Multiresolution Landsat TM and AWiFS Sensor Assessment in Nebraska

Claire Boryan, Mike Craig, Rick Mueller, and Patrick Willis
703-877-8000
claire_boryan@nass.usda.gov
• Produce acreage estimates with reduced error rates over the June Agricultural Survey.

• Create and distribute the Cropland Data Layer Product.
19 Cropland Data Layer States
Multitemporal Landsat TM Scene Classification of Nebraska

Acquisition Dates: 07/03/04 & 07/19/04
Path/Row: 29/32
The Landsat Data Gap

Source: USGS, Landsat Project:
Indian Remote Sensing Satellite: RESOURCESAT-1

Advanced Wide Field Sensor (AWiFS)

- **AWiFS**: Swath: 370 km each head, 740 km combined, 56 m resolution at nadir, 70 m resolution at field edges.
- **Spectral Bands**
 - B2: 0.52-0.59 (Visible Green)
 - B3: 0.62-0.68 (Visible Red)
 - B4: 0.77-0.86 (Near Infrared)
 - B5: 1.55-1.70 (Middle infrared)

Imagery required extensive (30 –50 pt.) registration of scenes vs. 1 pt registration for Landsat TM data
Multitemporal Analysis of Nebraska using Landsat TM data
Nebraska – 2004
Unitemporal Analysis

AWiFS
Analysis Districts (AD)
and Scene Observation Dates

Landsat TM
Analysis Districts (AD)
and Scene Observation Dates
TM Multitemporal Classification

TM Unitemporal Classification
TM Unitemporal Classification

AWiFS Unitemporal Classification
Cuming County, Nebraska

AWiFS: 08/09/2004
BANDS: 4, 5, 3 (RGB)

LANDSAT 5 TM: 08/29/2004
BANDS: 4, 5, 3 (RGB)
Classified
Cuming County, Nebraska

AWiFS Unitemporal: 08/09/2004

TM Unitemporal: 08/29/2004
Segment Area Classifications

Multitemporal TM
4/07/04 & 08/19/04

Unitemporal LandsatTM
08/29/2004

AWiFS
08/09/2004
Kappa Statistics for Classifier Accuracy

Eastern Nebraska

Corn

<table>
<thead>
<tr>
<th>Area</th>
<th>Multi</th>
<th>Uni</th>
<th>AWIFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD01</td>
<td>93.89%</td>
<td>73.42%</td>
<td>Uni</td>
</tr>
<tr>
<td>AD02</td>
<td>96.18%</td>
<td>93.54%</td>
<td></td>
</tr>
<tr>
<td>AD03</td>
<td>93.91%</td>
<td>92.67%</td>
<td></td>
</tr>
<tr>
<td>AD04</td>
<td>92.85%</td>
<td>89.90%</td>
<td></td>
</tr>
<tr>
<td>AD05</td>
<td>96.85%</td>
<td>93.22%</td>
<td></td>
</tr>
</tbody>
</table>

Soybean

<table>
<thead>
<tr>
<th>Area</th>
<th>Multi</th>
<th>Uni</th>
<th>AWIFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD01</td>
<td>99.12%</td>
<td>93.39%</td>
<td>Uni</td>
</tr>
<tr>
<td>AD02</td>
<td>96.81%</td>
<td>89.93%</td>
<td></td>
</tr>
<tr>
<td>AD03</td>
<td>98.72%</td>
<td>93.40%</td>
<td></td>
</tr>
<tr>
<td>AD04</td>
<td>95.41%</td>
<td>88.37%</td>
<td></td>
</tr>
<tr>
<td>AD05</td>
<td>96.67%</td>
<td>85.69%</td>
<td></td>
</tr>
</tbody>
</table>

Overall

<table>
<thead>
<tr>
<th>Area</th>
<th>Multi</th>
<th>Uni</th>
<th>AWIFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD01</td>
<td>96.91%</td>
<td>80.02%</td>
<td>Uni</td>
</tr>
<tr>
<td>AD02</td>
<td>96.19%</td>
<td>86.57%</td>
<td></td>
</tr>
<tr>
<td>AD03</td>
<td>95.60%</td>
<td>85.37%</td>
<td></td>
</tr>
<tr>
<td>AD04</td>
<td>93.50%</td>
<td>81.79%</td>
<td></td>
</tr>
<tr>
<td>AD05</td>
<td>92.88%</td>
<td>85.91%</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Districts & Scene Observation Dates
Nebraska Land Use Stratification - 2004

- 80 % Cultivated
- 51 - 80% Cultivated
- 15 - 50% Cultivated
- Agri Urban
- Dense Urban
- <15% Cultivated
- Non-agricultural
- Water

Nebraska Unitemporal AWiFS Classification - 2004

Categories
- Corn
- Soybeans
- Other Row Crops
- Other Small Grains & Hay
- Winter Wheat
- Fallow/Idle Cropland
- Pasture/Grassland/NonAg
- Woods
- Clouds
- Water
- Urban
Regression Analysis from Unitemporal Sample Estimation

Landsat TM Corn
AD 24

AWiFS Corn
AD 69

R-sq (11,12,20) = 0.881
Slope (11,12,20) = 0.2376

R-sq (11) = 0.864
Slope (11) = 0.7230

R-sq (12, 20) = 0.699
Slope (12, 20) = 0.6033

Pixel Sq meter/-acres - .2224
Outliers Removed

Pixel Sq meters/ acres - .7747
Regression Analysis from Unitemporal Sample Estimation

Landsat TM Soybeans

AD 24

R-sq (11,12,20) = 0.922
Slope (11,12,20) = 0.2312

AWiFS Soybeans

AD 69

R-sq (11) = 0.869
Slope (11) = 0.7243
R-sq (12, 20) = 0.909
Slope (12, 20) = 0.7923

Pixel Sq meter/ acres- .2224
Outliers Removed
Pixel Sq meters/ acres - .7747
State Level Estimates as % Over/Under Agricultural Statistics Board (Final)

Source of Estimate

- June Ag
- TM-Mult
- TM-Uni
- AWIFS

% Over/Under ASB Final

- Corn
- Soybeans
State Level Estimates

 +/- 2 CVs (Coefficient of Variation)

Source of Estimate

% Over/Under ASB Final

-6 -4 -2 0 2 4 6 8 10 12 14

June Ag TM-Mult TM-Uni AWIFS

Corn
Soybeans
Conclusions

- Classification results derived using the AWiFS data are not as accurate as those derived using either multitemporal or unitemporal Landsat data.

- Reductions in classification accuracy can be attributed to:
 - Spatial resolution - AWiFS (56m) vs. TM (30m)
 - Spectral Resolution - AWiFS (4 bands) vs. TM (7 bands)

- In the future, improvements in classification accuracy are likely to be achieved due to increased temporal frequency of the AWiFS sensor (5 day) vs. the TM sensor (16 day) repeat cycle.

- This should significantly increase the availability of cloud free imagery.
Conclusions

- AWiFS data appears acceptable for crop acreage estimation over large crop areas such as the Mid-West, the Delta and the Northern Great Plains.

- Furthermore, unitemporal AWiFS provided reasonable and consistent estimates for production of the Crop Land Data Layer product.

- We anticipate that use of multitemporal AWiFS data would improve the results to a level that is acceptable for NASS.