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IHE ROLE OF LANDSAT DATIA
IN IMPRQVING
U.S. CROP STATISTICS®

Martin L. Holko

Richard S. Sigman

U.S. Department of Agriculture
Statistical Reporting Service
Washington, D.C., USA

ABSTRACT

Landsat data are used in two ways to
improve U.S. crop statistics. Landsat
color-composite images are used to stratify
areas of land with regard to land use.
This stratification is wused as a technique
to improve the efficiency of an area
sampling frame. Also, Landsat digital data
are classified and the classified results
are used as supplementary information to an
agricultural survey. The combination of
Landsat classification results and survey
data improves the precision of the estimates
made.

1.0 Introduction‘

The Statistical Reporting Service (SRS) is the agency of the U.S. Department
of Agriculture responsible for current statistics describing domestic crop
and livestock production, For the most part, these statistics are estimates
based on sample surveys conducted by SRS personnel.

A major source of data for SRS is its nationwide June Enumerative Survey
(JES). It is in conjunction with the JES that SRS uses data from the Landsat
satellites, Landsat data are used to improve the precision of the estimates
obtained from the JES in two different ways., One use of Landsat data is in
the development of an area sampling frame from which the JES sample is
selected. A second use is as current, supplemental information that, when
combined with the data collected during the JES, increases the precision of
calculated area estimates.

*Presented at the Eighteenth International Symposium on Remote Sensing of
Environment, Paris, France, October 1-5, 1984,
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2.0 Use of Landsat Imagery in Area Frame Construction

2.1 Concepts

In area-frame sampling the sample units are pieces of land called segments.
The boundaries of segments are well-defined, physical features -- such as
roads, footpaths, rivers, and railways -- that can be both delineated on maps
and aerial photographs and also readily identified by data collection
personnel in the field. An grea-sampling frame is a complete list (or more
frequently a set of specifications that would generate a complete list) of
segments that cover a geographical area of interest, such as a state or
province., This geographical area of interest is called a pgpulation.

An area sampling frame is a basic tool for collecting agricultural
statistics., It is used in a number of countries to estimate acreage and
yield of agricultural products as well as farm-economics parameters such as
prices and labor for the current year. Area frame sampling provides accurate
information by taking representative samples from only a small portion of the
total land area. Estimates can be available five to six weeks after the
beginning of data collection.

The construction of an area sampling frame consists of several steps
[Houseman, 1975). The first step is the delineation on a base map of stiratum
blogcks. These are large contiguous areas of homogeneous land use. In
addition to the mapping symbols on the base map, information from satellite
imagery, aerial photography, and other maps are used in this stratification
step. All of the stratum blocks of the same land use constitute a stratum.
Like segment boundaries, the delineated strata boundaries must be
identifiable in the field. The purpose of stratification is to increase the
precision of sample survey estimates.

The next step is to divide the strata blocks into smaller areas called
primary sampling units (PSU's). The PSU's vary in size depending on the
stratum but generzally contain from 5 to 20 potential segments. Out of each
stratum a suitable number of PSU's will be randomly chosen with probability
of selection proportional to the area of the P3U.

The purpose of the PSU's is to serve as an intermediate delineation between
the large strata blocks and the individual segments. By delineating PSU's
all of the segments in the population need not be delineated. Instead, only
the segments in the randomly selected PSU's are delineated by subdividing the
PSU into the appropriate number of segments based on the area of the PSU and
the target segment size. In strata that are predominantly cultivated land,
the target segment size is typically one square mile. After the selected P3SU
has been subdivided, one segment is randomly selected from the PSU for field
enumeration,

Desired data are then collected from the sample segments by interviewing
farmers who operate land inside the segment. Since the segments within each
stratum are statistically representative of the stratum, the data collected
from the segments can be expanded to the total area of the stratum. The
desired estimate for the entire population is then obtained by summing the
results for each stratuun.

2.2 SRS Experience

SRS has constructed and maintains an area frame for each of the 48 contiguous
states. Since the construction of an area frame for a state is a major
effort, SRS is only able to construct approximately three new area frames per
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year. Once an area frame for a state is constructed, it is used annually for
anywhere from 10 to 20 years before it is revised or replaced,

The majority of SRS's area frames contain five basic strata: cultivated
land, range and pasture, water, nonagricultural land, and cities and towns.
The cultivated land i: most states is further stratified by separating
"intensively"™ cultivatc¢d land from Mextensively™ cultivated land. (In
Nebraska there are two intensively-cultivated-land strata.) In addition to
the five basic land-use strata, the area frames in California and Texas each
contain one or more "crop specific”™ strata. The SRS area frames in -
Washington, Oregon, and Idaho have strata for dryland grain. [(Geuder, 1984)

The use of Landsat imagery to stratify SRS area sampling frames was first
demonstrated by Hanuschak and Morrisey [1977]. In this study, county maps at
a scale of 1:126,720 were photographically reduced to a scale of 1:250,000 on
mylar and overlaid on 1:250,000-scale, color Landsat imagery produced on
paper by the EROS Data Center, The Landsat image was photo-interpreted to
provide land-use information, whereas the overlaid county map provided
physical features for delineating stratum blocks and PSU's. Thils procedure
was then used by SRS in 1979 to construct a new area frame for the state of
California [Fecso and Johnson, 1981). Since 1979, SRS has photo-interpreted
Landsat images for constructing new area frames in Arizona, Colorado,
Florida, Idaho, New Mexico, Oregon, Texas, Washington, and Wyoming. The
majority of these new frames have been in the western United States where
much of the cultivated land is irrigated and can thus be readily identified
on Landsat images.

In 1982, SRS updated the Nebraska area frame by restratifying the urban
stratum and areas where rangeland had been converted to cropland. Used in
this restratification effort were plots giving the location of all pivot
irrigation in 58 counties. These plots were developed by the University of
Nebraska from Landsat data, administrative records for well permits, and
field observations by county agents. [Hale, 1983]

Burns [1983] has demonstrated the use of digital Landsat data for updating
SRS sampling frames in an area in Louisiana., In this study, unsupervised
clustering of the Landsat data was performed, and then stratum labels were
assigned to the clusters by an analyst using an interactive image processing
system. SRS is further evaluating this procedure for stratifying area sample
frames in Wyoming and Florida [Geuder, Blackwood, and Radenz; 1983].

.

3.0 Landsat Data as Supplemental Information

3.1 Background

SRS conducts the JES annually in late May and early June, The JES survey
procedure requires that information be obtained for all the 1land within each
of the sampled segments. To insure that all the land is accounted for, aerial
photographs, at a scale of 1:8,000, are used as an enumeration aid. The
boundaries for each segment are drawn on individual non-current photographic
prints. These segment photographs and corresponding questionnaires are sent
to field enumerators for data collection. As part of the data collection
procedure, each enumerator is instructed to draw the boundaries of all
fields, within each segment, on the segment photograph (a field is defined
as a continuous block of land containing the same c¢rop or land cover). On
the corresponding questionnaire the enumerator records the cover and size of
each field, as well as livestock numbers and other agricultural information
obtained from the operator. The information collected during the JES is
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aggregated to the segment level and direct expansion estimates are then
calculated to obtain state level estimates for crop hectares., The formulas
for the direct-expansion estimator and its variance are as follows:

Let fc =z the direct expansion estimate for the hectares of crop ¢
N n
s s
Yc = i i YJSC
s=1  ng Jj=1
where:
Yjsc T the hectares reported to crop ¢, in segment j, for
strata s
ng = number of segments sampled in strata s
Ng = the total number of potential segments in stratum s
S = the total number of strata

The estimated variance is:
- (N.-n_) N n
v(Y) = i === i (y‘js(:'y.sc:)2
sz ng (n5-1) Jj=1
where:

n
Yjisc
Yso = s o4
J=1 ng

In 1972 SRS personnel started to investigate the potential of using digital
Landsat data to improve the precision of the estimates obtained from the
JES. The procedure developed consists of the following steps:

- Analysis District 3election: Landsat data are selected and boundaries of
Landsat analysis districts defined. .

- Signature Development: Data collected during®*the JES and corresponding
Landsat data are used to develop a maximum likelihood classifier for each
analysis district.

- Small Scale Processing: The Landsat pixels representing the area within
each segment contained in an analysis district are classified. A
relationship is developed between the number of pixels classified to a crop
and the hectares recorded for that crop on the JES.

- Full Frame Processing: All of the Landsat pixels within the analysis
district are classified. Estimates are calculated at the analysis district
level Dby applying each crop regression relationship to the all-pixel
classification results.

~ State Level Accumulation: The estimates for all analysis distriects are
combined to create a state level estimate for each crop of interest.
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3.2 Analvsis District Selection

An analysis district is an area of land covered by Landsat imagery of the
same overpass date. A separate Landsat analysis is done for each analysis
district. Depending on the location and availability of Landsat data, each
state is divided into a number of analysis districts. The Landsat analysis
district location is treated as a geographical post-stratification imposed
on the original area frame. As a result of this poste-stratification, SRS
personnel must determine the number of frame units and the sampled segments
which fall into each post-stratum., This results in two types of strata
categories:

1) The first stratum category corresponds to the area of the state for
which there is no Landsat coverage. This area may be non-contiguous. The
portion of each land-use stratum within these geographical areas makes up the
post-strata. We let

Mg = the total number of segments in the non-Landsat area in land use
strata s, and
mg = the number of sampled segments in the non-Landsat area in land

use strata s.

2) The second stratum category corresponds to the areas of the state where
the land-use strata and the analysis districts are defined. In these areas
each stratum consists of the area of intersection between the land use strata
and a Landsat analysis district., Here, we let

H;s = the number of frame units in analysis district a, land use
strata 8, and
m;s = the number of sampled segments in analysis district a, land use

strata s.

3,3 Sigpature Development

Signature development is done independently for each analysis district and
consists of four phases. The first phase is segment calibration and
digitization. Segment calibration is a first-order linear transformation
which maps points on the segment photograph to a map base (in our application
this map base is the U.,S. Geological Surveys quadrangle map series, which
uses the latitude/longitude coordinate system of reference). Segment
digitization is the process by which field boundaries drawn on the segment
photograph are recorded in computer-compatible form., The combined process of
calibration and digitization gives us the capability of digitally locating
every JES field relative to a map base.

The next phase in signature development is the registration of each Landsat
scene, SRS's Landsat registration process is a third-order linear
transformation that maps each Landsat pixel within a2 scene to a map base
[Cook, 1982], Corresponding points selected on a two-degree map and a
1:250,000 Landsat image are used to generate this mathematical
transformation. The combination of segment calibration, digitization and
Landsat registration provides the capability to locate each JES segment in
its corresponding Landsat scene (to within about 5 pixels of the correct
location). Since this registration is not accurate enough for selecting
training data, line plots of segment field boundaries and corresponding
greyscale prints are overlaid and each segment is manually located to within
1/2 pixel of the correct location. With this process we are able to
accurately identify all of the pixels associated with any JES field. The
result of this is a set of pixels labeled by JES cover.
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The third phase of signature development is supervised clustering. In
supervised clustering all of the pixels for each cover are processed through
one of two available clustering algorithms: Classy or Ordinary Clustering.
Classy is a maximum likelihood clustering algorithm developed at Johnson
Space Center in Houston, Texas [Lennington and Rassback, 1972]. Ordinary
Clustering is an algorithm derived from the ISODATA algorithm of Ball and
Hall [1967]. Each clustering algorithm generates several spectral signatures
(categories) for each cover, Each spectral signature consists of a mean
vector and the covariance matrix for the reflectance values for that
category.

In the fourth phase, the statistics for all categories from all covers are
reviewed and combined to form the discriminant functions of the maximum

likelihood classifier. The formulas for the discriminant functions are as
follows:

The maximum likelihood classifier with equal priors:
Classify pixel k to category ¢ if Dck 2 Dik for all ifec

The paximum likelihood classifier with priors:
Classify pixel k to category ¢ if DB, > DP, for all isc

where:
Dig = = 1ogg(IZy1) = (XU 271 (Xp-Uy)
DPy = Dj, + log(py)
Ui = the mean vector for category 1§
Z; = the covariance matrix for category i
Py = the prior probability for category i
Xk = the reflectance value for pixel k

3.4 Small Scale Processing

In small-scale processing each pixel associated with a JES segment is
classified to a category. This classification is usually done using both the
classifier with priors and the egqual priors classifier, For each classifier,
pixels classified to each category are summed to segment totals. The category
totals corresponding to crops of interest are summed to segment crop totals.
These crop totals are used as the independent variable in a regression
estimator. Correspondingly, the hectares reported on the JES for each crop
are summed to segment totals and used as the dependent variable. The segment
totals are used to calculate least-squares estimates for the parameters of a
linear regression. Two sets of regression equations are developed for each
crop within each stratum (one for the classification with priors, one for the
classification with equal priors).

The linear regression equations for analysis district a, strata s, and crop ¢
are of the form:

+

Yjase = DPoasc P1asc *jasc
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where:
Yijase * the reported hectares of crop ¢, from segment J, analysis
district a, land use stratum s
Xjasc * the crop total classification for segment jJ, analysis

district a, land use strata s

least squared estimates of the regression parameters for
crop ¢, analysis district a, land use strata s

b0ascr Plasc

3.5 EFEull Frame Processing

The regression equations developed in small-scale processing are evaluated
and the classifier giving the best overall regression relationship is
selected. This classifier is used to classify every pixel in the analysis
district. The classified results are tabulated by category and land-use
stratum. For each crop of interest the category totals are summed to stratum
crop totals. From these totals the population averages per segment are
calculated. Using the population average, a stratum-level regression estimate
is made for that analysis district for each crop.

Let fésc be the analysis district level regression estimator for crop ¢
and stratum s,
Then:
Yase = Mas ¥ asc + Pisc{X.ase = X.asc)!
where:
m m
s Y 5 Xg;
jasc jasc
Y,asc = Ei . and X ag¢ = Sf -
j=1 o, j=1 Mag
Mis = previously defined (3.2)
m;s = previously defined (3.2)
Xjasc = previously defined (3.4) .
Yjasc = previously defined (3.4)
X asc = the population average for crop ¢ in anzlysis district a
* land use stratum s
The estimated variance is:
(m.=1) (M3 cemb ML Mas
-~ as 2 as~"as’"as 2
V(¥3se) = N (1-ryse”) . . Za (Yjasc-Y.asc)
(myg=2) mygtzg=1) J=1
where:
rgsc = the sample correlation between yjasc .. “Lese
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3.6 State Level Accupulation
The final step of our Landsat analysis is the combining of all of the
estimates (one for each post strata) into a state-level estimate of the area
of the desired crop.

Let QE be the final state level estimate for the hectares of crop c.

Then: .
-~ Si -~
b & = Y + Ef M, v
¢ az1 s=1 ase 1=1 1 7.1e
where:
m
Sf Yjle
Y,1c = <
J:1 ml

M;, m; previously defined (3.2)

Yisc 18 as defined earlier (3.5)

Y = the hectares reported to crop e for segment j in the non-Landsat
Jic
post strata 1
S; = The number of land use strata in analysis district a
A = The number of analysis districts
L = The number of land use strata that exist in the area where wedo

not have Landsat coverage

The estimated variance is:

: Tos (ky-my)My o
V(Y;) = E.A. i V(Ysasc) + i e —— i (lec-y.lc)z
a=1 s=1 1=1 ml(ml-1) Jj=1

3.7 Evaluation of the Lapdsat Estimate

Landsat data are used as supplemental information to improve the precisicn of
the area estimates obtained from the JES. Unlike ‘area frame construction, tne
effectiveness of this use of Landsat data can be measured. The measure used
is the efficiency of the Landsat estimator relative to the JES direct
expansion estimator. This relative efficiency (RE) is defined as the ratio of
the variance of the direct expansion to the variance of the Landsat estimate.
Equivalently, this is the factor by which the sample size would have to be
increased to produce a direct expansion estimate with the same precision as
the Landsat estimate.

V(Y,)

RE = ———
V(YY)

3.8 Implementation

The basic concepts of SRS's Landsat analysis were developed during the 1972-
1979 time period. In 1980 as part of the AgRISTARS Domestic Crop and Land
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Cover Project, SRS's Remote Sensing Branch began making current-year, state-
level area estimates for winter wheat, corn and soybeans in selected states.
This move to a pseudo-operational mode meant that current year Landsat data
(May for winter wheat, August for corn and soybeans) had to be processed to
produce estimates by late-November and late-December for winter wheat and
corn/soybeans respect:vely. The original implementation plan called for
including two states ir 1980 and adding two more states each year to a total
of 10 states by 1984, In 1980 winter wheat estimates were produced for
Kansas, corn and soybean estimates for Iowa. Table 1 shows the states
included in the project, the crops for which estimates were made, and the .
number of Landsat scenes needed to cover each state, In 1983, SRS deviated
from the original plan by adding only one state to the project. No new
states were added in 1984, These modifications were necessary due to
personnel ceilings and limitations of current processing capabilities. In
1984, under the modified plan, SRS expects to process about 2,000 JES
segments contained in 66 Landsat scenes covering most of seven

states (Table I).

3.9 BResults

The JES direct expansion and Landsat estimates are two of many indications
used to determine the official USDA area estimates. For most major crops the
JES direct expansion is the key indication used for setting the preliminary
area estimates in July. The Landsat estimates for the states in the project
(available at the end of the crop year) are reviewed when the final end-of-
season estimates are made,

Tables II through VI show the JES direct expansion,the Landsat estimates and
the final USDA estimates. The relative efficiencies of the Landsat estimates
are mostly in the range from 1.2 to 2.0 for the major crops of winter wheat,
corn and soybeans. The relative efficiencies for crops with fewer hectares
such as cotton and rice are considerably better. The level of some of the
estimates for cotton and rice, however, differ considerably from other data
sources used to make the official estimate. Part of the variability in the
relative efficiencies for the major crops can be explained by the amount of
Landsat coverage available to do each estimate. Figure 1 shows three grzphs
comparing the percent of each crop covered by Landsat data with the relative
efficiency obtained. If the trend apparent in these graphs can be extended,
one would expect that the best we could do is relative efficiencies of about
2.5. These results, although promising, are not as good as originally
expected. However the continued personnel limitation and the increasing
respondent burden being placed on our farm sector may make our Landsat
estimator one of few techniques feasible for improving crop statistics in the
u.S.
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States and Crops for Which Landsat Area Estimates Have Been Made

Area Estimates

Number of
Landsat Scenes

State Years in Project Produced for: Needed:
Kansas 1980, *81, *82, '83, ‘84 winter wheat 16
Iowa 1980, '81, 82, '83, 84 corn, soybeans 12
Okl ahomat 1981, '82, '83, '84 winter wheat 7
Missouri#® 1981, 1/, '83, '84 winter wheat, 12
corn, soybeans,
cotton, rice
Colorado® 1982, '83, 84 winter wheat 14
Illinois 1982, '83, 84 corn, soybeans 10
Arkansas® 1983, '8u soybeans, rice, 5
cotton
TOTAL 66

% major producing areas

Table II: Area Estimates for Winter Wheat Harvested by State and Year
JES Direct Expansion Landsat Regression
Standard Standard Relative USDA
State/Year Estimate Error Estimate Error Efficiency Estimate
(1,000 hectares) (1,000 hectares) (1,000 hectares)
Kansas
1980 5,214 162 5,051 136 .3 4,856
1981 5,452 158 5,298 104 3 4,897
1982 5,677 167 5,611 120 .9 5,301
1983 4,652 153 4,477 124 .5 4,371
Oklahoma
1981 2,612 LR N 2,483 101 B 2,590
1982 2,914 119 2,660 90 .8 2,792
1983 1,725 85 1,688 T4 -3 1,740
Colorado
1982 1,276 91 1,132 49 N ) 1,178
1983 1,193 115 1,110 81 .0 1,214
Missouri
1983 830 66 866 49 1.9 749
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Area Estimates for Corn by State and Year
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JES Direct Expansion

Landsat Regression

Standard Standard Relative USDA
State/Year Estimate Error Estimate Error Efficiency Estimate
(1,000 hectares) (1,000 hectares) (1,000 hectares)
Iowa
1980 5,735 115 5,801 93 1.9 5,666
1981 5,828 128 5,820 103 1.6 5,828
1982 5,601 118 5,568 113 1.1 5,565
1983 3,708 11 3,666 81 1.8 3,683
Missouri
1981 / 870 75 715 51 2.2 850
19821/ - - - - - -
1983 758 60 629 45 1.8 688
Illinois
1982 4,809 115 4,677 106 1.2 4,735
1983 3,482 113 3,380 102 1.2 3,318
Table IV: Area Estimates for Soybeans by State and Year
JES Direct Expansion Landsat Regression
Standard Standard Relative USDA
State/Year Estimate Error Estimate Error Efficiency Estimate
(1,000 hectares) (1,000 hectares) (1,000 hectares)
Iowa
1980 3,395 112 3,290 96 1.5 3,359
1981 3,260 104 3,275 82 1.6 3,278
1982 3,539 106 3,433 99 1.2 3,428
1983 3,155 98 3,200 88 1.3 3,238
Missouri
1981 / 2,306 115 1,964 86 2.1 2,072
19821 - - - - - N
1983 2,275 124 2,008 97 1.6 2,104
Illinois
1982 3,866 120 3,767 109 1.2 3,743
1983 3,696 107 3,669 99 1.2 3,602
Arkansas
1983 1,661 78 1,565 70 1.3 1,578
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Table V: Area Estimates for Rice by State and Year

JES Direct Expansion Landsat Regression
Standard Standard Relative USDA
State/Year Estimate Error Estimate Error Efficiency Estimate
(1,000 hectares) (1,000 hectares) (1,000 hectares)
Missouri
1981 / u7 20 3 10 6.8 31
19821 - - - - - -
1983 51 21 46 10 3.9 25
Arkansas
1983 419 48 376 32 2.2 374

Table VI: Area Estimates for Cotton by State and Year

JES Direct Expansion Landsat Regression
Standard Standard Relative USDA
State/Year Estimate Error Estimate Error Efficiency Estimate
(1,000 hectares) (1,000 hectares) (1,000 hectares)
Missouri
1983 26 15 30 4 1t.1 4y
Arkansas /
1983 144 33 1032 19 2.9 138

1/No Landsat estimates were made for Missouri during 1982 due to
insufficient Landsat coverage.

a/Arkansas had a lot of cctton that was planted and abandoned prior to the
satellite overpass. This area was not included in the Landsat regression
estimate.



Figure 1: Plot of Percent of Each Crop Covered by Landsat Data Versus the

RELATIVE EFFICIENCIES

Relative Efficiency of the Landsat Estimate.
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Multitemporal vs. Unitemporal Analysis of
MSS Landsat Data on a Full State Basis

by

Sherm Winings
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INTRODUCTION

The Statistical Reporting Service (SRS) in its Domestic Crops and Land Cover (DCLC)
project is currently using Landsat data combined with ground truth data to provide
acreage estimates in seven mid-western states. The ground truth data are collected
during the June Enumerative Survey (JES) conducted by SRS in early June. As a part of
the DCLC project, Landsat regression acreage estimates for corn, cotton, rice, sorghum,
and soybeans in Missouri were presented to the Crop Reporting Board of the Statistical
Reporting Service, United States Department of Agriculture on December 15, 1984,
Similar estimates for planted and harvested winter wheat acreages were presented on
December 5, 1984 to the same board.

Use of Landsat data to produce these estimates implied that both spring (April-May) and
summer (July-August) Landsat MSS scenes be analyzed to produce estimates for winter
wheat and spring planted crops. A unitemporal approach requires two full analyses; one
on the spring data to produce Landsat estimates for fall planted crops and a second on the
summer data for spring planted crops. A multitemporal analysis allows a single analysis
on the combined spring and summer data. A combination of unitemporal and
multitemporal analysis was used for the 1984 crop year because of the earlier due date for
the winter wheat estimates, some doubts as to the software efficiency for multitemporal
processing, and a desire to make a comparison between unitemporal and multitemporal
processing. Unitemporal analysis for winter wheat estimates could be started much
earlier than a multitemporal analysis since analysis could begin as soon as the spring
Landsat scenes were acquired and the ground truth data were edited in late June.
Multitemporal analysis requires that scenes for both dates be in-house before processing
can begin. Since many of the spring planted crops were not planted at the time of the
primary ground data collection effort in June, an intentions follow-up survey must also be
conducted and edited before analysis can proceed to assure accurate ground truth data for
estimating acreages of spring planted crops.

The 1984 analysis was done as follows:

1. Unitemporal analysis for winter wheat
2. Multitemporal analysis for all crops
3. Unitemporal analysis for all spring planted crops

The third analysis was done in January after the Crop Reporting Board request was met.
Except for registration of scenes and the number of data channels, the analysis procedures
for unitemporal and multitemporal data were the same.(l)

REGISTRATION OF LANDSAT DATA
Scene to Map. The spring scenes were designated as the primary scenes and were

registered in the usual unitemporal manner.(2) This method has been presented many
times and will not be discussed here.

Scene to Scene. When the summer scenes were acquired, 12 to 24 corresponding points
were digitized on each scene using features clearly identifiable on both scenes. Using
these points, blocks of pixels from each scene were correlated on the CRAY computer at
NASA-Ames. Two channels from each scene were used. This procedure is fully explained
by Ozga and Sigman.(3) The output was then used to create an eight channel data set.
The coordinates of the pixels in this data set were the same as for the primary scene.

Underscored numbers in parenthesis refer to literature cited at the end of this report.
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Multitemporal Data Set. The eight channel data set, for use in the multitemporal
analysis, was generated by combining the spring and summer scenes using the coordinates
of the spring scenes. Data channels 1, 2, 3, and 4 were created from the spring scene and
data channels 5, 6, 7, and 8 from the summer scene. Therefore, it was not necessary to
recalibrate the ground truth data to the summer scenes when doing the unitemporal
analysis of the summer data. By picking channels 5, 6, 7, and 8 to be read from the eight
channel data set, four channel output for a unitemporal data set were obtained
representing the summer data.

SOME COST CONSIDERATIONS

Because of time and money constraints, it was not possible to completely separate the
unitemporal and multitemporal processing to evaluate the cost for each analysis.
However, we did observe that processing the generated eight channel data through the
clustering and classification algorithms used approximately four times the computer
resources that four channel data used. SRS uses a supervised clustering algorithm which
clusters Landsat pixels within known crop covers. It is assumed that pixels from a given
cover type comne from a number of muitivariate normals. The clustering algorithm is
designed to find the means and covariances of the matrices representing these normals.
The classification procedure used to assign a category to each pixel in the data set uses
the statistics developed in clustering and a maximum likelihood algorithm to make the
category to pixel assignment. Processing that reads and/or writes the eight channel data
(window creation, packing, greyscales, and scattergramming) used twice the resources as
the corresponding four channel data. Window creation is the extraction of Landsat data
around each sample unit. Packing is the assignment of the window data (pixels) from all
training units within the analysis area to the covers identified to be in the training area.
Greyscales are black and white representations of a window for a single channel.
Scattergramming is the process of displaying a packed file by plotting two channels; one
on the horizontal axis and one on the vertical axis. Processing that did not involve raw
Landsat MSS data was not impacted. Affected costs of scene-to-scene registration and
creating the eight channel data set were offset somewhat by eliminating registration and
calibration procedures for the secondary scene. We estimate that multitemporal analysis
processing would cost about 125 percent of a single unitemporal analysis. However, the

reduced professional labor in developing the classifier would offset part of this increased
cost.

In states like Missouri, where both fall and spring planted crops are to be estimated,
multitemporal analysis has a cost advantage since two unitemporal analyses are otherwise
required.

RESULTS

For all crops, multitemporal analysis reduced the standard error of the estimate from the
standard error of the uniternporal estimate. Standard errors of the unitemporal and
multitemporal estimates are shown in Table I. Unitemporal analysis achieved the
greatest reduction in standard errors for rice, with a 47 percent reduction over the
standard error of the JES direct expansion estimate. Additional reductions in standard
errors of multitemporal over unitemporal analysis were greatest for sorghum with a 27
percent decrease. The overall reduction of standard errors for multitemporal analysis
over the standard errors for the JES direct expansion were greatest for rice with a 49
percent reduction. The smaller standard errors for multitemporal verses unitemporal
analysis for corn, sorghum, and soybeans, translates into a 30 to 40 thousand acre
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reduction. For winter wheat, this reduction was in the 10 to 12 thousand acre range. It
was expected that the improvement for winter wheat might be minimal since a preferred
pairing of scenes for winter wheat multitemporal analysis would be previous fall and
spring scenes.

TABLE 1.
Comparison of Results of Multitemporal vs.
Unitemporal Analysis - in Missouri 1984

Direct Expansionl/ Unitemporal Multitemporal
CROP TOTAL S.E. C.V. TOTAL S.E. C.V. R.E. TOTAL S.E. C.V. R.E.
(000)Ac. %) (000)Ac. (%) (000)Ac. (%)
CORN 2,107 1833 8.7 1,782 148 8.2 1.5 2,019 110 5.5 2.8
COTTON 122 45 37.1 115 30 26.0 2.2 204 28 13.8 2.6
RICE 140 47 48.5 105 25 23.3 3.5 63 24 38.7 6.8
SORGHUM 1,552 175 11.3 1,364 147 10.8 1.4 1,361 108 7.9 2.6
SOYBEANS 6,006 298 5.0 5,395 195 3.6 2.3 5,655 le5 2.9 3.2
WW-PL 2,403 172 7.2 2,137 129 6.0 1.8 2,348 118 5.0 2.1
WW-HV 2,246 165 7.3 2,045 126 6.2 1.7 2,024 114 5.6 2.1

1/ The JES Direct Expansion (D.E.), Standard Error (S.E.), and Coefficient of Variation
(C.V.), are before the DCLC Field Level Edit.

The attached charts by crop show the relationship of the estimates and their 95 percent
confidence intervals. For soybeans, the unitemporal estimate was outside the 95 percent
confidence limit of the direct expansion estimation. For cotton, the multitemporal
estimate was outside the 95 percent confidence interval for the unitemporal estimate.
With 21 comparisons between the seven crop estimates, this has a high likelihood of being
due to chance.

1985 ANALYSIS PLANS

SRS plans to make further evaluations of the benefits of using multitemporal Landsat data
for making crop acreage estimates. Oklahoma will be done with multitemporal scenes for
winter wheat using 1984 fall scenes and 1985 spring scenes. Arkansas and Missouri will be
done with the spring-summer pairs.

CONCLUSION

Multitemporal analysis saves both time and money over two separate unitemporal analyses
when both spring and summer scenes are required for the same path-row combinations.
The reduction in variance of the estimates, easier training of the classifier, and the
shifting of workload to an earlier date make it attractive even where both spring and
summer scenes are not required. However, if both spring and summer scenes are not
required, there would be additional costs over a unitemporal analysis. Cloud cover can be
more of a problem in multitemporal analysis, especially if only one satellite is operational
since it may be difficult to obtain complete cloud free coverage for both dates chosen for
the multitemporal analysis.(4)

2-4




Confidence Intervals at the 95 Percent Level of
Estimates by Direct Expansion, Unitemporal, and

Multitemporal Analysis
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Confidence Intervals at the 95 Percent Level of
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CORN

DiFr,= DAC-JES

STATE/YEAR Di1FF, DiFF. As DiFr. as X of
(1,000 ACRES) Z o JES JS St1. ERR

10WA

1978 -218 - 1.6 - 69.4
1980 162 1.1 57.2
1981 - 18 -0.1 - 5.7
1982 - & - 0.6 - 8.2
1983 -104 - 1.1 -37.8
1934 -110 - 0.8 - 36.4
1985 352 2.5 116.2
MISSOWRI

1981 =235 -10.9 -127.0
1923 -318 -17.0 -214.9
1984 - 88 - 4,2 - 48,1
1935 244 - 8.8 -177.9
ILLINOIS

1932 =326 - 2.7 -114.4
1983 =251 - 2.9 - 91.3
1934 -381 - 3.5 -139.6
1985 -307 - 2.7 -110.1
INDIANA

1985 - 5% - 0.9 -29.9
ALL STATES

1978 -218 - 1.6 - 69.4
1980 162 1.1 57.2
1931 -253 - 15 - 68.9
1932 -408 - 1.6 -100.2
1983 %73 - 3.4 -161.8
1984 579 - 2.2 -129.8
1985 -56 - 0.9 - 51.8



STATE/YEAR

SOYBEANS
DiFr.= DO.C-ES
DiFF, DiFF. as
(1,000 ACRES) Z oF JS
IOWA
1978 94 1.2
1980 - 259 -3,1
1981 37 0.5
1982 - 264 - 3.0
1983 112 1.4
1984 - 287 -33
1985 - 54 - 0.7
MISSOURI
1981 - 306 -5.9
1983 - 66l -11.8
1984 - 351 - 5.8
1985 - 547 - 9.6
ILLINOIS
1982 - 244 - 2.6
1983 - 68 - 0.7
1984 - 462 - 4.9
1985 167 1.9
ARKANSAS
1983 - 738 - 5.8
1984 - 135 -33
1985 - 201 - 5.4
INDIANA
1985 - 147 -33
AL STATES
1978 94 1.2
1980 - 259 - 3,1
1981 - 269 - 2.0
1982 ~ 508 -2.8
1983 - 855 - 3.2
1984 -1235 - 4,4
1985 - 782 - 2.5

DiFr. As T ofF

JES S1. ERR,

30.4
- 93.5
14,3
-100.8
46,3
-104.7
- 20.5

-107.4
-209,8
-117.8
-189.5

- 82.4
- 25,7
-168.0

64,1

-123.3
- 66.2
-100.4

- 80.0

30.4
- 93.5
- 70.1
-128.6
-166.0
-233.0
-144,2

3-2




WINTER WHEAT
DiFr,= DALC-KES

STATE/YEAR DIFF. DIFF. As DiFr. As X OF
(1,000 ACRES) % o ES JS S1. ERR

s s 3,1 -101.0
1981 - 3%) 2.8 - 98,2
19 - 164 1.2 - 39,7
1983 - 133 3.8 14,2
1984 - 9 0.8 - %.7
1985 - 764 .0 2017
OxLAHOMA

1981 - 319 4.9 110,
1982 - 69 8.7 213.2
1983 -9 2.1 - 3]
198} - 305 6.1 1310
1985 71 0.9 21,9
CoLorADO

1987 - 35 11,3 -158,9
1983 - %5 7.0 71,9
198} I oy - 6.5
1985 198 5.5 $5.6
Missour1

1983 89 43 54,6
1984 _ 201 - 8.9 -121.8
1985 - 2% 16,6 711
AL STATES

1980 - 43 -3, -101.0
1981 - 701 -35 1445
198 1149 4.7 207.0
1983 - 6% -3, 1177
198} - 631 - 2.9 135

1985 - 74 - 2.9 -131.0




A Summary of
A Study of Bias and Variance in Landsat
Data Based Regression Estimated for Crop
Surveys Using Simulated Data
by James C. Lundgren

James C. Lundgren of Lockeheed Engineering and Management Services Company has
completed an evaluation of the bias and variance of the crop area regression estimator.
The evaluation was completed using a Landsat-data simulation algorithm which generates
random segments with random pixel-level spectral values. These simulated segments
were similar to 33 Missouri segments in terms of segment crop proportions; distribution of
field size; distribution of segment sizes; proportion of edge pixels; and variance
components between pixels (within fields), between fields (within segments), and between
segments for each of four channels and for eight crops. The simulated ground covers and
percentage of area were as follows:

Cover Percent of Area
pasture 30
soybeans 25
corn 12
waste 13
woods 9
hay 7
winter wheat 3
alfafa 1

The simulated segments had an expected area of one square mile. DCLC procedures were
simulated as follows:

1) A random sample of segments was selected from the simulated population

2) The sample was used to train a classifier

3) The simulated population was classified

4) Regression estimates of the area were calculated for each of the seven crops.
(Alfalfa frequently had too few pixels to calculate a regression estimate.)

This procedure was then replicated 20 times for the given population. Various statistics
which summarize the entire process were produced.

The number of evaluations using the classification and regression procedure were as
follows:
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Bias

Three of the seven ground covers had significant biases in their regression
estimates. The same three ground covers also had significant biases in their ratio
estimates. The covers with significantly biased estimates were corn, pasture, and waste.

The study of bias concentrated on the difference between the sample and population
regression equations. The two primary findings were as follows:

1) Five of the seven ground covers had significant differences between the
slopes of the sample and population regression equations.

3) Three of the seven ground covers had a significant difference between the
sample and the population mean number of pixels classified per segment.
(These were the same covers which had significant biases in their regression
and ratio estimates.)

Lundgren suggests that the slope of the regression equations for the sample tends to
be larger than the slope for the population. He points out that this difference in sample
and population slopes is supported by theory developed by Chhikara and lHouston.

According to Lundgren the difference between the sample mean and the population
mean for the number of classified pixels gives further evidence that the training sample is
different from the rest of the population. Consequently, its use in the regression analysis
may bias the estimates.

In a small study using a population of 25 segments, six segments were repeatedly
selected at random after an independent sample of six segments had been used to train
the classifier. Both the number of crops with significant biases and the magnitudes of
these biases were unexpected. Significant biases were found in the regression estimates
for soybeans, waste, woods and hay. Only one population was used in the analysis (thus
the bias may be population specific). Two results of this study that were not surprising
were as follows:

1) There was not a significant overall positive bias in the slope of the sample
regression equations

2) The mean number of classified pixels for each ground cover per sample
segment was not significantly different from that of the population.

Lundgren concludes that these results could be traced to the independence of the sample
used to train the classifier from the sample used to calculate the regression equations.



Yariance

Lundgren also examined the ratio of the mean Cochran variance to the true variance
computed from the variability of the regression estimates among 20 replicates. He
concluded that the Cochran formula was a suitable estimate of variance when there were
enough pixels to train the classifier and where the classifier was not sensitive to small
shifts in the distribution of the spectral data.

The large-sample estimate of variance was not an unbiased estimate of the variance
of the regression estimator.

Relative Efficiency

Lundgren concludes that there is a trend for the relative efficiency to be larger for
higher values of percent-correctly-classified and for higher values of separability;
however, there does not appear to be a point above which one could safely predict high
relative efficiency. Conversely Lundgren indicated if the percent-correctly-classified is
less than 50 or if the separability distance is small, the use of Landsat data will not
improve the efficiency of the estimate.

Prepared by NED JONES



Possible Explanation for Predominantly
Negative Differences between JES and DCLC Estimates

L Introduction

In the six-year series of DCLC estimates, the DCLC-minus-JES estimate
differences are predominantly negative. The following sections discuss various
phenomena that may (or may not) explain why the DCLC-minus-JES estimate differences
are predominantly negative.

IL A Non-Explanation

The following has been suggested as a possible explanation for the predominantly negative
differences between JES and DCLC estimates:

There may be a systematic over-reporting in the JES. For example, non-
productive areas of crop fields may be incorrectly included by either
respondents or enumerators in reported crop acreages. Thus, the JES is over-
estimating the true crop acreage. If the DCLC estimate is correcting for
this over-reporting error, then the DCLC estimate would be estimating the
true crop acreage. Hence, the DCLC-minus-JES estimate difference should
be negative. e

-

This is an appealing explanation, but unfortunately a regression estimator |is
mathematically incapable of correcting for this kind of data collection error. To see this,
suppose systematic over-reporting is occurring. Then the reported acreages will be higher
than actual acreages and on the average the direct expansion estimate will be higher than
the population total. Not only does this over-reporting shift the direct expansion estimate
upward, however, it also shift the regression line upward (See Figure E1). Moreover, the
regression estimate will be higher than what it would be without over-reporting by the
same amount as the direct expansion estimate is upwardly affected.

The only way that the regression estimate could correct for over-reporting would be if the
regression line was calucated with actual acres instead of reported acres. But the actual
acres are not known if there is a reporting error present. Thus, the regression estimator
is not capable of correcting for a systematic reporting error in the JES. Consequently,
this is not a possible explanation of why the two estimators are apparently estimating
different levels.

L. A Possible-Explanation

Instead of "the JES is wrong and DCLC is right" as an explanation of the negative DCLC-
minus-JES estimate differences, a more likely explanation is that there is a procedural
bias in the DCLC estimates. The following discussion illustrates that this is likely by
means of an example.
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In this example, suppose that we have a one-Landsat-scene analysis district that is 100
miles on a side. Thus, the total amount of land in the analysis district is 10,000 square
miles. Further, assume that all of the analysis district is in one land use stratum. Hence,
the area-frame population size for the analysis district is also 10,000. :

The JES sample size for the analysis district is 50, and one of the sampled segments,
called segment S (for sampled), has 400 acres of corn in it. It so happens that one of the
non-sampled segments, called segment N (for non-sampled), also has 400 acres of corn in
it. Consequently, if JES enumerators were to visit segment N, then segments S and N
would have identical JES data--both would have 400 acres of corn and 240 acres of non-
corn.

We assume in this example that the Landsat data, on the other hand, are very different
for segments S and N (See Figure E2). This is very possible because Landsat data responds
not only to type of crop but also to the condition of the crop. Figure E3 displays (in two
dimensions) the corn signatures for all 10,000 segments in the analysis district. We see in
this figure that the corn signatures for segment N are on the outer fringe of all the corn
signatures in the scene.

Figure E4a and E4b illustrate for two different situations the corn signatures in the 50
JES segments plus segment N. These two figures illustrate two undesirable situations that
can occur when the JES segments are used to develop a classifier. in Figure E4a the JES
segments poorly represent the spectral variability of the entire scene. In this case, when
a decision is defined on the basis of the JES segments, the resulting classifier will
perform well only on the JES segments. In segments that were not sampled, many corn
pixels will be outside the decision boundary and called non-corn. In the case of segment
N, for example, all the corn pixels will be called non-corn.

In Figure E4b, on the other hand, the JES segments do adequately represent the spectral
variability of the Landsat scene. This figure illustrates, however, that an undesirable
situation can occur if the procedure for developing the decision boundary puts too many
wiggles in the boundary. The problem with too many wiggles in the corn decision
boundary is that such wiggles tend to jog out to include corn pixels in the JES segments
and then jog back in to avoid including non-corn pixels in the JES segments. This
excessive wiggling again causes the developed classifier to perform better on the sampled
segments, than on the non-sampled segments. For example, in Figure E4b only a portion
of segment N is included inside the decision boundary. If a much simpler decision
boundary had been developed that had fewer wiggles, then more of segment N would have
been inside the boundary.

This excessive wiggling of decision boundaries can occur if Landsat analysts extensively
tune their classifiers by trying out a large number of trial classifications resulting from
different clustering parameters, cluster edting procedures and prior probabilities. Both
of the situations illustrated by figures E4a and E4b produce what is called an overfitted
classifier; that is, a classifier that performs much better on data that it was developed
on, than data it was not developed on.
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If classifier overfitting is present in DCLC procedures, then the resulting degraded
performance over the non-sampled segments results directly in degraded regression-line
prediction ability over non-sampled segments. For example, since segments S and N both
have 400 acres of corn, they will have the same y-values (that is, segment corn acres) for
regression estimation (See Figure E5). Because the corn signature for segment N were
mostly or even completely outside the decision boundary whereas those for segment §
were completely inside, it follows that the x-value (that is, pixels classified as corn) for
segment N will be very small whereas the x-value for segment S will be large. The
relationship between classification results and reported acres for segment S will be well
predicted by the developed regression line but this will not be the case for segment N.

If this is happening for segments S and N, which each contain 400 acres of corn, it will
also occur for other pairs of sampled and non-sampled segments having 300 acres, 200
acres, 100 acres, etc. Thus, the regresion line required to successfully predict non-
sampled segments will be some distance to the left of the regression line calculated from
the JES segments and overfitted classification results FSee Figure E6). Moreover,
simulation and theoretical results indicate that the required regression line will have a
shallower slope than the slope of the regression line developed using an overfitted
classifier.

The key point in Figure E6 is that the regression line which one should be using for
regression estimation is the one that has- the best predictive ability for non-sampled
segments. The reason for this is that the purpose of the regression line is to make a
prediction at the value of X (the population mean-per-segment of pixels classified as
corn), and 99.5% of the segments il0,000-foO = 9,950 out of 10,000) are non-sampled
segments. But, what is happening in the DCLC procedures is that if classifier overfitting
is present, then we are using a regression line that is too far to the right. Thus, as is
shown in Figure E6 when this incorrect regression line is evaluated at X it results in a
regression estimate that is too low.

. Prepared by RICHARD SIGMAN
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FIGURE E2: Classifier Overfitting Example
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AEROSPACE REMOTE SENSING: RESEARCH RESULTS

I. INTRODUCTION

The topic of "Remote Sensing Research Results" is not a new national conference
topic. At the 1977 conference, members of the then New Techniques Section spoke on
this same topic. The presentation seven years ago reported on the 1975 lllinois project--
SRS's first attempt to analyze Landsat data for an entire state. That research result In
1977 led in 1978 to a timely application—Landsat data for all of lowa was analyzed to
obtain end-of-year acreage estimates for corn and soybeans. In 1979 the New Techniques
Section was replaced by the Remote Sensing Branch consisting of an Applications Section
and a Research Section. One of the reasons for this organization was that timely, multi-
state projects conducted by the Applications Section would be an important customer plus
provide a large-scale test for enhanced procedures developed by the Research Section.

This talk 1s primarily about the activities of the Research Section since 1979, plus
results from outside groups that have worked with the Remote Sensing Branch under
AgRISTARS. A major driver for these activities, however, has been the large, multi-state
Landsat projects conducted during this time for the most part by the Applications Section.
The original AgRISTARS plan called for increasing the number of Landsat states by two
each year from 1980 through 1985. This rate of growth, however, has siowed in the last
two years. In 1934 crop-acreage estimates will be calculated for seven states.

Il. BENEFIT-TO-COST RATIO OF REMOTE SENSING

The Remote Sensing Branch uses remotely sensed data to calculate regression
estimates of crop areas. This estimation uses data from the June Enumerative Survey
(JES) and Landsat satellite. The relative efficiency of the regression estimator is given

by
RE = relative efficiency
= variance (JES-est) / variance (Regression-est) .
Equivalently, relative efficiency is the factor by which the sample size of the JES would
have to be multiplied i1n order to achieve the same precision as the regression estimate.
This permits the definition of the following benefit-to-cost ratio:

benefit (REXJES cost)

cost (JES cost) + (R.S. cost)

where (R.S. cost) = all remote sensing costs. The numerator is the cost of an enlarged JES
with precision equal to the regression estimation. The denominator is the cost of the
inputs to the regression estimator.

Prepared by Richard Sigman for presentation at the SRS National Conference, May 1984



IlI. R&D FOR ENHANCING "BACK ROOM" ACTIVITIES

The statistical theory for the regression estimator is straight forward. A very large
"back room" of support activitles is required, however, to process the inputs for the
Landsat regression estimator.

This "back room" of activities includes a field-level edit of the JES, digitization of
JES photos, scene-to-map registration of Landsat images, development of spectral
signatures, computer classifications of Landsat data, plus accompanying software
development and hardware maintenance. These "back room" activities have been the
focus of a number of research and development studies.

A. "Winners"

A number of enhancements of "back room" activities have been "Winners" in that
they have resulted in large time reductions or cost savings. In 1978 it required an average
of two weeks to register a Landsat scene. In 19383 the average was four hours per scene.
Though this time savings is largely attributable to a change in imagery format on the part
of NASA, Branch software changes and the development of an efficient method for
indexing and storing maps also contributed to this time savings.

For computer classification of Landsat data, in 1981 the cost was over $1000 per
scene on the ILLIAC, whereas in 1983 the cost was between $35 and $150 (depending on
the number of categories) on the CRAY XMP. This large savings will be short-lived,
however, because in 1984 we will be assessed for tne use of the ARPANET, which will
average $300 per scene.

Another success has been our use of the Northstar microcomputer for local
digitization and plotting. The use of the Northstar for local digitizing reduced our
TELENET connect time from 400 hours to 200 hours per state. In 1984 the use of two
Northstars for digitizing and plotting should reduce TELENET connect hours to 50 hours
per state. This represents a savings of $8400 per state when comparing 1981 costs versus
1984 costs.

B. "Losers"

In addition to "Winners" we've also had "Losers", in the sense that suggested changes
have not been improvements and, in some cases, have made things worse. One of these
"Losers" is the use of raw Landsat data instead of our current use of resampled Landsat
data. In a comparison study we found no difference--at least, for crop-acreage
estimation. Another "Loser" was the use of a calibration estimator instead of a regression
estimator. The difference is that calibration regresses Landsat results on the JES,
whereas the regression estimator does the opposite. The calibration estimator was
proposed by NASA/JSC and Lockheed. Lockheed has recently shown, however, that the
calibration estimator has larger mean-square-error.

Another suggestion by an outside group has been the Canadian procedure, in which
segment digitization and signature development are performed on a video display. Though
this procedure may work in Canada, we found that we were unable to easily locate JES
segments when evaluating the procedure on Kansas Landsat data.

Finally, another suggestion—-this one by lowa State University--has been the use of
probability instead of classification as our Landsat variable. Both lowa State and
ourselves have recently shown that this does not offer any improvement for crop-acreage
estimation.

Though all of these negative results may seem like research conducted for nought,
they are reassuring in the sense that they indicate that our current procedures are near
optimum.
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C. "Jury Stil] Out"

In addition to the "Winners" and "Losers" we have a number of enhancements in which
the "jury Is still out", in the sense that there 1s some type of trade-off involved or
evaluation Is still in progress.

Two enhancements--maximum likelihood clustering (called CLASSY) and the
Automatic Segment Movement Algorithm (or ASMA) have greatly Increased our computer
costs with, In some cases, only marginally improving estimation performance. We have
not yet written these enhancements off as "Losers", but they are very expensive guests
whose admission to the "procedure family" has not been declded.

The jury is still out on video digitization. In 1983 we had a first-year large-scale test
in which JES segments for three Landsat states were successfully video digitized. A
second-year test will be conducted this summer.

A final area where potential improvement is being evaluated is in the use of
Thematic Mapper (TM) data. The TM is an improvement over the Multispectral Scanner
(MSS), which we are currently using. Specifically, the TM has seven spectral bands
compared to four bands for MSS. Moreover, the TM has 30 meter resolution compared to
MSS's 57 meters.

The Remote Sensing Branch has conducted two studies of TM. One such study used
simulated data acquired from an airplane. This study was conducted in Missouri in 1979.
Relative Efficiency (RE) for corn increased from 2.0 for MSS to 6.0 for TM. Also, RE for
soybeans increased from 14.3 for MSS to 20.0 for TM.

The second TM study is still in progress. It is examining real TM data acquired over
Iowa on September 3, 1982. In the first phase of this study in which no spectral or spatial
sampling is being performed, corn RE increased from 2.0 (MSS) to 8.3 (TM) and soybean
RE from 9.1 (MSS) to 11.1 (TM).

Though TM increases relative efficiency it also increases remote sensing data and
processing costs. An MSS tape costs $650 whereas a TM tape for the same area costs
53400, a more than five-fold increase. For processing costs the Increase was eleven-fold
in the first phase of the lowa-TM study.

Thus TM increases both the numerator and denominator of the benefit-to-cost ratio.
In the first-phase of the lowa-TM study, the benefit-to-cost ratio increases from 0.7 for
MSS to 0.8 for TM but is still less than 1.0. For soybeans, on the other hand, the benefit-
to-cost ratio decreases from 3.1 for MSS to 1.1 for TM. In the second and later phases of
the Iowa-TM study, subsampling either spatially or spectrally will be used. It is
conjectured that this will increase the TM benefit-to-cost ratios.

IV. NEW PRODUCT STUDIES

The interest in new products is that their creation can increase the benefit-to-cost
ratio. This can occur by one of two methods. In the first method additional products are
generated which have some value to SRS and thus Increases the numerator. In the second
method, byproducts are sold outside of SRS and the resulting revenue decreases the
denominator.

A. County Estimates

County estimates are an example of the first method for increasing the benefit-to-
cost ratio. One way to calculate the Landsat county estimates is to calculate a regression
estimate for each county. We have done this in Arizona and Idaho where the counties are
large and contain many segments. This does not work, however, in the Midwest where
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there 1s an average of approximately three segments per county with some countles
having no segments at all.

For situations like in the Midwest, a number of Landsat county estimators have been
proposed. The Huddleston-Ray estimator uses the segment prediction equation to predict
the county mean. The Cardenas, Blanchard, Craig estimator is a synthetic estimator
which uses local adjustments to the mean of a large area to predict the mean of a small
area. The Battese-Fuller estimator is also a prediction estimator but is based on a
nested-error structure consisting of within-county and between-county variance
components. It was developed by lowa State University under a research agreement with
SRS.

Two evaluation studies of these various estimators have been performed--one by
NASA/JISC and the other by SRS. Both of these studies used a South Dakota data set
which, because of an accompanying special soils study, had 200 area sample units
distributed throughout a six-county area. The results of these two studies were that
Huddleston-Ray has the smallest variance whereas Battese-Fuller has smallest bias and
overall mean-square-error.

B. Land Cover Information

Land cover information is an example of the second method for increasing the
benefit-to-cost ratio--that is, a processing byproduct of minor interest to SRS that is sold
(through cost sharing) to an outside agency. In 1981 a land cover study was conducted in
Kansas followed in 1983 by a land cover study in Missouri. In the Missourt study, 67
rotated-out, non-agricultural segments were used. These were flown by NASA/NSTL and
enumeration was by photo-interpretation. A report on the Missouri study is currently
betng written. Also In 1983 ground data was collected in New Jersey for use with TM in
producing land cover mapping products. The New Jersey data analysis is just now getting
started. In 1984 a land cover study will be conducted in Arkansas. The Soil Conservation
Service and the Forest Service are each paying $35,000 as customers for resulting Landsat
classification tapes.

Results for the 1981 Kansas Land Cover Study were encouraging. Covers with
regression estimate C.V.'s less than 10% were cropland, rangeland, farmstead, forest (not
grazed), and residential. Very rare lte