis must be within
the current accuracy standards for the survey.

Hypothesis. The salient question which therefore remains to be answered
can be stated in two parts:

1. Are the acreage-estimates from machine-assisted Landsat
analysis compatible to existing survey standards?

2. If acreage estimates from machine-assisted analysis of
Landsat data is not compatible to existing survey standards,
are the results repeatable and of sufficient quality to in-
put into the inventory design?

Obviously, if the response to both questions is negative, machine-assisted
analysis of Landsat data would not be a suitable input to the inventory
design. The probability of not utilizing Landsat inputs appear to be low
based on results reported by various investigators using Landsat data. De-
termining which of the two parts of the question is relevant will be the
problem addressed by the end of the contract period.

Design Definition. Given that either of the above questions can be
positively answered an approach can be defined which addresses specific
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inventory needs; e g gross fiber volume, species composition, etc. Figure 1
is a schematic which identifies how an inventory may flow from general
Landsat derived information to more specific inventory needs. Table 2 lists
the accuracy requirements which the Landsat estimates must meet if they are
to be considered for Forest Survey use. Also the table identifies boundary
conditions which should be met if remote sensing and satellite data can be
expected to input into Forest Survey or RPA needs. The remainder of this
report will address the feasibility of utilizing Landsat results for the
first level of inventory intensity.

IV. Data

The hypothesis we defined required that we have access to acreage
statistics for gross forest land for comparison to Landsat classification
results. Furthermore, we needed information for forest land that was re-
corded in a form similar to our Landsat results which were classified on
a county-by-county basis. Forest Survey, collects and reports forest acre-
age statistics, in addition to other information, on a county basis as a
part of their repetitive State Survey cycle. Forest Service resources
bulletins report this information by county as acres in commercial and non-
commercial forest cover, species mix, gross volume, and volume distribution
by timber size class. For this study we were only concerned with obtaining
information on a county-by-county basis for gross forest acres.

Landsat classification results for a number of counties were available
at LARS from two previous research projects. Data were available for parts
of States comprising the boundary of the Great Lakes Watershed and for a
block of counties in morth-central Missouri. Statistics from these results
included a forest class as a major component of the Landsat classification.
Furthermore, these data were analyzed on a county-by-county basis. There-
foreg acreage or at least the percent of the area for each county in a forest
class could be directly compared to Forest Survey published estimates for
these same areas.

Table 3 indicates the states and years of the most recent published
Forest Survey data. Table 4 gives similar information relating to the type
and data of the Landsat classification results used for the comparison.
Figure 2 indicated the geographic area for which our comparison would be
made.

Given the data available, we would be able to compare acreage statistics
and make inferences regarding our hypothesis. The following comparisons were
possible:

1. The comparison between Forest Survey and Landsat estimates
for gross forest acreage by county.

2. The comparison between Forest Survey and Landsat estimates
for gross forest acreage by Survey Unit.

3. The comparison between Forest Survey and Landsat estimates
for gross forest acreage for the State of Michigan.
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Table C-2. Evaluation criteria and boundary conditions necessary
for Landsat Survey design.

LANDSAT FOREST SAMPLE DESIGN GUIDELINES

Al

ALLOWABLE ERROR TO MEET FOREST
SURVEY REQUIREMENTS
C.V oF 3% PER MiLLION ACRES FOR

COMMERCIAL FOREST
C.V oF 107 PErR MiLLION FOR NoN-COMMERCIAL

FOREST

DesI1RABLE BounNDARY CONDITIONS FOR LANDSAT
SURVEY TO MEeT FOREST SURVEY REQUIREMENTS.

1'

OVERALL SURVEY EFFICIENCY MUST BE

EQUAL TO OR BETTER THAN EXISTING SURVEYS

WITH REGARD TO:

A. TIMELINESS OF DATA

B. TIMELINESS OF ACREAGE ESTIMATES

PHYSICAL LIMITATIONS OF SURVEY

A. CLASSIFICATION RESULTS MUST BE
REPEATABLE FOR LARGE AREAS

B: DATA THROUGH PUT SHOULD NOT BE A
LIMITING FACTOR

A PRIORI INPUTS BASED ON ANCILLARY INFORMATION

SHOULD BE USED TO:

A. IMPROVE SPEED OF CLASSIFICATION

B. IMPROVE CLASSIFICATION ACCURACY
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V. Results

Correlations. Forest Survey data and Landsat data were compiled in
such a way so that the percent of gross forest area was comparable on a
county-by-county basis. Since the minimum reporting unit used by Forest
Survey is the county, we felt that areal Landsat estimates on a county basis
would be a valid test. Figures 3,4,5 and 6 are scattergrams indicating the
correlation between the Landsat estimate and the reported Forest Survey esti-
mates. For each comparison, except in the case of Figure 4, the State of
Missouri, the high value for the correlation coefficient indicated that the
Landsat estimate of gross forest acreage is highly correlated with the pub-
lished Forest Survey estimate.

Statistically, one would expect that for the number of counties studied
the under-and over-estimates of forest acreage would average so that the
high correlation coefficient could be expected. Indeed, i1f one studies the
scattergrams, the amount of under-and over-estimation by the Landsat results
becomes apparent. However, one may expect to see the same type of scatter
if one were to compare Forest Survey estimates to actual forest acreage on a
county-by-county basis. Survey in effect reports estimates derived from a
coarser sample than Landsat. A more indicative measure of survey accuracy
can be derived by comparing state wide and survey unit statistics.

Therefore, we realized that it would be necessary for us to draw com-
parative statistics on a forest survey unit basis and if possible on a
state wide basis. Fortunately, we were able to combine enough county es-
timates to make a comparison for all or parts of l6-survey units in the four
states that we had data available for study. Figure 7 shows a scattergram of
this analysis. Again, the high correlation coefficient of r = .94 strongly
suggest that Landsat estimates for gross forest acreage are highly correlated
with Forest Survey estimates of gross forest acreage on a Survey Unit basis.
Generally, one could conclude from this graph that Landsat tends to overesti-
mate gross forest acreage except for two Survey Units where that acreage is
grossly underestimated. These two cases occurr in the State of Missouri which
will be discussed later.

Unfortunately, only state-wide data were available for one state. A
complete Landsat analysis was available for the State of Michigan. These
data were used to make a comparison of estimates by county, survey unit,
and state-wide from Landsat and Forest Survey. Table 5 shows the results
of that comparison broken down on an acreage basis. The last column indi-
cates the difference between the Landsat and Forest Survey estimates. A
negative number indicates a Landsat over-estimate compared to Forest Survey
whereas a positive number would indicate a Landsat underestimate. Table 6
summarizes the comparison of Survey Unit statistics and state wide statistics
for Michigan. Generally, we interpret these results in the table to indicate
that the counties in the Upper Peninsula are under estimated by Landsat class-
ifications in the magnitude of 6-9%. Whereas in the Lower Peninsula the
Northern Survey Unit is almost equal to the Forest Survey estimate, whereas
the Southern Unit is grossly over-estimated. Comparing the state-wide totals,
Landsat compares favorably with Forest Survey estimates the differences being
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Table C-5. Comparison of Forest Survey! and Landsat? Estimates of Forest
Acreage for the State of Michigan by Forest Survey Unit and
County.

WESTERN UPPER PENINSULA UNIT

Gross Forest’ Land (In thousands of acres)

County: Forest Survey Landsat" Difference®
Baraga 943.3 551.9 -8.6
Dickinson 454.0 437.5 1655
Gogebic 666.4 611.4 55510
Houghton 576.9 583.4 99.6
Iron 708.7 609.1
Keweenaw 341.2 280.7 60.5
Marquette 1,108.6 15072152 36.4
Ontonagon 784.2 713 70.8

TOTALS 5,183:3 4,859.6 323.7

EASTERN UPPER PENINSULA UNIT

Gross Forest®’ Land (in thousands of acres)

County: Forest Survey Landsat" Difference®
Alger 540.6 454 .6 86.0
Chippewa 805.1 675.5 129.6
Delta 638.3 654.8 -16.5
Luce 543.3 508.4 34.9
Mackinac 5250 474 .4 97.6
Menominee 5275 411.5 116.0
Schoolcraft 654.5 679.2 -24.7

TOTALS 4,281.3 3,858.4 422.9
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NORTHERN LOWER PENINSULA UNIT

C-18

Gross Forest® Land (In thousands of Areas)

5

County: Forest Survey Landsat* Difference
Alcona 324.1 319.3 4.8
Alpena 201252 255.2 -43.0
Antrim 186.4 156.6 29.8
Arenac 106.4 97.7 8.7
Bay 48.3 28.3 20.0
Benzie 124.7 130.6 -5.9
Charlevoix 162.6 2237 -61.1
Cheboygan 340.3 370.7 -30.4
Clare 230.3 239.4 -9.1
Crawford 313.6 320.3 -6.7
Emmet 189.4 246.6 -57.2
Gladwin 189.7 140.3 49.4
Grand Traverse 6% 143.2 1855
Iosco 243.9 208.7 3572
Isabella 97.9 85.3 12.6
Kalkaska 27051 322.0 -50.9
Lake 297.1 217.1 80.0
Leelanau 114.2 100.3 13.9
Manistee 221.3 204.6 16.7
Mason 160.1 118.9 41.2
Mecosta 149.6 113.5 361
Midland AT 180.7 -9.0
Missaukee 227 .4 245.8 -18.4
Montmorency 287.5 306.9 -19.4
Newaygo 310007 311.6 (]t
Oceana 152.3 115.9 36.4
Ogeman 241.4 275+9 1.9
Osceola 176.1 163.2 12.9
Oscoda 302.3 325.1 -22.8
Otsego 25158 261.5 -9.7
Presque Isle 290.8 310.5 =29.7
Roscommon 27159 260.7 11,2
Wexford 22159 197.8 2451

TOTALS 75,0517 6,997.9 53.8
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Table C-5. Cont.

SOUTHERN LOWER PENINSULA UNIT

Gross Forest Landa(In thousands of acres)

County: Forest Survey Landsat" Difference®
Allegan 1507 168.7 -18.0
Barry 94.4 141.9 =47.5
Berrien 71.0 7547 =4.7
Branch 56.6 7139 -15.3
Calltoun 99.7 912 8.5
Cass 69.7 98.7 -29.0
Clinton 45.0 49.2 -4.2
Eaton 55.9 50.1 5.8
Genessee 56.2 160.5 -104.3
Gratiot 49.4 45.6 3.8
Hillsdale 70.3 74.6 -4.3
Huron 62.7 55.8 6.9
Ingham 58.6 67.6 -9.0
Fonia 63.5 72.9 -9.4
Jackson 96.2 19753 -21.1
Kalamazoo 79.9 146.9 -67.0
Kent 129.3 127.9 1.4
Lapeer 83.8 92.5 -8.7
Lanawee 64.8 41.9 22.9
Luingston 9205 117.7 -25.2
Macomb 46.5 40.0 6+ 5
Montcalm 134.4 110:7 235/
Monroe 35.1 24.1 11.0
Muskegon 170,0 138.4 31%16
Oakland 154.6 164.5 -9.9
Ottawa 89.1 105.1 -16.0
Saginaw 99.0 104.5 =5.5
St. Clair 79.4 67.3 27
St. Joseph 577 Tf7lal -20.0
Sanilac 70.4 76.9 -6.5
Shiawassee 42755 83.6 =41.1
Tuscola 1057 156.1 -50.4
Van Buren 100.1 76.9 2352
Washtenaw 84.2 137.9 -53.7
Wayne 38-2 47.0 -8.8

TOTALS 2,857.1 3,279.3 -422.2



TABLE C-5. FOOTNOTES

(Cont.)

1,

Michigan Forest Survey results reported in USDA-
Forest Service Research Bulletin NC-9

Land use Acreage results reported for Michigan in
LARS Information Note 011077

Gross Forest includes figures for commercial, non-
commercial and productive reserved acres

Landsat forest acreage estimates were corrected for
U.S. Bureau of Census county acreages

Difference = (Forest Survey reported county acreage)-
(Landsat estimated acreage)
+ = Landsat under estimate compared to

Forest Survey
Landsat over estimate compared to
Forest Survey

C-20
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a negative 1.95%. This result is well within the 37 maximum imposed by
current survey restrictions.

Scattergrams for both New York and Missouri do not follow the same
pattern as do the scattergrams for Wisconsin, Michigan and the Survey Unit
totals. In New York Landsat estimates generally overestimated those re-
ported in the 1968 Forest Survey Resource Bulletin. This was concerning
since the analysis for New York state had the same objectives as did the
analysis for Michigan and Wisconsin. Therefore, we would assume a similar
pattern in the scattergrams. Upon investigation of the Forest Service
publications, NE-20, we learned that the State of New York, had experienced
an increase in gross forest acreage between the 1950 and 1968 survey periods.
If we could assume that forest acreage was still on the increase, and we
have no reason to doubt otherwise, we could rationalize that the Landsat
estimates of forest acreage would be over those reported in the 1968 survey.
To support this, we decided to make a projection of one survey unit. The
Lake Plain Survey Unit area statistics were expanded to determine a projected
rate of growth between 1968 and 1974 in gross forest acreage. Our assumption,
was that the forest acreage would continue growing at the same rate as it had
grown between the 1950 and 1968 survey periods. Table 7 shows the results of
our projection for the Lake Plain Survey Unit of New York. The change column
indicates that the gross forest land area would have increased by 77 between
the 1968 and the projected 1974 survey period. The Landsat estimate of forest
acreage increase between 1968 and the time the Landsat data was classified
indicated a 6.5% increase. Unfortunately, a more complete data set was not
available for comparisons. Similar results were not available for survey units
in the North Central Region for the States of Michigan, or Wisconsin or
Missouri so similar comparisons could not be made.

The results for the State of Missouri show in general that the Landsat
data grossly underestimates forest acreage compared to the published Forest
Survey results. The counties in Missouri were not analyzed with the same
objective as those in Michigan, Wisconsin and New York. However, Missouri
was unique in that more control was imposed on the analysis than in the other
States, since primarily only one analyst was responsible for developing train-
ing statistics. This result for Missouri was counter to our belief that
analysts should have a greater effect on the classification accuracy .and,
therefore, the acreage comparisons.

The correlation study indicated that a more detailed evaluation of the
classifications would be in order. We reviewed our knowledge of the material
that we were using for the comparative evaluations. For the data from the
Great Lakes Watershed classifications we estimated that we had sufficient
information to evaluate:

1. The effect that a number of different analysts had on
the acreage comparisons given that they were all following
a uniform classification objective.

2. The effect on acreage comparisons of extending training
data to adjacent counties.
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3. The effect of commercial forest acreage on training set
selection and if this variable can affect the predicted
outcome of Landsat classifications.

Analysis-of-Variance. An analysis-of-variances test was run using the
difference between the Landsat estimate of percent gross forest by county
and the Forest Survey published estimate for each of the variables listed
above. The objective of this analysis was to determine how the three
variables being tested affected classification performance, or our ability
to used Landsat data to estimate forest cover. The test, we felt, would
highlight areas needing more intensive study.

In general, for the purpose of this study the analysis—of-variance
raises more questions than it is able to provide answers. Furthermore, the
inferences that one can make from these statistics follow intuitive lines
of logic to those familiar with Forest Survey procedures and remote sensing
technology.

A summary of our results indicate:

* For the three variables tested (analysts, data set
extension, and training set) for the three States
it was not obvious which variable was most signi-
ficant with regard to classifying forest cover.

* The ranking of the variables significance within
States varied for each state.

° The effect of between variable interaction was in-
consistent from State to State.

* Generally it appears that training set may be the
most significant variable. _

* Possibly the effect of analyst, given a well defined
analysis is the least significant variable.

VI. Conclusions

Based on our study to determine if Landsat data can be used to help im-
plement a large area forest resource inventory such as required by the RPA
we can conclude:

* Computer—-assisted analysis of Landsat data can be used
as an estimator of gross forest acreage.

* Landsat acreage estimates can be derived on county-by-
county bases, given sufficient resources to adequately
define training statistics.

* Landsat data and computer-assisted analysis can provide
State wide estimates of forest acreage within the current
Forest Survey requirements.

* Training statistics cannot be extended across Survey
Unit Boundaries.

Given the foregoing we conclude that we have positively answered our hypothesis.
We can therefore state that Landsat data can be used as a tool to derive forest
acreage.
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VII. Discussion

One must remember, that for this comparison the Landsat classification
results were not specifically generated for the purpose of separating forest
from non-forest types. Therefore, we have attempted, where feasible, to
present comparisons for gross forest acreage. By so doing we have knowingly
lumped Forest Survey classes of commercial, non-commercial and productive re-
served lands together. Our primary objective was to determine if Landsat
data could be used in a coarse sense to provide up-to-date acreage statistics
We have accomplished this objective.

Logically, our next step would be to progress to the next level of
survey detail. However, we feel that such a progression would be premature.
We feel that these results indicate that our ability to predict the outcome
of Landsat classifications are below par. That is to say we have not been
able to identify the sources of variability that affect classifications accuracy
in terms of accurately predicting surface area of forest area by county.

The study indicates that there are a number of variables that need to be
studied and understood before a Landsat-based inventory system can be de-
fined. A partial list of these variables follow:

* The effect of data date on classifications performance.
* The effect of size and locations of training set data.

* The location and distribution of training data based on
a-priori inputs from:

1. previous forest surveys
2. potential natural vegetation

* The predictability of spectral class structure based on
previous classification experience.

* The utility of Forest Survey data for allocation of train-
ing data. This is now possible since Forest Survey now
records a land class for a variable area plot around the
field point. Survey data we had access to only recorded
information for the one-acre field point.

* The distance that training statistics may be extended within
Survey Units.

Once these areas of concern have been addressed we may proceed to work on
providing more detailed information from the Landsat classifications. Like-
wige, the design for using Landsat classifications in a sample model could
be approached and design test could be performed that would determine the
data's ultimate utility.
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VIII. Recommendations

Based on the foregoing we recommended the following:

« Work is needed to determine the extent to
which Landsat and computer-assisted analysis
techniques are capable of estimating forest
acreage.

* Work to determine the allocation of training
samples.

* Work to determine the efficiencies involved
in classifying difference between the forest
and non-forest categories using different
classification techniques.

* Work in classifying spectrally, the difference
between commerical and non-commercial forest
classes.

For preliminary design considerations:

* We recommend the use of survey units in defining
the final Landsat sampling procedure.

* We strongly recommend the use of a-priory knowledge
contained in potential vegetation maps for defining
the sample intensity.

°* We strongly recommend the evaluation of training
sample size and distribution based on the predomin-
ate land use in a survey unit.
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COMPARISON OF CLASSIFICATION TECHNIQUES

Introduction. Within the past several years, many advances have been
made in the use of computer-aided analysis techniques for classifying and
mapping forest cover. As the previous section of this final report has
indicated, there are several approaches that can be used in developing an
optimal set of training statistics. However, once a satisfactory set of
training statistics has been defined, there are several different approaches
that can be used to classify the data. During the past several years,
several different classification techniques have been developed, each of
which has its own characteristics, advantages, and disadvantages. This
phase of the FAP project has therefore involved the testing and comparison
of several of these different classification techniques.

Objectives. The objective of this study is to compare five different
computer classification techniques in terms of their cost, accuracy, and
characteristics of the output products. Classification techniques to be
compared include the (a) Perpoint classifier, (b) ECHO classifier, (c)
Layered classifier, (d) Minimum Distance to the Means classifier, and (e)
Levels classifier.

Materials and Methods. Previous studies have shown that where large
geographic areas are involved a variety of techniques can be used to develop
the training statistics. However, once the training statistics are defined,
one of several different supervised techniques can be utilized to classify
the data. Many of the supervised classification techniques that have been
developed utilize the powerful maximum likelihood approach based upon normal
distribution of the data, although there are other criteria that can be
used for classification algorithms to select the identification of a parti-
cular pixel of data. Even when using the maximum likelihood approach, we
find that several different types of maximum likelihood classifiers have been
developed and these vary in the number of decisions that must be made for
each pixel or group of pixels. The following paragraphs will briefly de-
scribe the characteristics of each of the classifiers tested in this study.

(A) The Maximum Likelihood Perpoint Classifier. This is often referred to
simply as the Perpoint classifier and is the simplest and most straight-
forward of the classifiers tested. This classifier calculates the probabil-
ity of a particular pixel belonging to each of the training classes speci-
fied using the means, variances, and correlation matrices for a specified
set of spectral channels, and assuming Gaussian distribution of the training
data. The training class having the maximum likelihood (highest probability)
is selected and the pixel being classified is assigned to that particular
class by the algorithm. A Bassian classification approach using the maximum
likelihood perpoint classifier can be achieved by using a priori probability
weightings. Use of the maximum likelihood perpoint classifier involves only
one decision for each pixel, which is to determine the most probable class
for that pixel. This classification algorithm does assume that the distri-
bution of training data is Gaussian (i.e. normal) and that the training
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sample is of sufficient size to accurately estimate the statistical para-
meters. Each pixel of data 1s systematically classified. The result is
stored on a tape containing the classification decision for each pixel

and also the probability of that pixel being in the class to which 1t was
assigned. The probability data allows later use of the thresholding option
in evaluating the classification results.

(B) A Maximum Likelihood Boundary Finding Per-field, or "ECHO" Classifier.
"Simultaneous analysis and classification of a group of pixels, all assumed
to be drawn from the same class, has been shown to be a powerful method for
incorporating simple spatial information (adjucency) into the analysis pro-
cess." (Kettig and Landgrebe, LARS Information Note 050975). By automati-
cally defining a group of pixels (sample location) and then classifying
each group as a unit (sample classification), both the accuracy and effici-
ency of the data analysis tasks can be increased. An approach combining
both sample location and sample classification has been developed at LARS
and has been referred to as the "ECHO" classifier whdch is an acronym, for
"Extraction and Classification of Homogeneous Objects' (Swain, LARS Infor-
mation Note 111276).

The ECHO classifier is a two step classification algorithm. First
homogeneous areas or cells are defined by the computer and then each
field or cell is classified as a unit. For the first step, three para-
meters must be defined by the analyst. First, the cell size must be
selected by the analyst (i.e. 2 x 2, 3 x 3, etc.). The second parameter
determines if the cell is significantly heterogeneous (i.e. whether the
cell must be split or not); the second parameter determines if adjacent
cells are similar and can be combined to form a larger field. The classi-
fication algorithm then makes a single decision on the identification of
each field, using the maximum likelihood decision rule. If there is more
than one pixel in a cell (which is usually the case), in addition to the
means, variances, and correlation metrices of the training classes, this
classifier uses the means, variances, and correlation matrices for the
field in the classification step (a per-field approach). As with the maximum
likelihood perpoint classifier, the ECHO classifier only uses one set of
channels (specified by the analyst) for use throughout the analysis sequence.

(C) A Maximum Likelihood Multi-layer Perpoint, or 'Layered" Classifier.

The Layered classification algorithm differs from the normal maximum like-
lihood perpoint classifier in terms of the number of decisions that are
made for each pixel. Instead of a single decision as to the identification
of that pixel, several decisions are made, on a pixel by pixel basis. The
multi-decision nodes allow different subsets of channels to be used at the
various nodes, and fewer choices among spectral classes are involved in each
decision. Although a maximum likelihood decision rule is utilized at each
of the nodes, when the classification is completed no single probability
value can be assigned to a particular pixel. However, it should be noted
that a priori probability weighting can be utilized with the layered classi-
fier. The part of the classifier that is most difficult to develop and is
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least understood is the "tree structure" which is required to define the
relationships between the various decision points (or nodes) and the in-
formational and spectral classes involved. It should be noted that the
layered classifier and the tree type of structure lend themselves very well
to analysis of multitemporal and multi-scource data sets.

(D). A Minimum Distance to the Means Perpoint Classifier. One of the two
classifiers compared in the study that does not utilize the maximum likeli-
hood decision rule is the so-called "Minimum Distance Classifier". In this
classifier, a minimum Euclidean distance is found between the data vector
being classified and the mean of each class of training statistics classified.
Therefore, this classifier does not use variances and correlation matrices
(this is equivalent to assuming that the variances are all equal and there

is no correlation between the channels). Since the maximum likelihood rule
is not utilized, probability values cannot be obtained for each pixel nor can
a priori probability weighting be utilized. The algorithm systematically
makes a pixel by pixel classification of the entire data set. As was the
case in the first two classification algorithm techniques discussed, a single
decision is made for each pixel, using a single set of channels specified by
the analyst.

(E). A Parallel Piped Perpoint, or "Levels'" Classifier. The final classi-
fication technique tested in this study was the so-called levels classifier.
The major difference between the levels classifier and the other classifi-
cation algorithms discussed thus far is that the levels classifier utilizes
the ranges of spectral values in all channels to define each spectral-infor-
mational class. These ranges of spectral values for each channel to be
utilized must be specified to the computer by the analyst. By not utilizing
the means, variances, and correlations matrices, probabilities cannot be ob-
tained and a priori probability weighting cannot be utilized. Any pixel
that has a data vector which is not included in any of the ranges of the
classes specified is put into an "other" class. For this reason, the levels
classifier can produce a result in which many pixels are not included in any
of the spectral classes defined. This is quite different than the other
classification techniques discussed since they will all classify every pixel
into one of the classes defined, even though the probability of actually
belonging to that class is very low. The levels classifier utilizes a single
decision to classify data on a pixel by pixel basis, using a single set of
channels specified the analyst.

Results. The U.S.G.S. Platoro quadrangle area was classified with each
of the five classification algorithms, at both the Level 2 and Level 3 degrees
of detail. Because of the nature of the test site, some of the spectral classes
defined as Level 3 included some deciduous species in with the premarily conif-
erous cover types. Because the spruce-fir cover type could be subdivided as a
function of crown closure, these classifications actually involved a higher
level of detail than is normally considered to be included in a Level 3 classi-
fication. The informational classes defined for the Level 2 and Level 3
classifications are shown in Table 8.
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Table C-8. Informational classes utilized in the computer-aided analysis
of the Platoro quadrangle for both level 2 and level 3+ degrees

of detail.

Level 2
Barren
Water

Grassland

Deciduous

Coniferous

Level 3+

Barren (Exposed rock and soil)
Water

Range land
Agricultural

Aspen
Oak

Ponderosa Pine/Oak
Spruce-fir/Aspen

Spruce-fir, 60-80% Crown Closure
Spruce-fir, 80-100% Crown Closure
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To improve the comparison of the results obtained, as many variables
as possible were maintained constant. The same Landsat MSS data set was
used for all classifications (Frame 1424 - 17132, collected on September
20, 1973). A single statistics deck was developed using a multi-cluster
blocks approach (described in the previous section of this report) for the
Platoro quadrangle. All of the classification algorithms use basically the
same statistical parameters contained in the statistics deck (the means and
variances), with the exception of the Levels Classifier, for which the
spectral ranges had to be determined. Therefore, for the Levels classifier,
the ranges for each class were defined as plus and minus 2% standard devi-
ations around the mean. A priori weights were not utilized with any of the
classifiers, although this was an option available on several. Except for
the layered classifier, all four channels were used for each decision in
the classification process. The layered classifier utilizes a subset of
channels for several nodes (decision points), so all four channels were
eventually utilized; but not in a single decision step. All classifications
were obtained on the IBM 370/138 computer using the software configuration
currently available.

The results for each classification algorithm were evaluated relative to
the amount of CPU time required, the extent of analyst involvement (in terms
of man-hours), and estimates of the accuracy of the results. Classification
of the entire 15,303 hectare (37,812 acres) Platoro quadrangle was used as
the basis for comparing relative speed of the different algorithms. Even
though the area is not particularly large, it does provide a valid relative
index of the computer CPU time required for the various algorithms. The amount
of analyst time required in this study was minimal in all cases except the
Levels classifier, since it only involved setting up the classification
decks using an already existing set of training statistics. The accuracy
estimates were based upon a detailed set of test fields that had been defined
and thoroughly field checked by personnel of the Institute of Artic and Alpine
Research (INSTAAR) of the University of Colorado.

Table 9 contains the results summary for the various classificationms.
In each case, the CPU time given is based upon the classifications for the
Level 3 degree of detail. Table 10 contains the individual preformance tables
for the Level 2 test field results for each of the classification algorithms.
The Level 3+ test field results for each of the classification algorithms are
shown in Table 11. The following paragraphs will discuss the classification
results for each algorithm in sequence.

(a). Maximum Likelihood Perpoint. This classification was the most
expensive to obtain, primarily because of the large amount of CPU time re-
quired for the classification. The total cost was 0.218 cents per hectare.

A relatively large amount of CPU time was required by the algorithm since the
probability for each individual pixel belonging to each of the spectral classes
had to be calculated. However, this procedure gives the algorithm considerable
power and makes it relatively accurate. For most work involving computer-aided
analysis techniques, this algorithm is considered the standard against which
other techniques are compared because of its high level of accuracy, no matter
what cover types are involved. The analyst involvement in classifying the data
with this algorithm was minimal.
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Table (-9, Summary of the costs and accuracies obtained for the five
classification algorithms evaluated.

Classification Algorithm Used

o
8 v
= =
i (0] @
£ o g
a A3
.-Iu =
g2a o 8 o P
9] o =] > °>J
g8 5 g g g g
CPU Time (sec.)' 449 .4 267.4 168.5 258.6 144.7
=
= Man Hours (min.)? 10 15 10 30 120
. Total Cost (%) 32.87 21.06 13.37 27.73 30.05
S
8
Cost per hectare (¢) 0.218 0.140 0.089 0.184 0.200
. ’5 Level 2 93.5 92.8 93.5 92.8 68.0
g =
5 B
= O Level 3 75.0 73.0 75.9 74.5 53.6

Based upon classification of the entire Platoro quadrangle (15,303 hectares

or 37,190 acres).

It should be noted that these times do not include the time (cost) for developing
the training statistics, except in the case of the Levels Classifier.

Calculated on the basis of @$250/CPU hour & $10/man-hour.

Based upon evaluation of tested areas involving 3,704 acres and which have been
carefully field checked.
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Table C-10 Classification performance tables for each of the algorithms
tested, at the Level 2 degree of detail.

(A) Maximum Likelihood Perpoint Classifiers
NUMBER OF SAMPLES CLASSIFIED INTO

GROUP YWDl CGRET  EXPOSED  GRASS DECID CONIFER  WATER AADDATA
1 EXPOSED 41 63,4 26 1 0 14 0 0
2 GRASS 1068 88,2 95 942 15 16 0 0
3 DECID 127 47.2 1 59 60 6 0 1
4 CONIFER 1897 99,4 0 z 2 18A5 6 i
5 WATER 2446 100,0 (] 0 0 ___2 _:3: ___2
TOTAL “3367 “le2 1005 T 1921 240 2
OVERALL PERFORMANCE ( 3167/ 3367) = 93.5
AVERAGE PERFORMANCE BY CLASS( 398.2/ 5) = 79.6
o
(B) ECHO Classifier
NUMRER OF SAMPLES CLASSIFIED INTO
grouE SMBE  CORET  EXPOSED  GRASS DECID CONIFER  wATER RANDATA
1 EXPOSED 41 68.3 28 0 0 13 0 6
2 GRASS 1068 86,5 122 924 10 12 0 0
3 DECID 127 4.9 2 58 57 9 0 1
4 CONIFER 1897 99.2 1 4 3 1882 f 1
5 WATER 234 100.0 0 0 0 0 234 0
TOTAL T3367 “153 386 70 1916 “24n T
OVERALL PERFORMANCE ( 3125/ 3367) = 92.8
AVERAGE PERFORMANCE BY CLASS( 398.9/ 5) = 79.8
.
(C) Minimum Distance Classifier
o R NUMBER OF SAMPLES CLASSIFIFD INTO
SAMPS CORCT  EXPOSED  GRASS DECTD CONIFER  WATEK 3a0DATA
1 EXPOSED 41 58.5 24 2 0 15 0 0
2 GRASS 1068 89,6 70 957 22 19 0 0
3 DECID 127 4840 0 57 61 H D 1
4 CONIFER 1897 98,7 0 3 3 1873 18 0
5 WATER 234 100.0 0 0 0 n 234 0
TOTAL "3367 Y 1215 “"Be 1915 “252 T
OVERALL PERFORMANCE ( 3149/ 3367) = 93,5

AVERAGE PERFORMANCE BY CLASS( 394.9/ 5) = 79.0
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Table C-10Cont.

(D) Layered Classifier

NUMBER OF SAMPLES CLASSIFIED INTO

GROUP NO OF PCT.
SAMPS CORCT EXPOSED GRASS DECID CONIFER WATER BADDATA
1 EXPOSED 41 56,1 23 1 0 1T 0 0
2 GRASS 1068 87,7 100 937 1S 16 0 0
3 DECID 127 47,2 0 59 60 6 1 1
4 CONIFER 1897 98,6 0 3 3 1871 20 0
S WATER 234 100.0 0 0 0 0 234 0
TOTAL "3367 123 1000 78 1910 "255 T
OVERALL PERFORMANCE ( 31257 3367) = 92.8
AVERAGE PERFORMANCE BY CLASS!( 389.7/ S5) = T77.9
(E) Levels Classifier
GROUP NO OF PCT. NUMBER OF SAMPLES CLASSIFIED INTO
SAMPS CORCT EXPOSED GRASS DECID CONIFER wATER BADDATA OTHER
1 EXPOSED 41 51.2 21 1 0 9 0 0 10
2 GRASS 1068 56,6 53 605 5 15 0 0 390
3 DECID 127 27.6 0 40 35 5 0 0 47
4 CONIFER 1897 81,1 1 2 1 153R 10 | 0 344
S WATER 234 38,0 0 0 0 0 H9 0 145
ToTAL "3367 T "4 Ta 1567 “1oo 7% “336
OVERALL PERFORMANCE ( 2288/ 3367) = 68.0

AVERAGE PERFORMANCE BY CLASS( 254.,5/ 5) = 50.9
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(b) ECHO Classifier. This classification algorithm allows more than
one data point to be at a time, thereby reducing the number of individual
decisions that must be made and thus reducing the amount of CPU time re-
quired. The involvement by the analyst is relatively minimal and simply
involves selecting two classification parameters. However, it must be
pointed out that the optimum values for these two classification parameters
are not thoroaghly understood. For this reason, in this test the classifi-
cation parameters that were utilized were those recommended for use with
the ECHO classifier by Swain (LARS Information Note 111276). These recommen-
ded parameters were cell size = 2 x 2; cell splitting 60; annexiation - 155{0)

Classification of groups of pixels rather than individual pixels has a
definite effect on the characteristics of the classification results, pro-
ducing an output map that has much less of the !"salt & pepper" effect.

Since the algorithm uses spatial as well as spectral information, it would
appear that the identification of each cell defined by the algorithm should

be more accurate. However because some informational classes are often in
small isolated units (e.g. The barren category) the effect of the ECHO
classifier in smoothing the data or removing the salt & pepper effect can
cause a slight decrease in the classification accuracy of certain information-
al classes. In this study, the overall classification accuracy was not signi-
ficantly influenced by the use of the ECHO classifier as compared to the
maximum likelihood perpoint classifier. The overall cost per hectare, how-
ever, was reduced to 0.l1l4 cents per hectare.

(¢) Minimum Distance to the Means Classifier. Through use of the
Euclidean distance measure, the CPU time required by the minimum distance
classifier was much less than for any of the maximum likelihood classifiers.
Analyst involvement was also minimal, since only a single job deck defining
the area to be classified and wavelength bands to be used was required. The
overall cost was therefore the lowest of all classifications algorithms com-
pared, being only 0.089 cents per hectare. Surprisingly, the classification
accuracy with the minimum distance classifier was relatively high, equalling
the classification accuracy of the maximum likelihood perpoint classifier at
Level 2 and being slightly higher than the maximum likelihood perpoint classi-
fier for the Level 3 classification results. This relatively high accuracy
of the minimum distance classifier may have been due in part to the relatively
heavy reliance on the clustering algorithms (which is a minimum distance al-
gorithm) in developing the spectral/informational classes defined by the train-
ing statistics deck. Therefore, the clustering algorithm developed classes
which were characterized by the minimum distance assumption. However, as the
previous study indicated, use of the clustering algorithm to develop the train-
ing statistics provides an optimal method for developing training statistics
in such a spectrally complex area. These results may therefore indicate a need
for further study of the inter-relationship between developing training
statistics using the clustering algorithm to aid the analyst and in the use of
a minimum distance algorithm for the actual classification of the data set.

(d) The mulitple nodes and tree structure of the layered classifier al-
lowed various subsets of channels to be used in the classification. This re-
sulted in a considerable reduction in CPU time required as compared to the
single-layer approach involved in the maximum likelihood classifier. How-
ever, the CPU time for the layered classifier was still much higher than that
involved in the minimal distance classification. Although obtaining the
truly "optimum" tree structure is difficult, a procedure has been developed
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to "automatically' generate the tree, thereby reducing the analyst involve-
ment to that of selecting two parameters and preparing three job decks

(which could be reduced to only one job deck with with further programming).
The accuracy of the resulting classification was slightly less than the
maximum likelihood classifier or the minimum distance algorithm, but not by
an amount that is considered significant. The overall classification cost
was 0.184 cents per hectare, which is significantly lower than that involved
in the maximum likelihood perpoint classifier but higher than either the ECHO
or the minimum distance classifiers.

(e) Levels Classifier. In the use of this classifier, the ranges of the
values used to define each class are difficult to obtain accurately. These
values are essentially the boundaries between the classes, and must be defined
by the analyst for all channels and for each spectral class. In this study,
we found that defining the ranges required considerable analyst time to simply
convert the means and standard deyiations to the ranges to be used. In this
study, each range was defined as - 2% standard deviations of the mean. There-
fore, further programming could certainly reduce the amount of analyst time
involved in this step of the analysis. The biggest limitation in the use of
the levels classifier involves the fact that the analyst does not know the
optimal set of ranges for each spectral class and therefore a large number of
pixels are often classified as "other", thereby reducing the classification
accuracy by a significant amount. In addition, high numbers of data points
which are unclassified for all practical purposes makes usage of acreages from
this data very difficult. The classification accuracy probably could have
been increased by further adjustments of the levels, but this would have in-
creased both man-hours and CPU time considerably. 1In this study, only a single
attempt was made to classify the data using each algorithm. Therefore, the CPU
time for the levels classifier was the lowest of any of the algorithms used
but the analyst involvement increased the total cost considerably. The final
result showed a 0.2 cents per hectare total cost, which is second only to that
of the maximum likelihood perpoint classifier, but the classification accuracy
at both Level 2 and Level 3 were significantly less than any of the other four
classification algorithms used.

To compare the characteristics of the output products obtained, two
approaches were used. First, Varian printer maps were obtained for Platoro
quadrangle using each of the five classification algorithms tested. These
were compared and showed that the maximum likelihood perpoint classification
map (shown in Figure 8 ) was very similar in appearance to the minimum dis-
tance to the means and the layered classification results. The ECHO classi-
fier produced an output map that was "blockier'" in appearance (see Figure 9 ),
and without the "salt and pepper" effect that the other algorithms produced
because they classified each pixel independently. The levels classifier
had many data points that were classified as '"other'", thereby producing a
classification map that was not very statisfactory because of the large amount
of data that was not included in any of the informational classes that had
been defined (see Figure 10).
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Varian Display of Maximum Likelihood Perpoint Classification.

Figure C-8.
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Figure C-9. Varian Display of ECHO (Extraction and Classification of
Homogeneous Objects) Classification.



C-42

Figure C-10. Varian Display of Levels Classification.
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The second evaluation of the classification maps involved producing a
map product in each of several different output devices each having a differ-
ent format, including a line printer (Figure 11), Calcomp plotter (Figure
12 ), Varian (Figure 9), and digital display (Figure 13) output devices.

These figures were each obtained using the ECHO classification results, and
indicate the wide variety of map output formats that can be obtained from the
same clasgsification result.

Evaluation of the different formats of map products indicated that the
levels classification result was not accurate enough to produce a satisfactory
map product. The other algorithms produced very similar classification per-
formances: Map outputs having similar appearances  (except for the ECHO
classifier) could be obtained with any of the output devices. The particular
output devices to be used, and the choice of a perpoint or an area classifiee
(i.e. ECHO) is a function of the user needs and should be specified by the
user. The line printer is usually a 1:24,000 scale, and changes in this scale
can best be obtained photographically when reproducing the original 1:24,000
scale printout. The Calcomp printer does not work very well when many adjacent
pixels are classified differently, so is most appropriate for use with the ECHO
classifier. The Varian output is inexpensive to obtain and produces a map of
a large geographic area in a compact format, with line and cloumn numbers de-
signated, and at various scales. The digital display produces high quality
photographic outputs at various scales and can obtain color-coded outputs, but
is more time consuming and expensive to use. In summary, it appears that the
scale, format, and characteristics of the map output are quite flexible, and
it is the user's choice as to which algorithm and output device will produce
the output map that best meets his information needs.

Summary and Conclusions. Five different classification algorithms were
utilized in this study. Several of the classification algorithms utilized as
much of the statistical description of the spectral classes as possible to
increase the accuracy of the classifications. The maximum likelihood classi-
fiers (die. maximum likelihood perpoint, ECHO, and the layered classifier) all
utilize the mean, variances, and covariance matrices with the ECHO classifier
utilizing additional information in terms of the spatial variation. Some
algorithms attempt to reduce the CPU time by reducing the number of decisions
required (as with the ECHO classifier), or by maximizing the use of channel
combinations by using more numerous but simplier decisions involving fewer
channels (as with the layered classifier), or by reducing the amount of in-
formation utilized in the decision process (as with the minimum distance classi-
fier). Several of these algorithms have minimized the analyst involvement in
the classification step of the analysis to essentially zero. This is parti-
cularly true of the maximum likelihood perpoint and the minimum distance
classifier, The layered classifier and ECHO classifier require analyst in-
volvement only to select several parameters. However, it should be pointed
out that some of the parameters which must be defined by the analyst are not
well understood at present, thereby decreasing the current value of these
algorithms.

The optimal classification algorithm is one which is designed to reduce
the analyst time required and CPU time to a minimum, while at the same time
maximizing the classification accuracy. Each of the algorithms tested have
advantages and disadvantages. Various types of output map products can be
obtained using any of the classification algorithms tested. A key point that
must be made is that the development of an effective set of training statistics
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Figure C-11. Line-Printer Output Showing ECHO Classification Results.
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Calcomp Output Showing ECHO Classification Results.

Figure C-12,



C-46

Figure C-13. Digital Display Output Showing ECHO Classification Results.
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is a critical part in obtaining a high level of accuracy in the final
classification results. Results of this study indicate that use of different
clagsification algorithms can cause a significant difference in the cost

of classifying the data without adversely effecting the classification
accuracy. Overall, the results obtained in this study indicated that the

nininun distance to the mean classification algorithu vas the most efficient

since it minimized the analyst time and computer time while the accuracy
was as high or higher than was obtained using any other classification

algorithms.
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Comparison of Six Approaches for
Developing Training Statistics

Introduction. Over the past decade, tremendous progress has been made
in the development of computer-aided analysis techniques (CAAT) involving
the implementation of pattern recognition theory on computer systems to
analyze remotely sensed data obtained in the form of multispectral scanner
data and digitized aerial photography. The two basic approaches by which
the computer is taught to recognize and identify cover types are the
"supervised", involving a training sample approach, and the '"non-super-
vised", a clustering approach, both of which have been used by many
researchers with considerable success. Much of the previous work involving
the application of computer-aided analysis techniques in a variety of disci-
plines has shown the capabilities and limitations of these two approaches.

Preliminary attempts to map forest cover in areas of complex vegetation
types and rugged terrain using both the supervised and non-supervised techniques
indicated several difficulties with each approach in relating the cover type
categories present on the ground to the spectral classes present in the data.

For example, in the mountainous terrain of the San Juan Mountains of southwestern
Colorado, selection of a training data set was extremely difficult due to spectral
differences caused by variations in slope and aspect, as well as to the many
spectral differences in the cover types themselves. It was therefore essential
that a more effective procedure be defined to accurately map forest and other
cover types when utilizing the computer-aided analysis techniques and Landsat

MSS data obtained over spectrally complex areas.

If computer—-aided analysis techniques are to be used operationally as a
reliable source of information for a land manager, the technique must meet
three basic requirements. First, the process must become more effective by
optimizing the analyst/data interactions, thus reducing human bias and
increasing the reliability of results (i.e., making the process more of a
science than an art). Secondly, the analysis sequence must be defined as a
series of identifiable and repeatable steps which are not data or analyst
dependent. Thirdly, the entire process must be more efficient, i.e., faster,
while reducing both computer cost and analyst time. Although there may be
no single or "best'" way to perform the analysis for all applications and
situations, a better understanding of the capabilities and limitations offered
by computer-aided analysis techniques and Landsat MSS data must be developed
and documented.

Objective. The major objective of this study was to define an effective
and efficient computer-aided analysis technique that can be utilized to map
forest lands in areas of rugged topography using digital multispectral scanner
data collected from satellite altitudes.
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In order to accomplish this objective, a series of experiments were set up
to develop and evaluate the basic approaches to computer-aided analysis techniques.
The following five steps were pursued:

1) Define several alternate analysis procedures for training a pattern
recognition classifier.

2) Develop and illustrate the steps involved in each analysis approach
to maximize the classification accuracy and optimize the interactive
and computational efficiency of each.

3) Evaluate these analysis techniques to better understand the capa-
bilities and limitations of each.

4) Compare the amount of support data and human involvement required,
as well as the computer cost and accuracy of the various analysis
techniques.

5) Describe and illustrate, in detail, the recommended computer-aided
analysis technique for analyzing Landsat MSS data in an operational
system.

Test Sites. The primary study areas involved in this investigation were
the Platoro quadrangle (15,303 hectares or 37,812 acres) and the Southern San
Juan Mountain Planning Unit (S.S.J.M.P.U.) (540,580 hectares or 1,335,755
acres). The relatively small Platoro quadrangle test site was utilized as an
intensive study site for development and preliminary testing of the various
analysis techniques. The S.S.J.M.P.U. study area was specified by personnel
of the U. S. Forest Service, and includes parts of three National Forests —-—
the San Juan and the Rio Grande in Colorado, and the Carson in New Mexico.

This larger test site was used for a more complete testing and evaluation of

the effectiveness and efficiency of the different techniques. Both the Platoro
quadrangle and S.S.J.M.P.U. were classified at a Level 2 and at a Level 3

degree of detail. Table 1 gives the cover types or informational classes
included in both the Level 2 and Level 3 classifications. In addition, six other
test sites in the Colorado Rocky Mountains, ranging in size from 14,600 to
1,012,000 hectares (36,000 to 2,500,000 acres), were also used to evaluate

the recommended technique over a variety of cover types and data sets.

Analysis Procedures. The initial phases of the study involved defining
several alternate analysis procedures for developing a set of training statis-
tics. Evaluation of the two basic approaches (supervised and non-supervised
or clustering) indicates that these two approaches are in opposition, both in
terms of the method of defining the training sample (data points) and the method
of grouping the training sample into unimodal training classes (training
statistics). In the supervised approach, a scattered sample of small fields
are carefully selected by the analyst, who then groups the fields into unimodal
informational training classes. The non-supervised approach is just the
opposite in that the training sample is selected and grouped into spectral
training classes entirely by the clustering algorithm. Due to this contrast,
the possibility exists for intermediate steps between the two extremes in both
parts of the training procedure (i.e., selecting the training sample and
grouping the training data into spectral training classes).
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Table C-12. Informational classes utilized in the computer-aided analysis
of both the Platoro quadrangle and the S.S.J.M.P.U. for Level

2 and Level 3.

Level 2
Barren
Water

Grassland

Deciduous

Coniferous

Level 3
Barren (Exposed rock and soil)
Water

Rangeland
Agricultural

Aspen
Oak

Ponderosa Pine/Oak
Spruce-fir/Aspen

Spruce-fir, 60-807% crown closure
Spruce-fir, 80-100% crown closure
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Six different approaches for developing training statistics were therefore
defined, based upon three methods for selecting the training sample and three
methods for grouping the training sample into training classes. The three
methods for selecting the training sample represent three levels of supervision
by the analyst, whereas the three methods for grouping the training sample
represent three levels of supervision using the clustering algorithm. The three
methods of selecting the training sample are:

1)

2)

3)

HOMOGENEOUS FIELDS - This requires a high degree of involvement by
the analyst to select informationally pure fields which represent
the spectral variation for each cover type of interest. The rela-
tively small areas of homogeneous cover type in the Landsat data
makes it necessary for the analyst to select numerous small fields,
usually less than 10 lines by 10 columns of data in size.

HETEROGENEOUS BLOCKS - This requires the analyst to select a series of
areas that each contain a mixture of several cover types. The
variation in spectral response for each cover type of interest

is represented in at least one of the blocks. The size of the blocks
varies from less than 30 lines by 30 columns to over 100 lines by

100 columns. Since the blocks are not informationally pure, the
spectral classes must be obtained using the clustering algorithm.

STATISTICAL SAMPLE - This requires very little analyst supervision.

The entire area of interest i1s systematically sampled to represent

the variation in spectral response for all cover types in the area.

The training data points are 'automatically' selected by the clustering
algorithm.

The three methods for converting the training sample data into training
classes are:

1)

2)

3)

NO CLUSTERING - This requires a high degree of involvement by the
analyst to group the training fields into unimodal spectral classes
without the aid of the clustering algorithm.

MULTIPLE CLUSTERING - This requires the analyst to divide the training
sample into groups which are clustered separately. The numerous
cluster classes must then be combined into meaningful training
classes.

SINGLE CLUSTERING - This requires very little analyst supervision.
The entire training sample is grouped into spectral classes by the
clustering algorithm, essentially unsupervised.
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As the above comments indicate, the different levels of supervision required
represent a balance between involvement by the analyst and dependence on the
computer system, primarily the clustering algorithm. Figurelé4 graphically
shows the differences between these six approaches, and indicates that the
different approaches defined represent a combination of the method used to
select the training sample and the method used to group the training sample
into training classes. Figurel5 shows the names that were given to the various
analysis techniques. The major aspects of each of the different techniques are
discussed in the following paragraphs. (A more detailed description is given
in the full report of this study, LARS Information Note 112177.)

The supervised approach for developing the training statistics includes:
selection and delineation of supervised training fields by the analyst,
grouping the fields into unimodal training classes, and calculation of statis-
tical parameters for each training class. The training statistics are then
evaluated to determine if they are acceptable. In this approach, the clustering
algorithm is not used to group the training sample into unimodal classes.

The multi-cluster fields approach for developing training statistics
involves: selection and delineation of supervised training fields by the
analyst, individual clustering of each informational class (i.e., a series
of clusterings, each clustering involving all training fields of one cover type or
information class), and combining the spectral-informational classes into a
single set of training classes. The training statistics are then evaluated
to determine their acceptability. The key difference between the multi-cluster
fields analysis procedure and the supervised approach is the use of the
clustering algorithm to divide each informational class into a number of spectrally
distinct classes. The clustering algorithm provides a mechanism for dividing
each informational class into approximately Gaussian spectral classes in a faster,
non-supervised manner.

The mono-cluster fields approach is the least supervised technique for
separating supervised training fields into spectral classes, since all training
fields are clustered at one time. The major steps in this approach are:
selection and delineation of supervised training fields, a single clustering
of all fields and identification of the cluster classes. The training statistics
are then evaluated to determine if they are acceptable. As compared to the
multi-cluster fields approach, it was anticipated that the mono-cluster fields
approach would allow the analyst’s time to be considerably reduced but might
cause a considerable increase in computer time.

The non-supervised approach involves clustering a statistical sample of data
points from the entire site. It therefore differs from the mono-cluster fields
approach primarily in the method used to select the training sample. The mono-
cluster fields approach relied on supervised training fields to represent each
information class, while the non-supervised approach uses a statistical sample
of data points from the active study area to represent the spectral characteris-—
tics of the area. The non-supervised approach for developing the training statis-
tics therefore involves the following major steps: clustering a statistical sample
of points from the entire site into a specified number of spectral classes; and
identification of the cluster classes, which requires a classification map. Note
that the training statistics can not be identified before a classification is
performed. Also note that the clustering of data from the entire site can in-
volve every data point in the study site, but this requires so much computer
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Figure C-14. The six techniques defined for developing training statistics,
emphasizing the different levels of analyst and computer involvement.
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Figure C-15. The names given to each of the six techniques defined for

developing training statistics.
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storage if the study site is very large that a sample of every mth line and nth

column must be utilized. 1In areas where some of the features of interest are
relatively small in size and sparce in occurrance, a sampling procedure results
in an insufficient number of data points to adequately define the training blocks
statistics for these cover types.

In the mono-cluster blocks approach informationally heterogeneous blocks
of data scattered throughout the site are selected by the analyst. All blocks
are then clustered as a single group to obtain the training statistics. In
the mono-clustering blocks approach, the major steps are: selection and deline-
ation of heterogeneous blocks of data, clustering of all blocks as a single
group, and indentification of spectral classes. The training statistics are
then evaluated to determine if they are acceptable.

In the multi-cluster blocks approach (also refered to as the modified
cluster technique (Fleming, et al, 1975) heterogeneous blocks of data are
selected by the analyst, but are then clustered individually (rather than
together, as it done in the mono-cluster blocks approach), as compared to
the mono-cluster blocks approached the individual clustering of blocks in-
creases the number of cluster classes and the sample size considerably. It
was anticipated that the computer time required would be much less for the
multi-cluster blocks approach as compared to the mono-cluster blocks approach,
but that the analyst time would be increased. This approach for developing
training statistics includes the following major steps: selection and de-
lineation of informationally heterogeneous blocks, individual clustering of
each block, identification of the spectral classes for each block, and pooling
of similar classes to obtain spectrally separable classes. The training
statistics are then evaluated to determine if they are acceptable.

Evaluation Procedures. Once an adequate training set has been defined, it
is not difficult to classify a large geographic area using computer analysis
techniques. However, unless one can verify the accuracy of such computer
classification results, little has been accomplished by simply classifying data
over various areas of interest. The real question is whether or not the re-
sultant classification maps and tables are reasonably accurate and have a
reasonable level of reliability. In this study, a combination of two tech-
niques proved most satisfactory to achieve the best possible indication
of the classification performace. The two techniques utilized to evaluate the
classification results included:

1) Qualitative comparison of the computer classification maps and the
maps obtained from interpretation of aerial photos, as well as direct
comparison to the aerial photos.

2) Quantitative evaluation of classification performance, utilizing a
system of statistically defined test areas.

In the qualitative evaluation, the maps resulting from interpretation
of aerial photos obtained by NASA were utilized as reference data. The com-
puter classification map and the photo interpretation map were compared, and
a general assessment of the level of agreement between the computer classification
map and the photo interpretation map was made. This approach provides a general
indication of the computer classification performance, but it is difficult to



C-56

make in-depth or detailed comparisans of classification results.

A quantitative evaluation technique utilizing test areas provides a more
effective method for evaluating computer classification results. Two different
approaches to quantitative evaluation were attempted. The first approach
estimated the extent to which the informational classes matech the spectral
classes, using as series of individually selected test fields which represent
the information classes. This enabled "standard" classification results tables
to be obtained for the classifications, The second approach to a quantitative
evaluation involved thresholding the classification results to determine the
number of points that did not "fit" (low probability) any of the training

spectral classes. Thresholding estimates the extent to which the spectral
classes used for training match those actually present in the data.

The costs —- both for personnel and computer -- involved in developing
the training statistics were monitored. These data were used in evaluating
the efficiency and effectiveness of the various approaches to defining a
recommended training procedure.

Results and Discussion. After defining the six alternative approaches
for training a pattern recognition classifier, the steps in each analysis
approach were developed to maximize their classification accuracy while optimizing
their interactive and computational efficiency. The different techniques
were then tested on both the relatively small Platoro quadrangle (15,303 hectares)
and the large S.S.J.M.P.U. area (540,580 hectares) to determine the limitations,
capabilities and requirements of each. These results were compared to determine
the "optimum" approach in terms of CPU time, man-hours, and support data
required, as well as accuracy achieved.

We attempted to maximize the validity of the study by reducing the sources
of variation not directly associated with the analysis techniques. Throughout
the entire study, several factors were held as constant as possible. The most
important ones were: the number of training classes, the test fields, the
classification algorithm, the convergence value of the clustering algorithm,
and the training areas used for each method of selecting the training sample.
An effort was made to develop 16 and 25 training classes for each analysis
approach on the Platoro quadrangle and S.S.J.M.P.U. areas, respectively.

The classification accuracy was evaluated using two sets of test fields
defined by personnel from the Institute of Artic and Alpine Research (INSTAAR),
University of Colorado independent of the computer-aided analysis. In the
Platoro quadrangle, a set of '"true" test fields were defined by a photoin-
terpreter and checked and rechecked several times, whereas the S.S.J.M.P.U., a
"systematic" set of test fields were statistically defined over six quadrangle
areas and not checked. (This difference in the method used to define the
test fields and the amount of checking have caused some of the difference in
accuracy levels that were found in the Platoro quadrangle results as compared
to the S.5.J.M.P.U.)
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The '"systematic" fields in the S.S.J.M.P.U. were classified using a maximum
likelihood perfield algorithm. The "true" set of fields were classified by a
maximum likelihood perpoint algorithm to evaluate all analyses of the Platoro
quadrangle. A convergence value of 99 percent was used for each application
of the clustering algorithm. The same areas were used for each method of selecting
the training sample. For example, the same set of supervised training fields
were utilized for the three analysis techniques that required them. By minimizing
these influences, the differences between the analysis techniques were due to
the approach rather than bias by the analyst or extraneous factors. The results
for the Platoro quadrangle are shown in Figure 16 and the results for the
S.5.J.M.P.U. are shown in Figure 17.

In evaluating these results, it must be pointed out that the cost in
terms of CPU time and man-hours should not be interpreted as absolute, and would
not accurately represent the expected cost in an operational situation. The
amount of CPU time varies considerably depending upon the computer hardware on
which the algorithms are implemented and the efficiency of the programs them-
selves. The number of man-hours also varies, depending upon the analyst's
knowledge and experience with the MSS data, the analysis techniques, and the
complexity of the area. However, in this test, all the analysis techniques
were evaluated on the S.S.J.M.P.U. and Platoro quadrangle by one analyst using
the LARS computer system. Therefore, the relative quantities can be used to
accurately compare the various approaches to developing training statistics
for computer-aided analysis of Landsat MSS data.

An evaluation of the results in Figures 3 and 4 indicates that the multi-
cluster techniques generally were more accurate than the mono-cluster techniques.
The main influence was the increase in sample size and number of candidate
spectral classes. It was also found that when the analyst supervision in
selecting the training sample was reduced (from training fields to training
blocks to systematic sample), a better statistical sample of the spectral
variation in the area increased the classification accuracy. The difference
between the techniques having the lowest and highest accuracy was considerable --
8.8 percent for the Platoro quadrangle and 14.1 percent for the S.S.J.M.P.U.

This indicates that the type of analysis approach does have a definite impact
on the classification accuracy. The difference in range of accuracy for the
two sizes of areas was probably due to the increased spectral variation in
both the number of cover types and within each cover type.

Comparison of the six approaches indicated that the supervised approach
was the least accurate method of developing training statistics, and the
multi-cluster blocks approach was the most accurate, for both areas considered.
The S.S.J.M.P.U. analysis by the multi-cluster blocks approach was estimated
to be 78.8 percent correct, according to the test field results. However, a
detailed comparison between the classification results and aerial photography
indicated that the classification was closer to 85 or 90 percent correct.

This again indicates the difficulty in estimating the accuracy of computer-aided
analysis techniques, due to the lack of information with which to compare
results.
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Figure C-16. Results from the Platoro quadrangle areas(15,303 hectares) of

the evaluation of the six techniques for developing training

statistics.
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Figure C-17. Results from the Southern San Juan Mountain Planning Unit

(540,580 hectares) of the evaluation of the six techniques
for developing training statistics.
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Most of the computer time used was for defining the spectral classes, either
using the *STATISTICS or *CLUSTER processor. Different methods of calculating
the statistical parameters caused the *STATISTICS processor to be less efficient
in terms of CPU time, but allowed essentially an unlimited sample size. The
*CLUSTER processor was more efficient, but the maximum sample size was 10,000
to 11,000 data points with four channel Landsat MSS data.

The cost in terms of CPU time was influenced by the degree of supervision
in selecting the training sample and the method of developing the spectral
classes. As the extent of supervision increased, the sample size and the
utilization of clustering techniques decreased, thereby reducing the CPU time
required. The inefficiency of the *STATISTICS processor caused the CPU time to
be greater than that necessary to develop the spectral classes using the clustering
algorithm. With proper utilization of the clustering algorithm (i.e. multi-
clustering) the sample size limitation could be avoided.

The main factors influencing the CPU time required by the clustering
algorithm were the convergence value, sample size and number of classes. The
CPU time was significantly reduced upon lowering the convergence value from
100 to 99 percent. While not affecting the overall classification accuracy,
the CPU time was reduced by 50 to 70 percent.

Most efficient use the clustering algorithm could be achieved by multiple
rather than single clustering. The CPU time for all of the multi-clustering
techniques was less than that for mono-clustering comparable training samples.
The effective use of multi-clustering techniques resulted in several advantages,
including a dramatic increase in the number of spectral classes, an almost
unlimited sample size, and a reduction in CPU time.

In evaluating the various approaches, we found that, in terms of the
support data required, the type, scale, age and amount of aerial photography all
influenced the accuracy of the interpretation and the amount of information
that could be obtained. The amount of aerial photography necessary varied
with the type of analysis approach. The heterogeneous block methods for
selecting the training sample areas required the least amount of photography.
For example, only isolated frames scattered throughout the test site were
required in this study -- three (1:15,840) for the Platoro and six (1:100,000)
for the S.S.J.M.P.U. analysis.

The number of man-hours required for the various techniques is basically
a measure of the supervision by an analyst. The majority of the analyst involve-
ment is necessary for input of the support data either before, during, or after
formation of the spectral classes. The three methods of adding the support data
represent respectively the three levels of supervision in selecting the train-
ing sample; homogeneous fields, heterogeneous blocks, and statistical sample.

The three techniques requiring the selection of homogeneous fields used a
considerable number of man-hours. A large number of fields had to be selected
to adequately represent all cover types. The supervised techniques would be
efficient if the objective was to map a relatively few or a single cover type
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(i.e. snow, water). However, the supervised method of selecting homogeneous
fields is not suitable for large areas due to the requirements, in part, for
support data. In this study, we found that the spectral variation due to the
topographic relief made collecting sufficient training samples to characterize

every cover type impractical.

Other than the three supervised foelds approaches, the technique that re-
quired the next greatest number of man-hours was the non-supervised. This
approach required very little time to select the training sample, but a con-
siderable amount to identify the spectral classes. The limited number of data
points per spectral class in a single field of view on the Zoom Transfer Scope
made identification of the spectral classes difficult and time consuming.

The fastest and easiest method to add the ancillary information to the
analysis procedure was by selecting and identifying cluster classes for hetero-
geneous blocks. This approach required very little time to select the train-
ing sample and less time to identify the spectral classes that the non-supervise
ed approach. By interacting with the analysis procedure in several places, ad-
justments can be made to closely control the progress. The analyst interacts
with the data at the beginning of the procedure by selecting training fields,
in the middle of identifying spectral classes and at the end by pooling the
spectral-informational classes. With this apporach, the amount of supervision
was reduced at each step.

Summary and Conclusions. The various approaches for developing the train-
ing statistics were basically a function of (1) the method used for selecting
and identifying the training sample and (2) the technique used for generating
unimodal spectral classes. The differences between the various techniques were
evaluated in terms of the amount of CPU time and man-hours required to define
the training statistics and the classification accuracy that was achieved.

The multi-cluster blocks approach was found to be the most effective method
of developing training statistics for computer-aided analysis of the Landsat
data since it: (a) reduced the CPU time, (b) required relatively few man-hours
of time, (c) utilized the lowest amount of support data, and (d) resulted in
the highest overall classification accuracy.

A detailed description of the multi-cluster blocks approach and recommended
procedures for the implimentation of this technique is contained in the complete
report on this project (LARS Technical Report 112277) which is entitled: "Computer-
aided Analysis Techniques for an Operational System to Map Forest Lands Utilizing
Landsat MSS Data", by M.D. Fleming and R.M. Hoffer.
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D. Soil Classification and Survey

For the past ten years soil scientists at Purdue University have been
studying the reflectance and emittance from soils in order to establish the
relationships between the spectral properties and physicochemical properties
of soils. The rationale is that the greater the understanding of these
relationships the more useful will be multispectral measurements for mapping
and characterizing soils. These studies at the Laboratory for Applications
of Remote Sensing have been supported by data from aircraft multispectral
scanners, the Landsat 1 and 2 scanners, and an Exotech Model 20 field spec-
troradiometer.

Since the late 1960's several studies have been conducted using digital
analysis of aircraft and satellite scanner data to delineate and map soils
with different physical and chemical properties. In support of these studies
a limited amount of research has been conducted with the field spectroradiom-
eter in an attempt to define the effects of different soll constituents on
the spectral properties of soils.

The research reported under this contract includes an extension of
investigations to (a) define quantitatively the soil variables which affect
soil reflectance and (b) examine the differences in soill patterns of the
same area which are spectrally separable with Landsat data obtained on
three different dates.

Spectral Relationships—Outdoor Exotech Experiment. The Exotech Model
20-C spectroradiometer was used to measure the spectral reflectance from
surface soils at the Purdue University Agronomy Farm during the week of
May 11-12, 1977. An experiment was set up to measure the effects of
organic surface residue and soll moisture content on the reflectance of
two soils differing greatly in surface soil color, organic matter content,
and natural drainage.

Treatment combinations consisted of two levels of moisture content
along with two surface soil conditions, i.e., with and without organic
residue. Soil moisture differences were obtained by saturating the soil
with water several hours before reflectance measurements were taken on
half of the plots. The other half of the plots remained at the field
moisture content. . Organic residue of corn stover was applied at a rate
of 2.2 metric tons per hectare to half of the plots. This amount of corn
residue represents about four times the amount necessary to reduce erosion
(1,2) while not obscuring the soil background to a large extent.

The soils investigated were Chalmers silty clay loam, a dark colored
soil developed under tall prairie grass, and Fincastle silt loam, a light
colored soil developed under forest vegetation. Chalmers soils occur in
depressions on broad, gently undulating till plains on loam to light clay
loam glacial till. Fincastle soils occur on broad, gently undulating
divides on the border of the prairie uplands from a shallow covering of
silt overlying glacial till. According to the USDA/SCS system of Soil
Taxonomy(3), Chalmers silty clay loam is classified as a fine loamy,



mixed mesic, Typic Argiaquoll. Fincastle silt loam is classified as a
fine loamy, mixed, mesic, Aeric Ochraqualf. The observed differences in
soil properties for this experiment are summarized in Table D-1.

Two plot sites were selected representing the two soils under inves-
tigation. On each site twelve plots measuring three meters by three meters
each were marked off, providing three replications of the treatment com-
binations.

Spectral measurements were made with the Exotech Model 20-C spectro-
radiometer over the spectral range from 0.4 to 2.4um. Using the 15° FOV
mode, the soil surface area viewed at a height of 6m was approximately
1.6m in diameter. Measurements were taken on two consecutive days, May
11 and 12, 1977. The May 11 readings were performed late in the day at
a low sun angle and resulted in a definite specular reflectance component
being present in measurements taken from the moistened plots and plots
with corn stover. Thus, the May 11 readings were not comparable to the
May 12 measurements in quality and were not utilized as repeated obser-
vations to verify the repeatability of the spectral responses.

The May 12 measurements were of excellent data quality. Spectral
response from the three replications for each treatment showed that the
data were consistent and did not deviate from mean response by more than
approximately ten percent for any wavelength band studied.

The general shapes of the reflectance curves for the two soils
followed the findings of previous studies (4,5) even when corn stover
residue was present. The Fincastle soil displayed a smooth convex
reflectance curve in the 0.4-1.3um wavelength region, while the Chalmers
soil displayed a smooth concave reflectance curve in the same wavelength
region. The fact that the general shape of these curves was not affected
by the presence of surface corn stover residue is quite significant for
soil survey work because it indicates that spectral response from soils
with organic residue does not result in confusion between different soil
types.

Another observation was made that in all cases of soil with corn
stover residue present on the surface, there was a slight increase in
reflectance at 1.3um. This alteration in the usual soil reflectance
curve at the l.3um wavelength may indicate that this would be a valuable
wavelength region for determining the presence or absence of organic
residue on soil.

For the purpose of analysis, the spectral response curves were broken
up into the following ten wavelength bands: 0.47-0.52um, 0.52-0.60um,
0.63-0.69um, 0.74-0.80um, 0.80-0.91um, 0.98-1.08um, 1.09-1.19um, 1.20-
1.30um, 1.55-1.75um, and 2.10-2.35um. These represent bands proposed for
the thematic mapper satellite in addition to middle infrared bands used
on the Skylab S192 multispectral scanner.

Results show that the 1.20-1.30um band provides the greatest contrast
among the eight soil/treatment combinations. Summarized results of spec-
tral response are given in Table D-2 for the 1.20-1,30um band. The



Table D-1. Summarized soil properties for soil reflectance experiment.
Soil
Soil properties
Chalmers silty clay loam Fincastle silt loam
Natural drainage Very poorly drained Moderately well drained
class
Dry Munsell color 10YR4/1 10YR6/2
Organic matter 4,747 1539%
content
Cation exchange 38.1 meq/100g 14.6 meq/100g
capacity (CEC)
Base saturation 68.7% 58.4%

Moisture content
(upper 1 cm)

Field moisture level
Saturated treatment

3.05% 3.647%
24.57% 24.40%



Table D-2. Spectral response of soil/treatment combinations in the
1.2-1.3um wavelength band.
So11/Treatment Combination Mean Response Standard Percent
Bi-Directional Deviation Deviatisn
Reflectance
Factor
Fincastle sil*, bare, dry 49.86 4.12 8.27
Fincastle sil, bare, moist 31.39 118 3 .75
Fincastle sil, corn stover, dry 54.27 5.38 9.91
Fincastle sil, corn stover, moist 40.96 2.97 7.26
Chalmers sicl*#*, bare, dry 26,971 0.70 2.62
Chalmers sicl, bare, moist 19.85 1.74 8.78
Chalmers sicl, corn stover, dry 37593 2502 533
Chalmers sicl, corn stover, moist 29.32 1.52 S/
* silt loam
** gilty clay loam



rather large variation in response of the dry Fincastle soil both with
and without surface residue caused the greatest problem in selection of
an ideal reflectance band. The two middle infrared bands (1.55-1.75um
and 2.10-2.35um) were not considered optimal because the variance in

the response of the dry, light colored soil was too large in this region.
Also the ability to distinguish between the dry and moist soll treatments
increased with increasing wavelength. Both organic residue and moisture
content appeared to affect the magnitude of soil response without alter-
ing the characteristic curves of soil reflectance.

There does not appear to be any ''masking" effect of organic residue or
moisture content on the general response curve of the two soils studied.
Observed spectral differences of similar soils using Landsat data may very
well be explained by differences in organic residue and moisture content
as well as tillage effect, which were not studied here. As indicated
by the results of this experiment, Landsat band 7 (0.8-1.lum) of the cur-
rent Landsat bands provides the greatest contrast for discrimination of
soil moisture differences as well as detection of organic residue.

Recommendations for Further Study. Future field experimentation
designed to measure soil spectral response should include the factor of
tillage in the experimental design along with surface residue and moisture
treatments. Different amounts and kinds of organic surface residue should
be studied. Several moisture treatments should also be included in the
design. Such a design would be useful for determining whether the observed
increase in reflectance in the 1.3um region can actually be attributed to
the effect of surface organic residue.

Conclusions. The ability to identify soil conservation tillage
practices from a remote position would permit soil managers to evaluate
and monitor the extent of these practices. Results of this soil reflec-
tance experiment show that the effect of surface corn residue can be
readily distinguished from bare soil, regardless of soil moisture content.

Cooperative efforts with soil survey personnel serve to gain from a
better understanding of the factors affecting soil reflectance in the
field situation. The ability to characterize the spectral response of
Fincastle and Chalmers soils 1s not adversely affected by surface organic
residue or moisture differences.

Although this study strongly suggests that reflectance data can be used
to distinguish between some soil conditions, it must be noted that the data
examined represent a very limited number of soils and conditions. It is
important that future studies include the effects of (a) kind and quantity
of green vegetative cover, (b) surface roughness, (c) a wide range in con-
dition and quantity of plant residue on the surface, and (d) a wide range
in soil moisture content on the reflectance from surface soils.
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Analysis of Landsat Data. The objective of this phase of the soils study
was to examine the spectral patterns produced from Landsat data obtained on
different dates over Tippecanoe County, Indiana and to relate those patterns
to meaningful soils differences, such as texture, surface color, internal
drainage, and organic matter content.

Description of the Study Area. Tippecanoe County is located in west
central Indiana within the Tipton Till Plain which is a part of the Central
Lowland Province. The underlying bedrock consists of flint, shale, sandstone
and limestone of the Mississippian period and is exposed as rock terraces in
the Wabash Valley and on the upland in the western part of the county.

The Wabash Valley is the most striking physiographic feature of the
county. The bottomlands of the river are approximately 500 m wide. The
meandering, rapidly flowing streams of the Wabash and its tributaries have
very narrow, discontinuous bottomlands, which are cut off in many places.

This is shown very clearly on images and classifications produced from Landsat
data. The bottomlands are subject to frequent flooding, and the soils in
these floodplains developed from glacial drift washed from the uplands and
terraces. Floodplains soils include the well drained Genesee series, yel-
lowish to brown in color; the moderately well drained Eel series, and the
imperfectly drained Shoals series.

Terraces exist along the major streams separated from the bottomlands
by steep slopes. Soils of the terraces include the excessively drained, dark
Elston series associated with the dark Wea series on the outwash plain. The
brown, well drained Ockley soils are associated with the poorly drained West-
land and Abingdon series. The well drained Fox series developed under a
mixed forest cover and occur mostly on terraces above the larger streams.

The upland soils are on the glacial till plain which is about 200 meters
above sea level. Several different upland series are found in the county.
The Hennepin series occurs in the valleys of the Wabash and Tippecanoe
Rivers and Wildcat Creek and 1s associated with the well drained Miami
series. The very dark grayish Odellis an imperfectly drained soil which
occurs on the nearly level prairie land. It is associated intricately with
the very poorly drained Chalmers and Romney series. The Sidell series has
a relatively high percent of organic matter and good natural drainage. Very
poorly drained soils, developed in swales and depressions belong to the
Brookston series which is associated with the imperfectly drained Crosby
and Fincastle series. On slightly elevated areas the somewhat poorly
drained Raub and very poorly drained Ragsdale series occur.

Procedure. The multispectral scanner data used in this study were
obtained during Landsat passes on 9 June 1973, 6 April 1975 and 29 June
1976. More than two centimeters of precipitation were recorded several
hours prior to the Landsat pass on 6 April 1975. Dry weather conditionms
and unusually high temperatures prevailed for several days prior to the
9 June 1973 pass. Rainfall was recorded on each of the three days pre-
ceding the 29 June 1976 pass.

The Landsat data for three dates for Tippecanoe were geometrically
corrected (6), overlaid, and spatially registered to ground control points
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selected from a set of U.S. Geological Survey 7%-minute quadrangle sheets.
The resulting multiband, multidate data set when printed on a computer line
printer in pictorial form had a scale of 1:24,000.

The 6 April 1975 data for Tippecanoe County were subjected to nonsu-
pervised clustering procedures to obtain 28 spectrally separable cluster

classes. This number was selected because it represents two times the 13
soil associations of the county plus two classes for man-made features.
Limited ground observation data and black and white aerial photography were
used as aids in identifying and describing the 28 cluster classes. Total
MSS relative reflectance values (magnitude) and visible/infrared reflectance
ratio values for these 28 classes from the three dates (Table D-3) were used
to explain probable soil patterns and other surface features.

Three broad categories—-land areas without vegetative cover, land
areas with vegetative cover, and water--were separated spectrally. Terres-
trial ecosystems having green vegetative cover are highly reflective in the
near and middle infrared and lowly reflective in the visible spectrum. In
general, the areas having ratio values less than 1 were classified as green
vegetation, ratios between 1.1 and 1.6 as non-vegetated areas, and ratios
above 1.7 as water.

In the merging of the 28 spectral classes into the three broad cate-
gories for the three dates it is immediately apparent that April data have
definite advantages in identifying and mapping soils differences (Table
D-3). For example, on 6 April 1975 only 18.97 of the county was classi-
fied as having green vegetative cover. On 29 June 1976 98% of the county
was vegetated. It should be noted that even within the urbanized area of
Greater Lafayette, a significant percentage of the June data were classi-
fied as green vegetation because of parks and residences with lawns and
trees. Water bodies, residential areas and roads showed some interesting
spatial and areal shifts from April to June. The separability and measura-
bility with digital analysis of Landsat data of each of these features seem
to be affected significantly by the appearance of green vegetation. In
many instances in the late June data green vegetation has come to dominate
the spectral response in the areas along roads, streams, and among residences
where it did not dominate a few weeks earlier. For this reason the classes
of small or narrow bodies of water and roads may have been more easily
identified and separated spectrally early in the season than those same
features encircled by green trees or grass later in the season.

When the spectral classification objective includes the identification
and mapping of different classes of green vegetation, bare soils and water
both total relative reflectance for all four Landsat bands and the visible/
infrared ratio values are useful statistics. However, in this study to
delineate soils boundaries the total relative reflectance or magnitude was
the principal data feature used.

For a general overview of the spectral patterns of Tippecanoe County
on the three different dates, gray scale images for each MSS waveband at
a scale of 1:60,000 were produced on an electronic printer/plotter. An
area in the northeast corner of the county where the Tippecanoe River



Table D-3. Spectral statistics from three dates of Landsat MSS data for
twenty-eight cluster classes in Tippecanoe County, Indiana.

Dates of Landsat Pass

spectual 6 April 1975 9 Tume 1973 29 June 1976
Class
Mag* Ratio*¥* Mag* Ratio** Mag* Ratio**

1 143 0.85 155 0.69 145 0.63
2 126 0.91 155 0.90 131 0.55
3 88 0.98 128 1.08 116 0.50
4 104 0.85 152 1.01 122 0.72
5 154 0.73 163 0.69 153 0.51
6 142 0.61 165 0.62 162 0.42
7 104 1.09 155 0.80 125 0.43
8 165 0.99 158 0.68 158 0.56
9 - 154 1.21 180 1.16 163 0.76
10 127 1.32 174 1.21 128 0.71
11 118 1.14 166 1.07 138 0.71
12 115 1.38 198 1.29 133 0.65
13 106 1.36 173 1.18 135 0.73
14 114 0.93 172 1.07 139 0.68
15 98 1.39 181 1.26 125 0.74
16 93 1.18 143 0.56 133 0.32
17 91 1.47 156 1.26 112 0.69
18 82 1.48 151 1.11 107 0.66
19 70 1.67 128 1.26 100 0.58
20 92 1.74 139 1.26 104 0.90
21 106 1.48 150 1.15 129 0.76
22 109 1.67 143 155 133 1.21
23 204 1.73 167 1.73 187 1.40
24 99 1.25 175 0.86 125 0.49
25 87 2.11 124 1.39 98 0.86
26 90 2.30 114 1.79 103 0.81
27 75 2.49 120 1.07 97 0.71
28 60 3,58 92 1.92 63 1.18

* Mean total relative reflectance for 4 Landsat MSS bands.

**Visible/infrared reflectance ratio values.
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Table D-4. Summary of three major categories of surface features on
three dates in Tippecanoe County, Indiana.

Classification 6 April 1975 9 June 1973 29 June 1976
Area % of Area % of Area % of
(Ha) County  (Ha) County (Ha) County
Vegetated 23,848 18.9 69,763 55.4 123,490 98.0
Non-vegetated 101,268 80.4 55,145 43.8 635 0.5
Water 875 0.7 1,083 0.8 1,866 195

Total 125,991 100 255991 100 125,991 100
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joins the Wabash River is reproduced in this report, showing gray scale
images of the 0.8-1.1um waveband for the three dates (Figures D-1, D-2,
D-3). The same general soils patterns are visually distinguishable in
these three images.

The soils in the northwest corner of the county were formed under tall
prairie grass and are quite dark throughout the surface or A horizon. A
classification of that area was produced by the merging of seven cluster
classes from the 6 April 1975 Landsat data. The resulting 1:24,000 scale
map gave a good delineation between the Odell-Chalmers association (M) and
the Raub-Ragsdale (F,/) association (Figure D-4). A comparison of the
spectral classification with the existing soil map revealed a close simi-
larity, showing that spectral data could be used to separate different
dark soils having low relative reflectance. The same area classified with
29 June 1976 Landsat data in which 10 cluster classes were merged produced
similar soils patterns (Figure D-5).

_ The outwash and bottomland soils along the Wabash River generally have
a higher reflectance than do the upland prairie soils. A spectral classi-
fication of an area along the Wabash River was produced using the four bands
from the available 12 bands (4 each from three dates) which gave the best
separability of the features in the scene (Figure D-6). Prominent bottom-
land soils are the well drained Genesee silt loam (L) on the upper or left
side of the Wabash River and the Eel and Genesee silty clay loam (I) on the
right of the river.

Conclusions. From this study the following conclusions were drawn:

1. Digital analysis of Landsat MSS data can be used effectively in iden-

tifying and mapping meaningful soils patterns at a scale as large as
1:24,000.

2. Mean total relative reflectance for cluster classes is a valuable data
feature for determining important differences between soils and
for determining which spectral classes can best be merged.

3. Digital analysis of Landsat data for delineating soils differences
can greatly reduce the field work required for detailed soil surveys.
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Figure p-1. Gray scale image of area arod the jdﬁtion of the Tipanoe
and Wabash Rivers, Tippecanoe County, Indiana. Landsat MSS
band 7 (0.8-1.1ym), 6 April 1975. Scale 1:60,000.
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Figure D-2. Gray scale image of area around the junction of the Tippecanoe
and Wabash Rivers, Tippecanoe County, Indiana. Landsat MSS
band 7 (0.8-1.1uym), 9 June 1973. Scale 1:60,000.



igure D- Gva}; scale i;nage of area around the junction of the ippecanoe
and Wabash Rivers, Tippecanoe County, Indiana. Landsat MSS
band 7 (0.8-1.1um), 29 June 1976. Scale 1:60,000.
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Figure D-4. Spectral classification of 6 April 1973 MSS data for area in
northwest Tippecanoe County, Indiana delineating two associa-
tions of upland soils: Odell-Chalmers (M) and Raub-Ragsdale
(F,/). Scale 1:24,000.
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Figure D-5. Spectral classification of 29 June 1976 MSS data for northwest

Tippecanoe County, Indiana delineating two associations of
upland soils: Odell-Chalmers (M) and Raub-Ragsdale (F,0,4,I,/).
Scale 1:24,000.
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Spectral classification using best four of twelve bands
(3 dates of Landsat MSS data) to delineate soils on

Figure D-6.

terraces and bottomlands along Wabash River, Tippecanoe

County, Indiana.

Scale 1:24,000.

L - Genesee silt loam

I - Genesee and Eel silty clay loam
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