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USDA NASS

* Over 400 reports annually

— Census of Agriculture every 5 years
* Reports driven by surveys

* Surveys driven by sampling frames
— List frame
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Maintaining the Sampling Frame

* Processes for adding to frame are on-going.

* Frames age/deteriorate over time.

* Aging records create deadwood.

— Records that are in business on the frame, but in
reality are out of business
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Bowling...and “Deadwood”
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What’s the Problem With
Deadwood?

* Impacts on estimates.

* Higher inaccessible rate/

lower overall response rate.

 Can remain on sampling frame for long time.

* Costs =2 Inflated Samples
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How to Identify Deadwood?

* Not easy to predict.
* Despite best efforts, never 100% accurate.

* Can we build a predictive model?
— 70+ of covariates available
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Goal

* Build a predictive model which can aid in
identifying deadwood thereby maintaining an
up-to-date list frame.
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Classification and Regression Trees

e “Classification and regression trees are
machine-learning methods for constructing
prediction models from data.” (Loh,2011)

e Boosted Trees - SAS JMP
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4 Tree Views
4 Treel
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The Model...An Example
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Model Development

* Previous Survey Data
— What kinds of operations were in-business?

— What kinds of operations were out-of-business?
(deadwood)

* Create binary indicator

* Model Comparison =2 R?, ROC, & Confusion Matrix
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What’s in Our Model?

* Most recent administrative linkage

* Most recent sampling frame data update
* Death Index

* Previous Response History

* Age

* Location

* Ag Census Response
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Model Output

* The model creates propensity scores,
indicating the likelihood of a record being

deadwood.
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Prob{deadwood==
1)
0.0018551978
0.0060186538
0.91770965625
0.00984204
0.0114227775
0.00183098113

Most Likely
deadwood
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The Process

1. Predict likelihood of deadwood for each
record in a survey sample.

2. Request face-to-face enumeration during
survey process.

3. Verify operating status, complete survey.
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WESTERN Field Operations

Field Operations
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Regions
[| Heartland (Saint Louis)
[ Mountain (Denver)
B Northern Plains  (Lincoin)
[] Northwest {Olympia)
[ Pacific (Sacramento)
B Upper Midwest  (Des Moines)
[ ] Delta {Little Rock)
[ Eastern Mountain (Louisville)
[ ] Great Lakes (East Lansing)
[ Northeastern (Harrisburg)
[[] Southern (Athens) B A

[ ] Southern Plains (Austin) Regional Offices
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September — Acreage, Production, -
and Stocks Survey (APS)

348 Potential
Deadwood Records
|dentified

4 Regions, Boots on 8 Regions, No
Ground indication of Deadwood

76 Records 272 Records
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September APS Results

Records Inaccessible Deadwood

Targeted 4

Regions 76 21%** 29%* *
Non-Targeted 8

Regions 272 39%** 2%**

*Proportions significantly different at .01 level

Are a lot of the inaccessible records in the non-targeted 8 regions
actually deadwood?
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Small Grain County Estimates v
Survey (Crops CE)

1098 Potential
Deadwood Records
Identified

4 Regions, Boots on 8 Regions, No
Ground indication of Deadwood

356 Records 742 Records
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Small Grain CE Results

Region Records Inaccessible Deadwood
Targeted 4

Regions 356 20%** 38%**
Non-Targeted 8

Regions 742 39%** 18%* *

*Proportions significantly different at .01 level

Once again, are a lot of the inaccessible records in the non-
targeted 8 regions actually deadwood?

USDA
I LOLA

18



September Recap

* Targeted regions had higher out-of-business

(deadwood) rates and lower inaccessible
rates.

* All indications point towards expanding the

boots on the ground data collection to all 12
regions.
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Additional Results

Deadwood |Deadwood|Deadwood|inaccessible
Survey Year Removed ID'd (%) (%)

15 Surveys 2016-2018 3,442 8,779 39.21% 25.28%
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Conclusion and Future Steps

* The model is accurately identifying a high rate
of deadwood records.

* Continue process of identifying potential
deadwood at a survey level.

* Approved Decision Memorandum —Jan 24,
2018
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