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Abstract

The National Agricultural Statistical Service (NASS) conducts
quarterly surveys for estimation of some primary commodities produced on
farms and ranches. The commodities often have highly -kewed distributions
with a few farms producing very large amounts. NASS uses dual sampling
frames comprised of the list frame for efficient stratificasion and the area
frame for estimation of the part (nonoverlap) of the population that is not
included in the list frame. Because the area frame sanpling probabilities are
relatively small, a few large observations in the nonoverlap =ample can greatly
influence the usual direct expansion (DE) estimates for population totals.
The purpose of this study is to investigate modifications of the usual DE
estimators which could produce more efficient estimators for the NASS

quarterly surveys.

An empirical Bayes approach is used as a method for including
estimates from previous ¢uarterly surveys to help stahbilize the estiinate for the
current survey. Amnother approach is to right-censor the very large expanded
observations in the nonoverlap sample to produce a censored direct expansion
(CDE) estimator. A bias adjustment, formed as the zatio « f the DE and CDE
sums over the repeated surveys, is applied to the CDE estimator to produce
the adjusted censored direct expansion (ACDE) estimator. The empirical
Bayes technique is then applied to the ACDE estimmates. The empirical Bayes

and censored estimates arc calculated for total hogs and pigs in the ninc
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quarterly surveys: March 1987 - March 1989 from Indiana, Iowa, and Ohio. A
bootstrap method is constructed to estimate and compare the biases, standard
errors, and root mean square errors ( RMSE’s ) of the various estimators. Only
a slight reduction in RMSE resulted from censoring the very large expanded
observations in the nonoverlap sample. Application of the empirical Bayes
technique to either the DE or the ACDE estimators reduced the average
RMSE by about 10% in each of the three states.

The empirical Bayes technique is also applied to DE estimates,
including a component corresponding to large expanded values, from 33
quarterly surveys for the the major hog producing states. The Mean Absolute
Deviation (MAD) between the empirical Bayes and the most recent revised
board estimates over the surveys from all 10 states was found to be about 10%

smaller than the corresponding MAD between the DE and board estimates.
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Chapter 1

Introduction

In agricultural sample surveys for commodities produced on farms and
ranches the populations are often highly skewed with a large number of small
values and a few very large values. Because of the highly skewed populations,
the National Agricultural Statistical Service (NASS) of the United States
Department of Agriculture (USDA) uses dual sampling frames: the list and
arca frames. A desirable feature of the list frame is that most of its sampling
units (farm operators) have a relative measure of size for the items being
estimated, which can be used for efficient stratification. A disadvantage of the
list frame is that it is usually incomplete. Holland (1988) estimated that in
1988 the list frames included about 54 percent of the farms and 78 percent of
the farm land. The area frame is complete in that all farms have a known
positive probability of selection. A weakness of the area sampling frame is
that it is inefficient for estimation in skewed populations because size
information for the items is not available for most sampling units in this
frame. The area frame operators who are not in the list frame are classified as
nonoverlap. In their quarterly surveys for estimation of population totals,
NASS uses a dual - frame direct expansion ( DE) estimator which is foried as
the sum of DE estimators for the list frame and the area frame nonoverlap.
Typically the coefficients of variation (CV’s) are much larger for the
nonoverlap estimate than for the list estimate (see Table 3.2). Because of the
relatively large expansion factors, corresponding to small selection
probabilities, used in the area frame (see Tables 2.5 and 2.6), a few very large
observations in the mnonoverlap (NOL) domain can greatly influence the
estimnate of a population total. What to do about the influence of a few very
large observations on the estimates is a common and difficult question
confronting data analysts. Several modifications of the usual DE estimators

for totals /means have been made suggested.

Searls (1963) investigated a modification of the sample mean estimator
for skewed populations where the observations which exceed a specified cutoff
value, say c, are replaced by the cutoff value. In terms of estimation for the
total, X, of a population of size N, this estimator can be expressed as a

function of the ordered observations



n-m
C
- _ N Nl
X = ~( x4 (‘mc) , (1.1)
1=1
where m_ denotes the random number of observations which are larger than

the cutoff ¢, We shall refer to (1.1) as the censored direct expansion (DE)

estimator since it depends on the data only through the information contained

X . Ernst (1979) and

i a Type I right censored sample: m, > ST n—m,
Hidiroglon and Srinath (1931} investigate several estimators for population
means /totals in which the large observations and/or their corresponding
expansion factors (coefficienrs) are shrunk. Ernst compared the mean square
errors (MSE's) of seven estimators of the mean, including X and the
corresponding censored DE. in the case of random sampling from an infinite
population. He showed that for each of the other six cstimators there is some
cutoff value ¢ for which the censored DE estimator has smaller MSE.  For
example, for random samples of size 1 = 100 from an exponential distribution
the MSE for X is 14% larger than the MSE for the censored DE estimator
with optimal cutpoint ¢.  The MSE evaluations in Scarls (1963) for the
exponential distribution show that there is a gain in efficiency over a wide
range of cutpoint values. However, if the cutpoint is chosen too small the
reduction in the variance component of the MSE can be more than offset by
the increase in the biax component. Oechlert (1931) developed a random
average mode (RAM) estimator for the mean of a skewed distribution and
compared its performance to that of X, trimmed means, and shrunken
estimators. Comparison of his MSE estimates with those reported by Searls
for sampling from an cxponential distribution shows that the estimators
considered by Oehlert are cominated by the censored DE estimator with a
rather wide range of cutoff values.  Huddleston (1965)  replaced the

observations which exceed @ specified cutoff value ¢ by an estimate of

conditional expectation E(X|X > ¢). Huddleston applied his estimators to
several farm comumodities, 1ucluding total hogs and pigs, for the June 1963
Enumerative Area frame surveys in several states.  For estimation of the
conditional expectations. he used parametric estimates formed for Pareto and
Pearson Type HI distributions and empirical estimates formed from repeated
June area frame surveys within each state. Huddleston concluded that his
censored estimators are biased and generally have smaller standard errors than
those for the DE estimators.  Johnson (1985) used an empirical Bayes
approach for including wmformation from previous surveys to improve the

estimation of wild waterfowl populations.
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In this report, empirical Bayes and censoring approaches are developed

and evaluated for estimation of total hogs and pigs at the state level. First,
the NASS survey designs, the DE estimators, and the estimation of their
variances and covariances are discussed in Chapter 2. The variance and
covariance estimation is complicated because of the rotation and subsampling
schemes used in the area frame sampling. The DE estimates, with standard
errors and correlation estimates, are given for total hogs and pigs in Indiana,
Iowa, and Ohio for the nine quarterly surveys: March 1987 -March 1989. In
Chapter 3, a bootstrap approach is developed to estimate the biases and
MSE’s of estimators of population totals for the repeated surveys. The
bootstrap approach is (partially) validated by applying it to the DE

estimators.

In Chapter 4, the empirical Bayes estimators are developed for a mixed
linear model. This approach is similar to that used by Fay and Herriot (1979)
in their construction of empirical Bayes estimates for income in small places
(areas). Instead of using the mixed linear model to relate estimates from
similar small areas, we use it to relate the DE estimates from similar repeated
surveys within each state. In Chapter 5, the simple extension of censored DE
estimator (1.1) to unequal probability sampling is evaluated. To reduce the
negative bias of the censored DE estimators, an adjustment factor is applied.
The adjustment factor is formed as the ratio of the sum of DE estimates from
repeated surveys within a state over the corresponding sum of censored DE
estimates. This adjusted censored estimator is similar in form to one of the
estimators proposed by Huddleston (1965, equation 2). In Huddleston’s
censored DE estimator only the observations less than the cutoff value are
included, corresponding to the first of the two components in (1.1). He then
adjusts this estimator by the sum of DE estimates from repeated surveys
within a state over the corresponding sum of his censored DE estimator. Also
in Chapter 5, the empirical Bayes technique is applied to the adjusted

censored DE estimators.

In Chapter 6, the empirical Bayes approach is applied to a series of DE
estimates for 33 quarterly surveys from the ten major hog producing states.
The NASS summary file containing these data also includes the most recent
revised board estimate and the component (DE;) of the DE estimate
corresponding to expanded values in the list or NOL which exceed a specified

cutoff value. Three different forms of empirical Bayes estimates are obtained
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by either applying the cmpirical Bayes technique to DE, DE,, or both DE,
and DE—-DE,. The various empirical Bayes estiinates are compared to the
corresponding DE and revised board estimates for the series of surveys from

the ten major hog producing states.

Chapter 7 coutains the summary and conclusions.



Chapter 2
The Quarterly Agricultural Surveys and Direct Expansion Estimators

The NASS quarterly surveys are based upon a combination of an area
frame and a list frame universe. The list frame contains names of farm
operators and control information for stratification by type and size of farm.
The stratification yields an efficient sampling design, but the list frame is
usually incomplete and therefore does not provide information for the entire
population of interest. The arca frame sampling units are small areas of land,
called segments, which are stratified by land use. The area frame provides
complete coverage of the farm sector, but it is inefficient for estimating rare
items (any agricultural commodity that is produced on only a small
proportion of the operations in a State) or items that are extremely variable in
size.  Fecso, Tortora, and Vogel (1986) give a thorough overview of the
historical development of the area and list sampling frames, and discussion of

the advantages and disadvantages of those in current use.

For multiple frame estimation, the area frame sample is divided into
two domnains:
(1) The Nonoverlap Domain (NOL). This domain consists of farms operators
found via the area frame sampling units that are not in the list frame.
(1) The Overlap Domain (OL). This domain consists of farm operators in
the areca frame that are also in the list frame. The farm operators in the OL
domain who are selected in the area frame sample also have a chance to be

selected from the list frame.

In a June enumerative survey (JES), three different area frame direct
expansion estimators (tract, farm, and weighted) and two multiple frame
estimators (operational and adjusted) are produced for livestock estimation. A
tract is a piece of land inside a segment under a single operation or
management. The tract estimator counts only the farm inventory within a
tract, regardless of ownership. The farm estimator includes all products of the
farms whose operators reside in the sampled segment. The weighted estimator
uses the ratio of tract acreage over farm acreage to prorate farm inventory to
the tract level. The multiple frame (MF ) estimator uses the area frame to
compensate for the incompleteness of the list frame by adding the area frame
NOL estimate to an estimate of the OL domain from the list frame sample.

The tract, farm or weighted estimator can be used to provide the area frame
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NOL estimate. Nealon (1984) found that, with respect to livestock
estimation, the weighted estimator is superior to the other two area frame
estimators, and that the MF estimator is superior to the weighted estimator.
The operational MF estimator based on the weighted estimate for the NOL

portion 1s used throughout this report.

2.1 Survey Designs

This section presents a brief description of the sampling schemes
currently in use at NASS for selecting samples from the list and area frames.
(Section 2.3 contains some additional descriptive information, including total

sample sizes and average expansion factors for the list and area frames. )

2.1.1 List Frame

The list frame for cach state is stratified by tvpe and size of farm. For
example, the variables used in the stratification for hogs and pigs are total
hogs, total crop land, and «n—farm storage capacity. Typical list frame strata
for the agricultural surveys are crop land 1-199 acres, capacity 1-9999
bushels, hogs 1-149 hogs. crop land 200-599 acres, capacity 10k -49999
bushels, hogs 150 - 499 hogs, crop land 600-3999 acres, hogs 500 - 1999 hogs,
capacity 50k -499999 bushels, hogs 2000-9999 hogs, crop land 40004 acres,
capacity 500k+4+ bushels. and hogs 10000+ hogs. A prioritization scheme
insures that an operation can be in only one stratumn. Replicated systematic
sampling from each stratum is usually used to select the list sample. An
example of the list frame replication groups is illustrated in Table 3.1 of

Section 3.3.

2.1.2 Area Frame

First, consider the June Enumerative Survey (JES). The segments in
the area frame are stratified by land use. For example, typical land - use
strata are: more than 75 percent land cultivated, 50 75 percent land
cultivated, 15-49 percent land cultivated, agriculture mixed with urban and
more than 20 dwellings per square mile, residential - ecmmercial and more
than 20 dwellings per square mile, resort and more than 20 dwellings per
square mile, less than 15 percent cultivated, and nonagricultural land. FEach
stratum is further subdivided into more homogencous geographic substrata

called paper strata (or districts). A stratified raudone sample is selected
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independently from each paper stratum. For rotational purposes, the first
segment selected in each paper stratum is designated as replicate 1, the second
as replicate 2, etc. Approximately 20 percent of the segments are replaced

annually on a rotational basis (see Table 2.3 in Section 2.2.3).

The area sample segments are divided into tracts which are the parts
of separate farm operations or nonagricultural areas that are within the
segment. Then a tract for a farm operation is either the entire farm when all
of it is in the segment or a portion of the farm when the farm’s boundary
extends to outside of the segment. Each tract operator identified in the arca
frame sample is then name-matched against the list frame, and the area
frame sample is divided into NOL and OL domains for multiple frame

estimation.

The September, December and March quarterly samples are obtained
as subsamples of the JES sample of NOL tracts. For the September and
December surveys, each NOL tract from the JES is restratified into a select
(summary ) stratum based on information from the JES interview with no
regard to segment or original stratum. Different stratifications are used for
September and December. An equal probability sample is then taken from
each select stratum. Those strata which are more likely to contain large farm
values are sampled with higher probabilities than those strata likely to contain
small farm values. Because a single tract is often subsampled from a given
select stratum in the December surveys, NASS combines a number of select
strata into a summary stratum for variance estimation purposes. The March
sample 1s obtained as a subsample of the December sample. The December
sample is restratified into select (summary) strata based on information
obtained in the December enumerative survey. An equal probability sample is
then taken from each stratum. Thus, the March sample is obtained as a three
stage sampling process. A detailed description on area frame construction,
development, and sample selection is included in Fecso, Tortora, and Vogel

(1986).

2.1.3 Multiple Frame

Research by Hartley (1962) led to the implementation of multiple
frame estimation from the list and area frames. The multiple frame direct
expansion (DE) estimator is obtained as the sum of the (operational) list

frame DE estimator and the area frame weighted estimator for the NOL



domain.

2.2 DE Estimators and Their Variances and Covariances

Nealon (1984) provides a good discussion of direct expansion (DE)
estimators for the area and multiple frames used by the NASS. In the present
section, we briefly describe the DE estimators for the list, NOL, and MF
frames that we investigate for total hogs and pigs. Estination of variances

and covariances of the DE estimators for different surveys is also discussed.

2.2.1 The DE Estimator for the List Frame

We consider the DE estimator for the list frame ( OL domain ) which is
based on only useable reports. This estimator is called the operational DE
estimator by the NASS. Prior to June 1988 a useable report for the total hogs
characteristic (x) represented a known number of hogs and pigs (x = 0 or x >
0). Since June 1988 a uscable report also includes “unknown” zeros. That is,
incomplete reports for farmers which are evaluated as haviug no hogs or pigs.
(In addition to the operational DE estimator, the NASS :lso uses an adjusted
DE estimator based on imputed values for certain missing or incomplete

reports from the list sample.)

Suppose that a list population is made up of H strata. Let the strata be
indexed by h =1,2, ..., H and

N;, = the population size for list stratum h,

n, = the number of useable reports in list stratum h,

. .. tt .
Xpk = value of the characteristic from the k™' nscable report in

list stratum h,

n

=y

% 1

Xph = g Xpx denote the sample mean for list stratum h.
"k

1

The DE estimator for the list frame is then defined as the usnal one for a

population total using stratified random sampling

. H N, "
vllst__ v h

“Ih 9
b, - h;I 1y, kgl Xhk (‘-’1)
with variance estimator
T H N, (N,—n,) ™ 2
varst = §& Nn(Np—np) o (Xp = xp) - (2.2)

bt

h=1 bh(n,—1) «=
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It should also be noted that, because all farm operators in the list frame also
had a chance to be selected from the area frame, an estimate from a list frame

sample can be viewed as an estimate of the overlap domain.

The DE estimators for repeated quarterly surveys from the same list
frame will be correlated because many of the farms are included, by design, in
more than one survey. For the nine quarterly surveys which we consider:
March 1987 - March 1989, two different list frames are independently sampled:
the December 1986 -March 1988 frame and the June 1988 -March 1989
frame. (See Table 3.1, in Section 3.3.1, for illustrations of the rotation
patterns used in the two frames.) Some additional notation is required for
describing the covariance estimators. Let I denote the number of surveys
taken from a particular list frame and y"'(i) the DE estimator for the
population total corresponding to the i*" survey (i = 1, 2, ..., I) from that
frame. The estimator for the covariance between the two estimators y"*(i)

and y"8'(j) is taken segments with common segments

i No (No = 0y(i0))
)Y — .
h=1 nh(l,J)(nh(laJ) - 1)

v () - xG)) (@) - %)) 5 (2.3)

KESK(,])

cév'iSt(i,j) =

where S, (i,]) = the set of farms in stratum h which are included (with

useable reports ) in both surveys 1 and j,

n,(i,j) = the number of farms in Sy(i,j),
x, (1) = value of the characteristic in survey i for the k'™ farm
n Sh(ixj)ﬂ

x(i) = —L1- Xk(1) denote the mean of x,
nh(l’J)kESh(ivj)

over the farms in S,(i,j), for survey i.

Standard error and correlation estimates, obtained from the variances
and covariances (2.2, 2.3), of the DE estimates for nine quarterly surveys from
the list frames are included in Tables 3.2 and 3.3 of Section 3.3.3.

2.2.2 The DE estimators for the Area Frame

First, consider the June surveys (JES’s). Suppose that a population is

made up of H paper strata, indexed as h = 1, 2, ..., H. The weighted DE
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estimator for the NOL donwan 1s

NOL Hooh .
v =3 ¥ Zhk s (2.4)
h=1 K==z

where
th
uy, = number of segments sampled from the ' paper stratum,
Znk. = ©n Xnk,  denote the expanded total value for segment k in
th
‘Le b paper stratum,
¢ = the inverse of the probability of selection of each

A . th
segmient 11 the b paper stratum,

Shk dhkm 9K
Xnk. = 2 Xpkm o hikm (2.5)
m=1 thkm

Xpkm = Value of chiaracteristic for the mt farnn which overlap
- th th
with the k77 segment of the ' paper stratum,
: . th : th

= number of sracts in the k77 segment of the I paper

stratun.
Apem = acrcage of tract,
bywm = acreage of tarm,

- t . . - .
1 it the hkm™ farm is in the NOL domain

ahkm - .
0 atherwise.

The variance estimator. ienoring the finite population correction factor,

for yNOL ix

NOL oo h 2
var = v —h ¥ (th_ - 2h> . (2.6)
h==1 I]h_l k=1
1 Ny th
where 72, = & V2 1s the mean over the n, scoments within the h
h o, = hk. h =
1

k= . .
paper stratum.  For all strata in the three study states: Indiana, Iowa, and
Olo the June expansion factors are large (e, > 117, see Table 2.5) so that the
finite population correction factors omitted from the variance formula are

indeed negligible.

For the September. December, and March qgrarterly survevs the
construction of the DE estimators is straightforward with the estimators
having similar form to that for the JES. but variance estimation is nnch more
complicated.  Kott and Johnston (1988) investigated variance estimation for

the DE estimator for the December enumerative surveys. They are critical of
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the variance estimator currently used by NASS and develop a new estimator.
Their variance estimator is also directly applicable to the September surveys.
We further apply the Kott-Johnston estimator to the March surveys by
considering the second and third sampling stages as a single composite second
stage. The Kott-Johnston variance formula (2.8) contains a component of

the same form as (2.6) for the JES | which they call the nested variance

estimator. We show numerically that this nested variance component provides
a good approximation to the Kott - Johnston variance for the DE estimators of
total hogs in the NOL domain for Indiana, Iowa, and Ohio. More importantly,
the bootstrap procedure that we use for the NOL (see Sections 3.3.2 and 3.3.3)

will only estimate the nested variance component.

Extensive notation is required to describe the Kott - Johnston variance

estimator. Let

L = number of summary strata,
v. = number of tracts sampled from the i'™" summary stratum,
T; = number of JES tracts in the i*" summary stratum,
S,« = the set of all current survey tracts in the k' segment of
the JES paper stratum h,
Sy, = the set of current survey tracts in JES paper stratum h,
w.. = the second stage expansion factor for tract j in the

h
1 summary stratum,

X;i = the entire farm value of characteristic for tract j in the
i'" summary stratum.
eiJj = the JES (first stage) expansion factor for tract j in the
i summary stratum.
yij = eiJj Xij denote the first stage expanded farm value for
tract j in the i*" summary stratum,
Vine = ijezs:hkyij denote the total first stage expanded farm

value of all current survey tracts in the it" summary stratum

and segment k of JES paper stratum h,
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= ¥ v denote the total first stage expauded farn

lh
l] €Sh

. th
value of all current survey tracts in the i summary stratum

and JES paper stratum h,

\'
i
y. =53 y.. denote the total first stage expanded farm value

L 1
S
Sy et ith .
of all current survey tracts in the 1 summary stratum,
e = ¢ w. denote the full expansion facror for tract j in the
1] j
:th
1 sumary stratum,
A e x = W, denote the fully expanded farm value for
ij 11]
tract j m the 1 summary stratum,
Zhe. = L 7 denote the fully expanded farin value of all current
IJEShk
survev tracts in the k™ segment of JES paper stratum h,
n
h

Zp = n Z spe  denote the mean of the n,, segments in stratum h.

The fully expanded fzmn values can be accumulated either over the tracks
within the summary sirata or over the segments totals to produce the arca
frame DE estimator of the NOL domain for the September, December, and

March surveys

-
pd
0
-
|
[\1:-
M-
M-N
il
Mz
g
N
o
x

(2.7)
i=1j=1 ] h=1 k=1
Kott and Johnston noted that their variance estimator for the estimator

yNOL obtained by the two - stage sampling in the December surveys, can be

expressed as the sum of two components

var = var" + var® | (2.8)
where
H 1y, 2
2N 1 -
var' = Y ﬁhll > (th- - zh) (2.9)
h=1 k=1

V.
~ A L 1 2 1
Arf = C w2l -oT)—1
T {([-:f\j] J v o
) 1 1
v2

{hil nh—l([ 2 ylhk] - I_llr?) B \f}} (2.10)

the non -nested adjustment. That is, 1f the summary ~trata had been nested

within each of the JES segments then (2.9) would be the appropriate variance
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estimator.  The variance estimator (2.8) is directly applicable to the
September surveys. For the September surveys the summary and select strata
are identical so that the second stage expansion factors are constant within
each summary stratum Wi = Ti/vi . The March surveys involve three - stage
sampling since the March summary strata are formed from the tracts which
were sampled in December. For application of the Kott - Johnston variance
estimator for March surveys, we consider the December and March
stratifications to form a joint second stage stratification. For example, if there
are 6 December summary strata and 4 March strata then the joint ( December,
March) stratification is the product set of size 24. Several of the joint strata
are found to contain only one tract (v, = 1), or are empty. We combine ecach

joint stratum containing only one tract with an adjacent nonempty stratum

with common March summary stratum.

In this report, we use the approximate standard error for the DE
estimator in the NOL domain corresponding to the nested variance estimator
(2.9) for the September, December, and March surveys, SE = m This
standard error estimator is also appropriate for the JES since the variance

estimator (2.6) for the JES has the same form as (2.9).

In Table 2.1, the approximate standard errors for the DE estimators of
total hogs in the NOL domains for nine quarterly surveys from Indiana, Iowa,
and Ohio are compared with the corresponding standard errors given in
summary reports provided us by NASS. Qur DE estimates for the June 1987
surveys in Indiana and Iowa do not agree with those of NASS. The NASS
summary report for Indiana does not reflect revisions of OL/NOL status that
were subsequently made and included in the data base provided us. Ignoring
the two cases where our DE estimates differ from those summarized by NASS,
the approximate standard errors are within 3.9% of NASS’s for the June,
September, and December surveys. Larger differences (6.6, 3.9, —26.2) occur
for the March 1987 and 1988 surveys. In Table 2.2 | the approximate standard
errors are compared with those corresponding to the Kott - Johnston variance
estimator for the September, December, and March Surveys. The
approximate standard errors, corresponding to the nested variance estimator,
are fairly accurate overall. In all cases, the approximate standard errors are
larger than the corresponding Kott - Johnston standard errors. Thus, their
non-nested adjustment component (2.10) is negative in all cases. Ounly tracts

that were in our June data files are included in the following September,
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Table 2.1. Com’\})arison of the Approximate Standard Errors (SE) with those of
the NASS (SENASS) for the DE Estimators of Total Hogs (1000) in the NOL

domain
Survey DE SE SENASS S_ES"TSN%Q_:E%
Indiana
M7 574 . 125.32 124 .65 0.5
Jr7! 407.7 90.41 (97.16) (-6.9)
SKT 97T2.7 268 .09 260 .52 0.5
D&Y T2 160.53 161 .53 -0.6
MRR 469 .5 121.90 120.562 1.3
JRX DXL 2 10R.08 107 .79 0.3
S8R AR5 .9 118,43 115,241 2.8
DRR AKR1 .5 134.70 1:31.60 0.1
MXRG A7 .6 133.83 125.57 6.6
Towa
M&7 2751 136 .36 A5 1.6 -3.3
JR71 33790 458 .90 (4165 .58) (-1.4)
SKRT 36GA5 d0OR .10 514,544 -3.2
DXR7T 34797 5418 .29 H27 .90 3.9
MRS 336=.3 535.06 HHX.16 -1.2
JRR B3T3 116.16 141,97 0.3
SR&E 3495 .5 440,78 442,08 -0.3
DRK 3116.9 506 .57 4094.03 2.5
M=9 20643 414 .27 3G L32 7.2
Ohio
MR7T 46505 167.06 16X.79 -1.0
J&RT T1T.7 173.19 173.10 0.2
SKT 6GX2 158.13 1 5= .27 -0.1
D&R7T THALN 231.62 2241.55 3.1
MER 62,02 121 .18 165 .25 -26.2
JRR h26 . 1142.11 141.79 0.2
SRE 632,60 163.87 160.90 1.8
DXRK HU2=.9 130.34 131,33 -0.8
9

M=9 BRXL0 107.10 106,141 0.

1. The DE for NOL given in NASS summaries for the June 1987 surveys
are 504.0 for Indiana and 3462.4 for lowa
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December, and March surveys. Since our data files did not include June 1986,
the March 1987 surveys could not be included in Table 2.2. Many tracts were
omitted from the 587, D87, and M88 surveys in Indiana because of many

OL/NOL revisions that had been made to the J87 data file.

The DE estimators for the NOL domain in different quarterly surveys
will be correlated because of common segments included in the samples. The
NASS typically replaces about 20% of the segments in each JES so that a
segment 1s retained for 5 years, 1.e., 20 consecutive quarterly surveys. Each
sampled segment within a particular paper stratum is designated as belonging
to a different replicate.  When a segment is rotated out of the sample a new
segment is randomly selected from the same paper stratum to replace the old
segment within the same replicate.  Within each state the same rotation
schedule 1s used for all paper strata with the same number of sampled
segments (n;, ). Table 2.3 gives the rotations for the 1986 - 1988 JES surveys
for Indiana, Iowa, and Ohio. For example, consider the paper strata in
Indiana which contains 10 replicates. In these strata, the same segments were
used in all three JES surveys for six replicates 1, 2, 3, 6, 7, and 8. The DE
estimators for the NOL domain in different quarterly surveys will be correlated
because of common segments included in the samples. The NASS typically
replaces about 20% of the segments in each JES so that a segment 1s retained
for 5 years, i.e., 20 consecutive quarterly surveys. Each sampled segment
within a particular paper stratum is designated as belonging to a different
replicate. - When a segment i1s rotated out of the sample a new segment is
randomly scelected from the same paper stratum to replace the old segment
within the same replicate.  Within each state the same rotation schedule is
used for all paper strata with the same number of sampled segments (ny).
Table 2.3 gives the rotations for the 1986-1988 JES surveys for Indiana,
Iowa, and Ohio. For example, consider the paper strata in Indiana which
contains 10 replicates. In these strata, the same segments were used in all
three JES surveys for six replicates 1, 2, 3, 6, 7, and 8. The segments in
replicates 4 and 9 were replaced in the 1987 and those in replicates 5 and 10 in
the 1988.

The approximate variance estimator (2.8), corresponding to the nested
variance estimator of Kott and Johnston, can be generalized to provide
approximate covariance estimators. Let I denote the number of consecutive

quarterly surveys taken from an area frame and yN°5(i) the DE estimator of
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Table 2.2. Comparison of the Approximate Standard Errors (SE) with those
obtained from Kott-Johnston Estimator (SEX?) for Total Hogs (1000) in the

NOL domain for the September, December and March Surveys

KJ

Survey DE SE SEXY §E—S~E—SK%3——%

Indiana
Sk T35 235.67 235.67 0.0
px7} G10.2 150.79 148,02 1.9
Mas! 450 .8 121.52 118.67 2.4
S8R 4R5.9 118.43 118.43 0.0
DRR 481.5 134.70 129.56 4.0
M=20 ABT .6 133.83 12:4.69 7.3

lowa
ST 3615 .1 498.10 d9%.10 0.0
D7 3479.7 548 .29 527 .48 3.9
MRR 336%.3 535.06 517.38% 3.4
S8R 3195.5 440.73 439 .98 0.2
DRK 3116.9 506.57 494 .71 3.2
MRO 2648%.3 414.27 B3O8, 10 4.1

Ohio
SK’T GR2 .3 158.13 152,13 0.0
DRT 7518 231.62 227 .99 1.6
MRR 162 .2 121 .88 117.53 3.9
SKRR! 626G.9 163.77 163.77 0.0
DRR 528 .0 130.34 127 .52 2.2
M&9 3RR .0 107.10 102.:16 4.5

1. Only tracts contained in the preceding June data file are included.
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Table 2.3 Rotation of Replicates in Area Frame for Indiana, Iowa, and Ohio.

Table entries are the last digit of the entry year 1983-1988

Number Number Replicates
of of
Paper Strata Replicates Survey 1 2 3 4 5 6 7 8 910
Indiana'
JR6-M87 4 5 6 6 6 4 5 6 6 6
19 10 J87-M88 4 5 6 7 6 4 5 6 7 6
J88-MR9 4 5 6 7 8 4 5 6 7 8
J86-M87 4 5 6 6 6
27 5 JE87-M88 4 5 6 7 6
JRE-M&9 4 5 6 7 8
Iowa
J86-M87 3 5 6 4
72 4 JB7-M88 3 5 6 7
J8&-M&9 8 5 6 7
JE6-ME7 4 5
5 2 JR7-M&8 4 5
JB8-M89 4 5
Ohio’
J86-M87 4 5 6 5 3 4 5 6 5 3
14 10 JR7-M88 4 5 6 73 4 5 6 7 3
JR]-M89 4 5 6 7 8 4 5 6 7 8
JB6-M&7 4 5 6 5 3
31 5 J87-M&8 4 5 6 7 3
JBR-ME9 4 5 6 7 8

1.

Indiana and Ohio each has one additional paper stratum containing 2

replicates. No NOL tracts occurred in these two strata
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the population total for the NOL domain corresponding "o the ith survey (i =
1.2, ..., 1). Two different approximate estimators for the covariance between
yNOL(G) and yNO-

estimator and the paurwise matched covariance estimator. For the replicate

(j) are considered: the replicated matched covariance

matched covariance estimator the covariance is taken over all replicates. That
15, (two) different segments occurring in a replicate during different years arc
treated as though they were the same segment. The variance estimator (2.8)
then simply generalizes to
"h
covNOh(ig) = > (th-(i) - zh(i)) (th~(j) - zh(j,)) : (2.11)

For the pairwise matched covariance estimator, the covariance is taken only
over replicates with common segments

< NOL : : H n,(1,))
cov 1) = N b\
() p=ron,(ig) - 1
S ()70 (aeli)-2in) (2.12)
EEEN)

where
Sp(1.)) = the ser of replicates in stratum h which are contain the
same segment i both surveys 1 and .
n,(1,]) = the muanber of replicates (segments) i = (1.).

2, (1) = value of the characteristic in survey i for the k' segiment

#(1) = L DO 2,,(1)  denote the mean of 2,
E‘Sh(l‘_])

over the segments i S, (1.]), for survey i

The covariance estimators based on palrwise niatching should be more
precise than those based on replicate matching becanse  he replicate matching
introduces additional noise resulting from the randomly matched segments
within some (abont 2097) of the replicates.  However, the bootstrapping
method for the area frame, developed in Chapter 30 is based on replicate
matching. Therefore. 1t of interest to compare estinares obtained by the two
methods. Table 2.4 gives the correlation coefficients which correspond to the
replicate matched  covariance estimates (2.11) and  the pairwise matched

covariance estimates 12.12). In Table 2.4, the replicate ( pairwise) matched
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Table 2.4 Comparisons of the Replicate Matched and Pairwise Matched
Methods of Correlation Estimates for the DE Estimators of Total Hogs in the
NOL Domain

Pairwise Matched Method above the Diagonal
Replicate Matched Method below the Diagonal

a. Indiana
Survey M87 J87 S87 D87 MR8 J88 S88 D88 MS89
M&7 1 287 059 263 442 154 215 038 .055
JRT .242 1 306 299 404 218 184 224  .263
S8&7 029 306 1 713 077 102 -.004 087 .128
D&7 237 299 713 1 BSl11 224 152 124 165
MRS 394 404 077 511 1 248 377 196 .229
JRK 099 197 092 224 233 1 .763 .699 .640
S8&8 196 178 -.003 .174 401 .763 1 706 .669
DR& 017 230 100 .1535  .254 699 .706 1 840
MR9 020 261 .134 170 .230 .640 .669 .840 1
b. Iowa
Survey M87 J87 S87 D87 MS88 J88 S88 D88 MS§9
MRT 1 659 626 .531 .504 .228 224 203 .224
JR7 695 1 914 839 .842 444 408 389 371
SK7 649 914 1 872 851 434 409 421 425
DR7T 572 839 872 1 934 491 470 503  .486
M&R 542 842 851 .934 1 488 477 502 445
J8 218 408 414 475 437 1 .846 .838 .862
SRK 200 .360 .379 441 418 846 1 774740
DRK 174 383 429 507 468  .858 774 1 .895
M&9 223 355 422 471 398 862 740 .895 1
c. Ohio
Survey M87T J87 S87 D87 M88 J88 S88 D88 MS9
MRT 1 745 731 068 130 764 .7T13 730 .160
JR7 745 1 936 350  .650 .774 787 692 (149
SKT 735 .936 1 470  .563 716 756 .666  .169
DRT 0065 .350 470 1 536 267 .301 181  .078
MRK 16 650 .563  .536 1 390 442 341 217
JR8 745 765 708  .259 372 1 940 834 .334
SR 696 782 758 301 .434  .940 1 816 .359
DR&K 724 677 660 190 .317 834 .816 1 RiYa!

M&9 Jd61 0 135 164 082 185  .334 .359 .5T1 1




20
estimates are given below (above) the diagonal of ones for the 9 quarterly
surveys from Indiana. Iowa, and Ohio. The maxininun absolute differences
between the two sets of estimates are 0.058, 0.008, and 0 032 1 Indiana, Iowa,
and Ohio, respectively. Among the 24 pairs of surveys from different sampling
vears (the other 12 pairs must have zero differences), the average absolute
differences between the two sets of estimates for the 3 states are 0.021, 0.026.
aud 0.010.

2.2.3 The DE Estimators for Multiple Frame

The MFE (direct expansion ) estimator is obtamed as the sum of the list
frame (operational ) DE estimator and the (weighted) arca frame DE estimator

for the NOL domain

MF NOL
= 3

+ "t (2.12)

- . . MF .
[ie vartance and standard error estimators for v are, 1espectively,

varMP & vaNOt 4 ovae"st (2.13)
(.- NOL | .- lst
and SE = yvar + var . (2.14)
with var™Ot = var™ given by (2.9), for the September. December and March

survevs.  The covartance of the MFE estimators of the population totals for

MF MF )

survevs Tand 3, v (10 and 77 (1) for 1 # 018 approximated by

MF NOL
( (

cov 1)) = cov 1]) + (‘()\'“St(

i.j) . (2.19)
The MFE direct expansion estimates and their standard error estimates are
mclided 1 Table 3.3 and their correlation estimates (hased on replicate

matching for the NOL 10 Table 3.4 of Section 3.3.3.

2.3 Sample Sizes and Expansion Factors

This section contamns a brief summary of some design characteristics,
icluding the overall sample sizes and average expansiou factors, used in the
list frame and NOL domam for the 9 quarterly survesvs March 1937 March

1939 from Indiana, Iowa. and Ohio.

Table 2.5 coutains summary statistics for m NOL tracts which were

sampled from the paper strata.  Simple averages over the m tracts are
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included for the acreage weights, w = tract acres/farm acres, and for the
expansion factors, e, used in the DE expansion estimators (2.5 and 2.7). Also
included are the minimum and maximum values of the expansion factor over
the m tracts and the number of tracts with positive hogs, m,, and the

minimum and maximum of the expansion factors over the m tracts.

Table 2.6 contain summary statistics for the n. = Tn, farms sampled
with useable records for the operational DE estimator (2.1) from the list frame
of size N, = TN,. Also included are the simple average of the expansion
factors, e, = Ny, / n,,, over the n. farms used in the operational DE estimator
(2.1) and the maximum expansion factor. The minimum expansion factor is
always unity since the extreme operators which are selected with probability
one are included in the list frame. From the overall sample sizes given (n’) it

can be seen over all surveys the useable record rates range from about 78%

(MS87 in Indiana) to 92% (S88 in Ohio).
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Table 2.5 Summary Statistics for Expansion Factors and Acreage Weights
of Total Hogs for the NOL Tracts

m = number of NOL tracts in the sample

w = average of the acreage ratio: tract acres / farm acres

€& = average of the expansion factor
m, = number of NOL tracts in the sample with positive hogs
e, = expansion factor of a NOL tract with positive hogs

]

Survey m Min(e) Max(e) m, Min(ey) Max(ey)

Indiana

M7 294 .411 314 .4 117.0 3135.41 GO 117.0 749.2
JB7T 470 .509 192.1 117.0 442 .8 ($32} 117.0 442.8
S&7 379 .370 261.7 117.0 1771.3 TO 117.0 442.8
DRT 208 .430 5H16.3 180.4 10464.5 e 187.3 3688.4
MER 198 .335 =XR06.5 187.3 31393.5H 32 187.3 749.2
JR&E 322 .559 194.5 117.0 531 .4 61 117.0 531.4
S&K 163 .507 206.7 117.0 2140.8 19 117.0 531.4
DR 143 .596 602,41 1R80.4 10096.6 30 187.3 391.6
MR 90 .496 12:114.1 187.3 30289.R 2 187.3 3901.6
Towa
M&7T 357 450 263.2 174.8 2201.5 1226 174.8 527.0
JR7T 592 .4914  201.6 174.8 1541.0 174 171.8 b27.5
ST 481 L4ddbh 0 2491 .2 174.8 2110.0 163> 174.8  HB27.5
DRT 320 .511 465H.0 174.8 4545.0 106 174.8 1019.8
MRK 250 .468  5hHh2.7 174.8 11175.0 s 174.8 1191.0
JE&X 515 .500 209.9 174 .8 154141.0 167 171.8 1511.0
SRR 402 443 2H9.0 174.8 2128 .8 153 171.8 2128.%
DRE 283 .517 H40hH.1 174.8 3R70.3 <R(i 174.8 1033.0
MRG 220 477 6xX4.2 171.8 11610.9 =1 171.8 454.5
Ohio

MKR7T 304 .455 1ol.6  204.8 12364.7 ST 2010.8 486, T
JRT 617 .58 23R.6 204.8 691.3 91 201.8 347.2
S&T 424 .503 340.1 204 .8 138 .7 =3 204.8 RK19.2
DRT 315 .53 H23.2 20414.8 5042 .4 17 20408 1324.8
MER 191 .4561 T33.5 204.8 15127.1 A0 204.82 1192.3
JRR  4X5 .602 21601 204 .8 416.R T2 209.8  116.8
SE& 314 .5d4d 35901 204 .8 1685.7 63 2040.8  R93.8
DK 250 .615 7TOSH.T7  204.% E385.0 4y 201,80 K¥R3.2

-1 204 .8 12507 .41 2 204.8 0 TT3.7

MR 153 .583 7THx,
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Table 2.6 Summary Statistics of Sample Sizes and Expansion Factors for
Useable Reports in the List Frames

N, = XN, = population size

n = En;] = sample size
n. = In, = number of useable reports
€ = N./n. = average expansion factor over the useable reports

a. D86-M87 List Frame

Indiana Towa Ohio

N.=45155 n!=2684 N.=82942 n!=3002 N.=45694 n!=2326

Survey  n, ¢ max(e) n, é max(e) n, é max(e)
M&T 2091 21.6 59.3 2412 34.4 73.1 1950 23.4 61.2
J&7 2112 21.4 54.8 2439 34.0 69.9 1918 23.8 62.4
S&7 2178 20.7 53.1 2490 33.3 67.9 1999 22.9 59.8
DR7 2231 20.2 53.1 2414 34.4 70.2 1994 22.9 60.1
MR& 2269 19.9 51.7 2420 34.3 71.2 1997 22.9 59.8

b. J87-M89 List Frame

Indiana Iowa Ohio
N =54728 n!=2727 N.=85548 n!=3011 N.=51867 n!=2354

Survey  n, ¢ max(e) n, € max(e) n, e max{e)
JER 2282 24.0 63.8 2505 34.2 70.3 2043 25,4 TALT
SRE 2399 22.8 59.06 2493 314.3 71.2 2162 21.0 71.2
D&8X 2375 23.0 59.2 2521 33.9 73.9 206K 25.1 70.3
MR9 2382 23.0 59.2 2502 34.2 71.6 2111 24.6 70.6
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Chapter 3

Bootstrapping

The standard bootstrap methods for the case of an independent and
identically distributed {iid) sample of fixed size v from an unknown
distribution F have been widely discussed. For examyple, Efron (1982) and
Efron and Tibshirani (1986) explain the basis of the standard bootstrap
methods and provide several examples of applications for estimation of
standard errors for estimators of a parameter ¢ = ¢ (F ) and for construction of
approximate confidence intervals. Empirical results (Efron, 1982) indicate
that the bootstrap variance estimates are likely to be more stable than those
based on the jackknife and also less biased than those hased on the customary
delta (linecarization ) wethod. In recent years, there has been much discussion
of the extensions of the standard bootstrap method for variance estimation to
complex surveys desiens.  Bickel and Freedman {1981) and Chao and Lo
(1985) suggested hootstrap  techniques to recover the finite population
correction factor in the variance formmnla for estimators of the population mean
or total. Rao and Wu 11985, 1988) proposed bootstran methods for several
sampling desigus whicli are based on linear adjnstmeuts of  the bootstrap
observations to prodice consistent standard errors for estimators which are
nonlinear functions of a large number of stratum nieans. Their standard errors

reduce to the standard ones for linear estimators.

The standard boorstrap method for variauce estiziation of an estiinator
is described in Section 3.1. In Section 3.2, the Rao W bootstrap approaclh
is deseribed 1 the cise of stratified random samphne  In Section 3.3, the

Rao Wu approach is adapted to the multiple framie sainpling used by NASS.

3.1 The Standard Bootstrap Method for Standard Error Estimation

Suppose that x - (x . x

Xy oy X ) s the observed data corresponding to

a random sample (1nd observations) of fixed size n from an unknown
probability distribution F. Let 8(x) be an estimator for the parameter of
interest A(F) and 4(F) denote the unknown standard deviation of the
sampling distribution. of 4(x).  Then ¢ = o (F ). whete Fois the empirical
distribution function, is called the bootstrap standard error for 6(x). The

bootstrap standard crror can be  approximated n-ing the Monte Carlo



algorithin ( Efron, 1979) described in the three steps:

* *
D Xor e

., X,} and calculate the

(i) Draw a bootstrap sample x* = (x , x:) by making n

random draws with replacement from {x,, x,, ..
bootstrap estimate %= 6(x™).

(ii) Independently replicate Step (i) some large number (B) of times to
produce the bootstrap estimates 8%(1), §%(2), ..., 67(B).

(iii) Calculate the standard deviation of the B bootstrap estimates

L= ‘ﬁ_l__l > () - 5%) (3.1)

b=1

QU

Wi—

= B . .
where 0; = 23 6%(b) is the bootstrap mean.
b=1

A

As Efron noted, when B — o, then ¢ _ will approach ¢ = o (F ), the bootstrap

B
standard error.  We will also refer to the Monte Carlo estimate c‘rB as the

bootstrap standard error.

3.2 The Adjusted Observation Technique for Stratified Sampling

In this section, we describe the Rao-Wu bootstrap approach as it
applies to estimation of the population total from stratified random sampling.
Suppose there are H strata indexed by h = 1,2, ... | H. Let X, = (X X o

cox ) denote  a  random  sample of fixed size n, drawn
h

without replacement from the '™ stratum of size N, and y = y(x, x_. ...

x,,) the estimator of the population total y°.
The Rao - Wu bootstrap technique for standard error estimation for an

estimator y(x. x,, ..., X,) can be described by the three steps:

1) Take a simple random sample x° = (x° . X", ..., X of specified

(1) T 1 ple h= (XX ,thh) f specifi

size m_ with replacement from the real sample (X0 X o0 X in each
h

stratum h. Calculate the adjusted bootstrap observations

5 XK _ - X —
XL o= x ta(x, —X), (3.2)
n
h
with x = ilL x . where the adjustment coefficients are defined as
h h k=1 "k
a = \Jmh(Nh —nh)/{Nh(nh— 1)} . (3.3)

The bootstrap estimate 1s then calculated using the adjusted bootstrap

observation vectors X, = (x* x* x* )
g ‘ s X, = , ey ] .
h1' “h2 hmy,

(11) Independently replicate step (1) some large number (B) of times
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and calculate the corresponding estimates y™(1), v7(2). . . v*(B), where
Vo= y(xl, Xyooo XH)

(111) The (Moute Carlo) bootstrap standard error estimator is

—

(}B - \jBfli b§1 (y*(b) - y*)z ’ (3-4)

B
with ¥° = é ST ovTih).
b=1

Rao-Wu show that &B 1s a consistent estiimnator for the standard

error of estimators which are nonlinear functions of the sample stratum means
as the number of strata become large.  Their bootstrap standard error also

reduces to the standard one for linear estimators of the population total.

3.3 Bootstrap Methods for the Multiple Frame

In adapting the Rao - Wu bootstrap approach to the multiple frame
sampling used by NASS. we simply adjust the bootstrap sample sizes in both
the area and list frames without adjusting the basic hootstrap observations.
Population total estimatcs from the repeated multiple frame surveys will be
correlated due to the replicate sampling used in the area and list frames and to
the subsampling of JES non- overlap area frame tracts in the September,
December, and March snrveys.  The bootstrap samplineg methods for the list
and area frames are constructed so that the variances and covariances for
estimates  of population totals trom different quarterly surveys can be

approximated,

Multiple - survey bootstrap samples are independently taken from the
list and area frames.  Bootstrap population estimates for the list (OL)
population total and the NOL domain population total are then summed to
produce bootstrap cstinnates for a state total.  The Sootstrap methods are
developed for the list and area frames in the next two sections and are

validated {for the DE o<tiiators in Section 3.3.3.

3.3.1 Bootstrapping the List Frame

Actually there are two list frames represented: the December 1986
March 1933 frame and the June 1988  March 1989 frame.  Substrata
corresponding to the replication (rotation) groups w e formed within each
stratuin for the two list frames. Random samples are then taken from the

replication group substrata. For illustration, the replication groups for a list |
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Table 3.1. Replication Group Sample Sizes for the Stratum # 60 in Ohio for
the Two List Frames

a. The December 1986 - March 1988 List Frame

Number
Replication of
Group Farms M87 J87 S87 D87 MSS
1 92 92 .
2 92 92 92 .
3 46 . . 46
4 46 . 46 46 .
5 46 46 . . 46
6 46 . . 46 46
7 46 46 46 46 .
8 92 . . . 92
9 46 46 . 46
10 46 . . 46 46
11 46 46 46 46
Sample Size 230 230 230 230 230
b. The June 1988 - March 1989 List Frame
Number
Replication of
Group Farms J88 S88 D88 M89
1 100 100 .
2 50 a0 50 .
3 50 . . 50
4 100 100 100 100 .
5 100 . . 100
6 50 50 . 50
7 50 . 50 50
8 50 50 50 50
Sample Size 250 250 250 250



[V
v 2}

stratum in Ohio are displayed in Table 3.1 for the two frames. For example.
the last replication group in the December 1986 March 1988 lhist frame
consists of the same 46 farms that are selected in June 1987, December 1987,
and March 1988.

Corresponding, to stratum b (h = 1, 2, ... . H) 1n a particular list

frame, let

Nh = the population size (number of farms ;
n, = the sainple size
g = number of replication groups
h
n = number of farms sampled in replication group v (r = 1, 2,
2 )
' 1 f 11 '
x ={r . ..., denote farims ~ampled in replication
he = UMy T o hrnhr} ‘ at phiation
group r.

The bootstrap sample size m, s chosen as an integer such that
Al

hith T (3.5)

11 =
h

Then the adjustment coctficients in (3.3) will be approximately equal to unity
so that the original bootstrap observations in (3.2) will approximate the
adjusted observations.  The sample size m s then allocated (approximately )
proportionally to the rotational group sizes.  That s the bootstrap sample
sizes for the rotational groups in list stratum b are determined as tegers
satisfying, for r = 1.2, ., g -

nhr | oh

2 - m subject to ST 1 ) 3.
Iuhr “h h ] r:l it lh (3 6)

Let T denote the number of surveys taken fror a particular frame and

Y=y (XX, X the estimator for the popnlation total corresponding to
the 1™ survey (1 = 1. 2. ..., I) from that frame. The hootstrap estimates for
the variances and covariinces of the estimators (v v o | }'I) of population

totals for I surveys fron: a list frame is described i three steps:

(1) Draw a situple random sample of size my with replacement from
i
. . ) ‘ f _ ¥ *
cach replication group subsample of n farms, »° - (=" 2" . [«
hr i hr1’  hr2 hrmy,
. . . r .
in each list stratum. From these samples calenlate the bootstrap estimates of
P

the population totals for the I surveys y* = (viovo. \f)

(11) Independently replicate step (1) some large number (B) of tinwes and
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calculate the corresponding estimate vectors y*(1), y*(2), ..., y™(B).
(ii1) The bootstrap estimator for the covariance of the estimators A and
yj 1s given by
roli) = g3 2 (¥ (b) = ¥7) (5](b) = 57) (3.7)

fori =1,2,...,1;j =1, 2, ..., I. Setting i =j, gives the bootstrap
variance estimator, &;(i) = &B(i,i) , of population total estimate the ith survey.
The bootstrap means

o _ 1 B .

Yi = 8 b§1 ¥; (b) (3.8)
provide estimates for the corresponding means of the sampling distributions

E(y.) .

i
When the bootstrap method is applied to the DE estimator

— —_h 3
Vi _h-§1 h rgi kz=:1 o) (3:9)
for the i*" survey in a list frame (i = 1, 2,..., I), a corresponding

bootstrap estimate in Step (i) is calculated as
y¥ = hE_: ﬁ: DD x:rk(i) . (3.10)

Notice that the expansion factors, N, /ny, in (3.9) must be adjusted to

account for adjustments made in the bootstrap sample sizes. The bootstrap
standard errors and correlation coefficients, corresponding to the covariances

(3.7), are compared with those calculated from the real data in Section 3.3.3.

3.3.2 Bootstrapping the Area Frame

To bootstrap the area frame the JES replicates (see Table 2.3 in
Section 2.3) are randomly sampled from each paper stratum. Then if a
replicate  contains (two) different segments during different years such
segments will have the same replicate match in all bootstrap trials. Also, the
tracts that were selected in the real September, December, or March survey
subsample from each segment selected in the JES are retained in the bootstrap
samples. That i1s, we do not subsample the bootstrap samples of segments
selected in the JES. When applied to the DE estimators for the NOL domain,
the bootstrap procedure will then estimate the nested component of the
variance (and replicate - matched covariance) estimators. The comparisons

that were made in Section 2.2.2 (see Table 2.2) for the nested component
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variance  (approximate  variance) estimator with the corresponding
Kott Johnson variance estimator indicated that estimation of the nested
components provides reasonably good approximations to the true variances.
The nested  component approximations should be adequate for comparing the
SE’s or MSE’s of different estimators because the approximation biases should
tend to cancel out of SE and MSE ratios because such biases should to be
highly correlated when the different estimators are calculated from the same

bootstrap samples.

Their bootstrap method for the area frame 1s similar to that described
for the list frame. Instead of sampling farms from each replication group in
the list, replicates (replicate - matched segments) are sampled from each paper
stratum.  Any segment selected could contain noue. one, or several NOL tracts

(farms).

For a given state. let H denote the total nnmber of paper strata in the

arca frame. For paper stratum h (h = 1,2, ..., H). les

Ny, = the population size (number of segments)
n, = the sample size

o= {x . P rhgh} denote replicates in the sample.

The bootstrap sample sizes m,, = n, —1 are used ia each stratum. Because
h h

the JES expansion factors are large (N, /n, > 117). the original bootstrap

observations will accurately approximate the Rao - Wu adjusted observations

(see equations 3.2 and 3.3).

Let Y= YR, ) denote the estimator for the population
total corresponding to the it survey out of the I = 9 arca frame surveys., The
bootstrap estimates tor the variances and covariances of the estimators (v, ¥,

. v;) of the population totals in the NOL domainu for 1 area frame surveys

[
15 described in three sreps:
(1) Draw a simple random sample of size m, =mn, -1 with
. . *x x > x .

replacement from eaclh replication group, »° = (= N | ac

b et Hea L group, ¥, ( he1' Thr2 ! hrmhr)’ in each
paper stratum. The samples are selected independeutly from the different
paper strata. From these bootstrap samples calculate the bootstrap estimates
X > *)

of the population totals for the I surveys y™= (¥ v, . Y1

(11) Independently replicate step (1) some large number (B) of times

and calculate the corresponding bootstrap estimate vectors y™ (1), y™(2). ...



31
y*(B).

(iil1) The bootstrap estimator for the covariance of the estimators ¥;

and y., for surveys i and j, is given by
roli) = gl 2 (57(0) = 57) (¥(b) - 57) - (311)

For the DE estimators in the JES and other three quarters (2.3 and
2.6), the expansion factor corresponding to a tract and survey must be
multiplied by the expansion adjustment factor n,/my, = n,/(n, - 1) to
account for the change in sample size used for bootstrap sampling of segments
from a paper stratum. The bootstrap standard errors and correlations for the

DE estimates are compared with those calculated from the real data in the

next section Section.

3.3.3 Bootstrap Results for the DE Estimators

The multiple - survey bootstrap methods were used to obtain two
independent sets of 1000 bootstrap samples: one set from the list frame and
the other set from the arca frame. The bootstrap methods are validated by
comparing the bootstrap standard errors and correlation coefficients for the DE
estimators with the corresponding statistics calculated from the real survey
samples. The same two sets of bootstrap samples will be used to evaluate and

compare the alternative estimators developed in the next two chapters.

Several summary statistics were calculated for the bootstrap DE
estimates for total hogs in the NOL, list, and multiple frames in the 9
quarterly surveys (March 1987-March 1889) from Indiana, Iowa, and Ohio.
Table 3.2 compares the bootstrap means, standard errors, and coefficients of
variation with the corresponding statistics calculated from the real samples
(see Section 2.2). Overall there is good agreement between the bootstrap and
real sample estimates. Similarly, Table 3.3 shows good agreement between the
bootstrap correlations and the corresponding real -sample correlations among

the DE estimators for the 9 surveys.
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Table 3.2 Comparisons of the Mean, SE, and CV of the Bootstrap!(BS)
Direct Expansion Estimates for Total Hogs (1000) with the Corresponding
Real-sample Direct Expansion (DE) Estimates, SE, and CV in the NOL, List,
and Multiple Frames for Nine Quarterly Surveys

a. Indiana

Estimates Standard Errors Coefs of Var %
Rel.? Rel.” Rel.”
Survey DE Mean Diff % DE  Mean Diff% DE Mean Diff%
NOL
M&T 574.4 57s.1 0.64 125.32 128.84 2.81 11.82 22.29 2.15
JRT 407.7 4112 0.85 90.41 87.88 -2.80 22.17 21.37 3.62
S&7 972.7 985.9 1.35 268.09 270.25 0.80 27.56 27.41 -0.54
D&7T 7742 T78.2 0.52  160.53 156.36 -2.60  20.73 20.09 -3.10
MR 469.5 4742 1.01 121.90 123.46 1.28 25.97 26.04 0.27
JR]  528.2 5274 -0.15 108.08 108.47 0.36 20.46 20.56 0.51
S&& 485.9 4839 0.00 11843 119.70 1.07 24.37 24.63 1.07
D&K 481.5 481.9 0.09 134.70 138.13 2.55 27.98 28.66 2.46
MR9 4576 4553 -0.50 133.83 135.76 1.4¢ 29.25 29.82 1.95
List
MR7  3431.1 3437.5 0.19 124.46 120.93 -2.83 3.63 3.52 -3.02
JRT  3597.4 3601.8 (.12 113.66 112.72-0.33  3.16 3.13 -0.95
S&7  3951.9 3950.1 -0.05 130.01 124.22 -4.45 3.29 3.14 -4.40
DR7T 38409 3847.0 0.16 114.19 108.57 -4.92 297 2.82 -5.07
M88  3403.7 3402.7 -0.03  100.42 100.45 0.04 295 295 0.06
J&K]  3892.7 3891.9-0.02 146.84 136.77 -6.85  3.77 3.51 -6.83
SR&  4110.8 4106.9 -0.09 155.26 145.55 -6.25  3.78 3.54 -6.17
D&K]  3686.1 3679.1-0.19 116.97 11231 -3.98  3.17 3.05 -3.80
MR9  3399.4 3396.7 -0.08 91.49 89.74 -1.91 ~.69 2.64 -1.83
Multiple Frame

M=R7  4005.5 4015.7 0.25 176.62 179.16 1.44 +41 446 1.18
JR7  4005.1 4013.0 0.20 145.24 145.38 0.10 3.63 3.62 -0.09
S!7  4924.6 4935.9 0.23 297.95 298.37 0.14  6.05 6.04 -0.09
DR7  4615.1 4625.2 0.22 197.00 192.12 -2.48 127 4.15 -2.69
MR&  3873.1 3876.9 0.10 157.94 161.29 2.12 1.08 4.16 2.02
JRK 44209 4419.4 -0.03 182.32 175.47 -3.76 £12 3.97 -3.73
SR8 4596.7 4592.8 -0.08  195.27 191.73 -1.82 +25 417 -1.73
DRK  4167.6 4161.1 -0.16 178.40 184.56 3.45 +.28 4.44 3.61
MR9  3857.0 1944.0 -0.13  162.11 163.03 0.57 4120 4.23 0.70




b. Iowa

Estimates Standard Errors Coefs of Var %

Rel.? Rel.” Rel.?
Survey DE Mean Diff% DE Mean Diff% DE Mean Diff%

NOL

M87 2758.1 2766.9 0.32 436.36 450.35 3.21 15.82 16.28 2.88
J&7 3379.0 3379.7 0.02 458.90 458.52-0.08 13.58 13.57 -0.10
S87 3645.4 3644.1 -0.04 498.10 494.66 -0.69 13.66 13.57 -0.66
D87  3479.7 3473.0 -0.19 548.29 540.11 -1.49 15.76 15.55 -1.30
M88  3368.3 3363.5 -0.14 535.06 522.31 -2.38 15.89 15.53 -2.24
J&8  3379.3 3369.9 -0.28 446.16 446.99 0.19 13.20 13.26 0.47
S88  3495.5 3485.6 -0.28  440.73 436.41 -0.98 12.61 12.52-0.70
D88 3146.9 3133.2 -0.44 506.57 504.57 -0.40 16.10 16.10 0.04
M89  2648.3 2646.2 -0.08 414.27 423.36 2.19 15.64 16.00 2.28

List
MR7  9524.1 9516.2 -0.08 273.27 273.49 0.08 2.87 2.87 0.17
J&7 97445 9741.6 -0.03 263.33 268.91 2.12 2.70 2.76 2.15
S87 10454.2 10452.0 -0.02  337.50 336.60 -0.27  3.23 3.22 -0.24
D87 10021.8 10033.3 0.11 305.28 316.18 3.57 3.05 3.15 3.45
M8  9642.7 9643.2 0.00 307.77 281.81 -8.43  3.19 2.92 -8.44
J88 10811.0 10805.5 -0.05 287.47 281.83 -1.96 2.66 2.61 -1.91
SK!8 10913.9 10930.0 0.15 291.14 288.81 -0.80 2.67 2.64 -0.94
DR8 10568.0 10593.4 0.24 331.11 327.37-1.13  3.13 3.09 -1.37
M&9 10406.0 10426.2 0.19 315.08 307.02 -2.56  3.03 2.94 -2.75
Multiple Frame
M&7 12282.1 12283.1 0.01 514.86 521.08 1.21 419 424 1.20
J&7 13123.5 13121.3 -0.02  529.08 531.98 0.55 4.03 4.05 0.56
S&7 14099.6 14096.2 -0.02 601.67 607.31 0.94 427 431 0.96
D87 13501.5 13506.4 0.04 627.55 624.71 -0.45 4.65 4.63 -0.49
M&R 13011.0 13006.7 -0.03 617.26 589.79 -4.45 4.74 4.53 -4.42
JR] 14190.4 14175.4 -0.11  530.75 541.40 3.74 3.82 2.11 -2.01
S&8 14409.4 14415.6 0.04 528.21 545.52 3.28  3.67 3.78 3.23
DRK] 13715.0 13726.6 0.08 605.19 601.91 -0.54 441 4.38 -0.63
MRO 13054.4 13072.4 0.14 520.47 526.41 -1.14 3.99 4.03 1.00




c. Ohio
Estimates Standard Errors Cocfs of Var %
Rel.? Rel.” Rel.?
Survey DE Mean Diff% DE Mean Diff % DE Mean Diff%
NOL
MR7  468.5 4724 0.82 167.06 162.51 -2.73  35.66 34.40 -3.52
JRT  T17.7 724.2 091  173.49 169.60 -2.25 24.17 23.42-3.13
S87  682.3 687.3 0.73 15813 152.34 -3.66 23.17 22.16 -4.36
DR7  754.8 754.1 -0.09 231.62 235.62 1.72 30.69 31.24 1.82
MR]  462.2  466.9 1.02 121.88 127.50 4.62 206.37 27.31 3.56
JR®  526.4 531.7 1.00 142.11 139.61 -1.76  27.00 26.26 -2.74
S8]  632.6 6385 0.92 163.87 161.81 -1.26 25.90 25.34 -2.16
DRR  528.9 5327 0.72  130.34 127.13-247 21.6%1 23.86 3.16
MRO 388.0 386.2 0.47 107.10 10841 1.22 27.60 28.07 1.70
List
MR7  1434.6 14399 0.37  88.16 86.13 -2.30  6.15 5.98 -2.66
JR7  1427.1 14325 0.38 91.77 94.21 2.65 .43 6.58 2.27
S®7  1510.7 1506.9 0.26  97.84 99.49 169 648 6.60 1.95
Dx7 1281.1 1276.8 0.3¢  64.98 64.50 -0.73  5.07 5.05 -0.40
MR 13355 1336.4 0.07 7879 75.63 -4.01 590 5.66 -4.07
JR] 1858.8 1867.6 0.47 116.50 114.93 -1.35  6.27 6.15 -1.82
S8]  1636.0 1636.8 0.05  84.80 8546 0.78  5.18 5.22 0.73
DR]  1637.2 1646.7 0.538 123.05 122.64 -0.33  7.52 7.45 -0.91
M=O  1544.8 1557.8 0.65 113.46 11230 -1.02 733 7.21 -1.66
Multiple Frame

M7 1903.1 19123 (.48 188.89 184.03 -2.538  9.93 9.62 -3.04
JR7T  2144.7 2156.7 (.56 196.27 193.27-1.53  9.15 8.96 -2.07
S)7  2193.1 2194.2 0.05 18595 177.74 -4.41  £.48 8.10 -4.46
D&T  2035.9 2030.9 (.25 240.56 242.48 0.80 1..8211.94 1.05
MRR]  1797.7 1803.3 0.31 145.13 15048 3.69  &.07 834 3.36
J]] 23852 2399.3 0.59 183.76 177.74-3.28  7.70 7.41 -3.84
S]] 2268.6 22752 0.29 184.51 182.13-1.29  &13 8.00 -1.58
DR]  2166.2 2179.5 0.61 179.25 175.53 -2.08  &.28 8.05 -2.68
M29  1935.8 1944.0 (.43 156.03 162.87 4.38  &.06 8.38 3.94

1.  Bootstrap multiple snrvey samples of size 1000 were independently

2.

drawn from the NOIL and list frame in each state

Relative Difference 4 =

(BS-DE)
~DE

100%

34
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Table 3.3 Correlation Coefficients of DE Estimates of Total Hogs in the Non

Overlap, List, and Multiple Frames for Nine Quarterly Surveys

Bootstrap estimators above the diagonal
Real sample estimators below the diagonal

a. Indiana

Survey MS87 J87 S87 D87 M88 J88 S88 D88  MS§9
NOL
Mx7T 1 .253 -.021 .232 .399 .167 .264 .046 .038
JR7 . 242 1 .210 . 241 417 184 178 .220 .246
SKT 0 .029 .306 1 .717 .010 .109 -.006 .084 .139
DXRY 237 . 299 .713 1 . 461 . 239 .179 .139 .168
M&E . 3941 .10 077 .511 1 .254 .426 .263 .238
J88 .099 . 197 . 092 . 224 .233 1 TTER .691 .650
588 196 178 -.003 .174 .401 . 763 1 .7T00 .668
DRR L.OL7 . 230 .100 .155 .254 .699 . 706 1 . 848
MRO  .020 .261 .134  .170 .230 .640 .669 . 840 1
List
M&R7T 1 . 306 .055 114 .053 0] 0 0] 0]
J&7 2906 1 L3166 .188 .042 0 0 0 o
SK7T 0] .315 1 174 .076 0 0 0 0
D7 148 196 .155 1 .243 0] 0 0 0]
MEx  .051 113 .0O8R1 .233 1 0 0] 0] 0)
JR 0] 0 0] 0] ¢] 1 .655 .204 -.002
SER 0 0 0 0] 0 .723 1 387 .240
DRX 0 0 0 0 0 284 . 4158 1 .259
M=9 0 0 0] 0 0 0 .260 .290 1
Multiple Frame
MK7 1 .261 .001 .206 . 283 111 175 .033 .032
J&T 270 1 217 .199  .222 .103 .067 .120 .125
S&7T 018 .279 1 .554  .040 .063 . 001 .026 .072
DR7T 197  .241 . 562 1 .413  .130 .133 .123 .142
MR 239 . 250 .076 .407 1 . 140 .250 176 .15H2
JRE 042 .073 .049 .108 .107 1 .69 .439 .347
S&& 0=4 .067 -.002 .086 188 LT37 1 . 542 467
DR& 009 .10 .068 .095 .148 .462 .562 1 .665
M&9 011 . 134 .099 .115 .146 .313 L4522 .630 1




b. Iowa

36

Survey M37 J87 S37 D87 MS88 J38 SS8 D88 MS39
NOL
ME7 1 .690 L OG0 . 566 . 534 L2122 198 155 .233
JRT .695 1 913 .836 . 831 L3779 364 354 .336
SKRT . 619 L9014 ! 871 . 815 L3960 3R5 403 .4114
DRT .OoT2 . R39 LRT2 1 . 933 LAoR 157 484 .466
MERX . o412 812 L8351 .934 1 A28 137 4413 .393
JR&K 218 .108 Ll 475 . 437 1 =15 8641 867
SR8 .200 . 360 .379 441 .418 . 846 1 LTTT O .T4AD
DRX 174 .383 <1229 .507 . 468 LBH8 T4 1 . 002
MR9 . 223 .35H 122 | . 398 .RG2 710 R9O5 1
List
MKIT 1 L2447 . 054 .164 -.075 0 0 0 0
JRT 244 1 . 100 LART .007 0] 0] 0 0]
SKT 0 190 { L228 .161 0 0] 0 O
DR7T 148 219 L2944 1 . 245 0 0 0 ¢
MIS L0144 102 LT L 228 1 ¢] 0 0 0]
JRR ¢ 0 0 0 0 1 3R0 .151 .039
SR 0 0] v) 0] 0 NG 7 O 1 .362 L2041
DRK 0] 0 ) 0 0 17H 351 1 L275H
M=R9O 0] 0 9] 0 0 0 2=9 L272 1
Multiple Frame
MX7T 1 .57 159 . 464 375 . 149 186 .100 .173
J&7 .57T5 1 691 .67T6 .6:11 L2 293 .262 . 2562
S&T .455 L7099 1 .703 . 669 2RSS 294 L2885 L 285
DT .162 . 6R9 711 1 770 L3220 338 .336 .311
MER .4102 L658 6-1-1 . 763 1 .302 341 .312 .209
J&ER .155 L2297 2RR . 349 .319 1 TR .66 .601
SKRK 142 . 260 262 .321 .303 . 696 1 .667 .HTR
DRK . 123 L27TR 297 .370 . 340 656 616 1 .693
Mx9 . 151 L2245 2TR . 328 274 LHTO 5%ata . 686 1
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c. Ohio
Survey MS87 J87 S87 D87 MS88 J88 S88 D88 MS89
NOL
M&7 1 711 .698 -.022 .056 722 .666 .702  .137
J87 . 745 1 .935 . 315 .644 .T728 .749 .622  .060
S&7 .735 . 936 1 .432 .559 .671 727 .605 .075
D&7 .065 .350 .470 1 . 540 .189 . 250 .086 -.052
M8S8 .116 .650 .563 .536 1 .321 . 389 .254 .111
J8&8 . 745 . 765 .708  .259 .372 1 . 938 L8828 .296
S88 .696 L. T7T82 758  .301 .434 .940 1 811 318
D88 .724 .677 .660 .190 .317 .834 .816 1 .H60
M&9 .161 .135 .164 .082 .185 . 334 . 359 .HT71 1
List
M37 1 .466 .030 .148 .057 0 0 0] 0
J87 .442 1 .232 218 L0O8R7 ¢ 0 0 0
S&7  .003  .214 1 .231 .161 0 0] 0 0
D87 148 (228 .247 1 .223 0 0 0 0]
MEE .002 .058 .185 .235 1 0) 0 ] 0
J88 0 0 0 0 0 1 . 256 .142 -.001
S8&8 0 0 0] 0 0] . 266 1 .293  .127
D&& o 0] 0 0 0O 172 . 286 1 LA9R
M&9 0 0 0] 0] 0] .001 .156 .525 1
Multiple Frame

M&7 1 .653 .510 -.017 .040 .457 .514 428 107
J87 .679 1 . 738 279 .484 .463 .574 .370 .046
S&7 .b54 .TH7 1 . 376 .437  .402 . 526 .344 .075
D&7 .074 . 326 . 420 1 .494 .103 . 208 .071 -.009
ME8 .087  .497  .455 468 1 . 205 .290 146 .074
JB8 .510 .523  .466 .193 .241 1 . 709 494 .169
S&R .B47 .614 .573  .257 .324 .723 1 .594  .260
D& .4166 . 435 L4088 133 .194 .544 .617 1 .567
M&9 .098 .082 .096 .054 .106 178 271 . 547 1




Chapter 4

Empirical Bayes Estimation

The empirical Bayes approach for estimation uses estimates for related
parameters to improve the efficiency of estunation for a particular parameter.
The book by Maritz (1970) discusses the developmient of empirical Bayes
methods and provides many examples. More recently, many applications have
been made to survey sampling (e.g.; Fay and Herrot. 1979; Fay, 1986:
Johnson, 1985; Ghosh aund Lahiri, 1987; MacGibbon and Tomgerlin, 1987).
Fay and Herriot (19791 developed an empirical Bayes procedure for small area
estimation which was based on a mixed linear model for relating the estimates
from many small areas represented in oa large ~urvev.  We adapt the
Fay - Herriot approach to estimation of total hogs from the NASS repeated

multiple - frame surveys.

In Section 4.1, a mixed lincar model 15 described for the
multiple -survey direct expansion (DE) estimators wlich assumes that the
state population totals vary over seasons within years bt tend to be constant
over years. In Section 1.2, the usual empirical Baves (EB) estimmator for
mixed models is described. This EB estunator is generalized to include locally
weighted least squares estimmation for the regression coctlicients of the seasonal
components in the model.  This local weighting is considered as a method  of
improving robustness  with regard to the assnmption of stationary
seasonally - adjusted popnlation totals. A truncation technigue is also applied
which limits the departure of the EB estimates from the corresponding DE
estimates. In Section 4.3, the performance of the EB and DE estimators are

compared using bootstrap sampling.

4.1 The Mixed Effects Lincar Model

Let y = (v, v, ... ym)T denote the DE mimltiple frame estimator
vector for m consecutive gquarterly surveys and - y¥ the vector containing the
corresponding unknown population totals.  The general form of the mixed
effects linear model we use is

y=v' + ¢ with y° =128+ 6. (4.1)
that 1s,
Y= 2L+ 6+ ¢, (4.2)

where 6 and ¢ are independent random vectors.  The DE estimator y |



39

conditional on the particular k survey populations observed (y° is fixed), is
assumed to have a multivariate normal distribution with fixed mean y° and
unknown covariance matrix ¥,. Note that ¥, measures the sampling
variability (and covariability) of the DE estimators. The random population
total vector y° is assumed to have a multivariate normal distribution with

the mean Zpg defined by the components
E(y?) = By + B, sin(2xi/4) + 8, cos(2ri/4), (4.3)

which vary over seasons within years but are constant over years, and the

covariance matrix %, with elements defined by

Cov( 30, ¥)) = (“T_——?-F))p""' (4.4)
This covariance structure arises from a first-order autoregressive process for
the residuals, §;
zero and variance r°. Corresponding to our study series of 9 quarterly surveys:
March 1987 - March 1989, the design matrix defined by (4.3) is simply
111111111
2= | 1 0-1010-1 01

0-1010-1 010

= pb |+ u, where the ui’s are uncorrelated with mean

In a longer series one might prefer o use the saturated model with a different
parameter corresponding to each of the four quarters instead of the three

parameter form (4.3).

Under the assumption of multivariate normal distributions for y°® and
for y, given y°, it then follows the conditional distribution of y°, given vy, is

also multivariate normal with mean
E(y°|ly)= Z8+ K(y - Z8) (4.5)
and covariance matrix

-1
Cov(y®ly) = ¥4 — sV Zs
where

K= 2,V and V=t +7%, . (4.6)

Further, the marginal distribution of y is multivariate normal with mean
Z g and covariance V. In the case of known covariance V, the least squares

estimator for g s

B @2 Vviaytztvly . (4.7)
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As Prasad and Rao (1986 ) point out, when 8 in (4.5) is replaced by B the
resulting estimator (predictor) for y° was shown by Henderson (1975) to be

the best linear unbiased predictor (BLUP) in the mixed linear model.

4.2 Empirical Bayes Estunators

The usual (Fay aud Herriot, 1979) EB estimator (or approximate
BLUP) for the mixed lincar model

y=244+K(y-17p) (4.8)

is obtained from (4.5) by replacing the unknown covariance matrices ¥, and

and iﬁ5 in (4.6) and (4.7). Equation (4.8) gives

the EB estimate as the regression estimate Z 3 plus the product of the

XZ(,; with thelir estimates fj(
residual 'y — Z 4 and the “shrinkage” matrix K. The amount of shrinkage
of the DE estimate y toward the regression estimate Z 4 depends on the
among survey variation of the residuals relative to the within survey sampling
variation of the DE estunates. From equations (4.1). (1.6) and (4.8) it can be
seen that if 7°= 0, corresponding to zero variation alout the population

regression function, then v = Z 8. At the other extreme, as r2— ~x then

y—y.
In repeated survey applications, estimation of the population total
corresponding to the most recent survey (1 = m) is of primary interest. The

EDB estimates v, corresponding to previous survevs 11 < m ) depend on data
A .

that occurs at a later date. An estimate ¥ with 1 < 1 1s thew regarded as

Cimate that was made carlior at that time the i arver wi

a revision of the estimate that was made ecarlier at that tine the 177 survey was

the current survey.

Locally weighted least squares estimation of the -egression coefficients
1s now coustdered to nnprove robustuess with respect 1o the model assumption
(4+.3) which mplies that che population totals do not tend to change over

‘th

vears.,  Corresponding to the 17 survey | the wetehired regression coefficient
A ! A 38

estimator is

’ = /[‘ v ;: Z 5
‘ () v L (>) ) ~(~) N (1.9)
\\'11(‘1‘(
(.) jut r\) + (.) 4'

and \V(i) 1s the diagonal weighting matrix with diagonal elements ¥ i

defined by
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- for j=1,2 4.11
w(i)j_T—bT_—il or )=1,2,...,m (4.11)
>d
=1

and a specified dampening constant d (0 < d < 1). The locally weighted

EB estimator is then

=3 +K(y—3) with =% B4, (4.12)
where the “shrinkage” matrix K has the form in (4.6) and Z, is the i*" row
of Z. Notice that the usual EB estimator (4.8) is a special case of (4.11)
when d = 1; that is, when all the weights are equal. For 0 < d < 1 the
weights decrease exponentially with the time difference from the current

survey. Other weighting functions ( Cleveland, 1981) could be used in place of

exponential weighting.

Estimation of the covariance matrices ¥, and )‘35 is now considered.
As a function of the unknown covariances, the locally weighted BLUE for
E(y) can be expressed in the form

N . . T -1 1 T s
j=Sy, with §=2@ V22TV

1
i)
representing the i'™ row of the “smoothing” matrix S. Then under the

(4.13)

assumptions of the mixed linear mudel (4.3) the residual vector r =y — § =
(I = S) y has a singular multivariate normal distribution with zero mean and

covariance matrix
£, = I-S)V(I-8 (4.14)

of rank m —p. The sampling covariance matrix component of V is replaced
by the estimator (2.15) described in Chapter 2, YA‘J( = ¢6vMF. Thus, only the

parameters r?

and p in 26 remain to be estimated. A maximum likelihood

. . . . T .
method for estimation can be used. First, transform the residuals u = P ¢
to a nonsingular multivariate normal distribution in m — p variables, where

T . . .- .
the rows of P are the eigenvectors corresponding to the positive eigenvalues

A Ay oy A, of i)r. Then the resulting loglikelihood function
m-p u-2
L2 0) = =% {m(y) + 1 } (4.15)
=1 1

can be maximized by some iterative method. We applied the OPTIMUM
procedure in the Optimization Module of the GAUSS system using a
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logarithmic transformation of 72 and a logit transformation of p in the
loglikelihood function. It should be noted that the loghkelihood function can
be monotone decreasing in r2.  Moreover, p is indeterminate when 72 = 0

because ¥, is the zero matrix in this case.
6

Consideration of a diagonal form for po ¢ 1s of special interest because
then the only data summary statistics required are the DE estimates and their
variance estimates. Currently, NASS has retained these summary statistics
for over 40 consecutive (uarters in the 10 major hog producing states. If we
further take p = 0 then the shrinkage matrix K is diagonal so that the EB

estimates reduce to

A2
. s .
¥ =t e (y; =¥ - (4.16)

Determination of r° still requires iteration. However, if we further restrict
the sampling covariance matrix estimate to the one- parameter diagonal form

L = &2 I, the maximum likelihood estimator for 2 then reduces to

4 m — p ) f

m-p ui2
) 2w
‘=~ 1nax {ﬂ——l—— — 640 } . (4.17)

The positive eigenvalue vector A and corresponding cigenvector matrix P
can now be obtained from the matrix (I — S) (I — ST)\ which is independent
of 72, since the constant in the diagonal of V = (:*+4%) I can be factored
out of (4.14). We simply take ¢° to be the mean of the sampling variances

from the m surveys. Also, the regression coefficients in 14.9) reduce to

~

T -1 T
Bay= Z Wy Z) 7 Wiy (4.18)

5 5 . . . .
where W(i) =W W(i) is the diagonal matrix with elements Wi defined
m (4.11). In the unweighted case (d = 1) equation (1.17) reduces to the usual

analysis of variance form

.2
Z (yi_—yi)
#* = max {1—=1——~— - &% 0 } : (4.19)

m — p

Efron and Morris (1972) proposed limiting the departure between the
EB estimator the single sample estimator as a mcethod for reducing the
maximum mean square error over several estimators. Similar to Fay and

Herriot (1979), we limit the departure to some specified multiple, t, of the
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standard error for the DE estimator

yi+t*SE( yi) for Sli>yi+t*SE( yi)
v, for ¥; - t * SE( A ) < V; <y + t x SE( yi) (4.20)
yi—t*SE( yi) for S'i<yi—t*SE( yi)

Note that this “truncated” EB estimator is constrained to be within an

approximate confidence interval for y;’ with limits A * t* SE( ¥ ), where the
truncation constant t can be chosen to correspond to a specified level of
confidence.  For example, t = .674 corresponds to the 50% confidence
level.  Notice that the truncated EB estimator reduces to the untruncated
estimator when the truncation constant is chosen larger that the largest
absolute value of the standardized differences between the untruncated EB and

the DE estimates

7. — .1
T, = 1 __"1 4.21
b SE(y) (21

Hence, the generalized form of the EB estimator which includes the local
weighting (4.8 - 4.11)  and truncation (4.20) reduces to the usual EB
estimator (4.5 - 4.7) when local weighting dampening constant d = 1 and
the truncation constant t — oo. The notation ¥ will be used for all forms of

the EB estimators.

The general structure of the EB estimator can be summarized by
noting the following: First, the estimate for the long run tendency of the DE
estimates from repeated surveys is found by smoothing the individual DE
estimates ¥y = Sy . The smoothing coefficients in S are dependent on the
form of the seasonal adjustment (4.3), the local weighting (4.10, 4.11), the
covariance for population totals (4.4), and the sampling variability i(. Next,
the DE estimates, y, are shrunken toward the estimates of long run tendency,
¥, to produce the EB estimates ¥ = 3 + K (y — ¥)- The shrinkage
coefficients in K are dependent on only the covariance structures (4.6).
Finally, the EB estimates are truncated (4.20) so that they do not deviate “too

much” from the corresponding DE estimates.

4.3 Performance of the Empirical Bayes Estimators

Several different forms of the EB estimators for total hogs in Indiana,
Iowa, and Ohio are evaluated for the 9 quarterly surveys: March 1987 March
1989. Twenty - eight different EB estimators (sce Table 4.3) are considered,
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which correspond to different sampling and population covariance structures
and different local weighting dampening and truncarion constants. Each
estimator is calculated for the real data samples and the corresponding set of
1000 bootstrap samples for each survey. The various EB estimators depend
on the data only through the multiple- frame DE estimates and their
covariance estimates. The results are displayed for cach survey, in Tables 4.1
and 4.2, for only two cases. The two cases correspond to the different

sampling covariance estimates:

)?:6 = 6°1 and 73( = covMF (arbitrary j,
with p =0,d = .9, and t = .674 in each case.

First, the EB and DE estimates calculated for the real data are

discussed.

4.3.1 Estimates for the Real Data

In Part 1 of Tables 4.1 and 4.2 (at the end of this chapter) , the
DE estimates (y), the EB estimates (§), awd the percent difference:
100~ (DE EB)/DE are displayed. Also included some statistics used in the
calculation of the EB estunates: the locally weighted regression coefficient
estimates ij(i)’ the fitted values § (4.12), and the standardized differences
between the untruncated (d = ~) EB and DE estimates, T (see 4.21). Then
any EB estimate with | T| > .674 is truncated with t = 674 in (4.20).

Corresponding to the covariance estunates if, 21 and )A“_,é = #°1
used 1n Table 4.1, the locally weighted regression estumates are given by
(4.18). Also in this casc, the residual mean square 1 (4.17) was found to be
independent of the dampening constant d. Heuce, the population variance
estimate #2 can simply be evaluated by (4.19). Only for Indiana does #2 > 0,
corresponding to the residual mean square m (4.19) exceeding the average
sampling variance °. The shrinkage coefficient (S.C.) is also included in

Table 4.1.

In Table 4.2, the general form, )Aﬁ( = covMF for the sampling
covariance estimate requires  the general forms for the locally weighted
regression coefficients (4.9), the maximum likelihood estimate 72 (4.15 with
p = 0), and the skrinkage matrix K = 32 '\71 in (4.6). In Table 4.2, #2> 0

for Indtana and Ohio.
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Before discussing the bootstrap comparison of the EB and DE

estimators, the criteria used for comparing them are described.

4.3.2 Performance Criteria

Several bootstrap summary statistics are given in Tables 4.1 -4.3 for
comparing performance characteristics of the EB and DE estimators. The
various bootstrap statistics provide estimates for the corresponding
characteristics of the theoretical sampling distributions of the EB and DE
estimators.

Let y;*(b), for b =1,2,...,B; denote the EB estimates from the
it" survey in each of the B=1000 multiple-frame bootstrap samples. The
bootstrap mean, standard error, and coefficient of variation are defined as in
Section 3.1

B
=8 X ¥, (4.22a)
v ¥ 1 8 /.« 1\’
SE(]) =4 51 L ()3 ) (4.22b)
__ SE(y!
wd V()= b (4.22¢)
y.

The DE estimators are assumed to be unbiased. The bias for the EB

estimators is then taken as the difference of the bootstrap means for the EB

and DE estimates

BIAS(3]) = 77 - f . (4.23a)
These biases are included in Tables 4.1 -4.3 as a percent of the DE mean

BIAS(57)% = 100x(37 -y ) / yF . (4.23b)

1

The root mean square error

RMSE(§7) = J (BIAS(5)) + {SE(y7))° (4.24)

1s an estimate for square root of the expected squared deviation of the EB

2
estimate from the true population mean E(yi~y;’). For the DE

estimator, the root mean square error is just the standard error since the bias

of the DE estimator is assumed to be zero.
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populations for the bootstrap sampling. Because the real populations for the
area and list frames are much larger than the survey samples we might expect
the real population totals to have a “smoother” relation over surveys than the
corresponding survey sample estimates. We then consider the EB estimates
calculated from the real survey data as the bootstrap population means. We

call the resulting bias estimates the model biases for the EB estimators

mBIAS (7)) = ¥7 - ¥, (4.25a)

mBIAS (31)% = 100*(f - %)/, (4.25b)
The corresponding model root mean square error is

mRMSE(37) = \j {mBIAS(37))" + (SE(§7 1} (4.26)

The DE estimators are assumed to be model unbiased <o that mRMSE = SE

for the DE estimators.

In Tables 4.1 and 4.2, the SE, CV, RMSE, and mRMSE for the
bootstrap EB estimates are divided by the corresponding ¢nantities for the DE

estimates. A ratio less than 100% indicates that the EB estimator is more

efficient than the corresponding DE estimator for the particular performance
criterion under consideration. If the sample sizes i all the area and list frame
strata for the i survey were changed by a factor k, n. = kni, then the
standard error of a DE ecctimate would change approximately (ignoring finite
population corrections ) as SE = SE/«E The ratio of the sample sizes for the
EB (fli) and for the DE estimates (n.) that wonld be estimated to produce
approximately the same scandard errors would be 1‘1i /ni = {SE(xl*)/SE(\:‘ )}
For example, if the standard error ratio is equal to 904 then 0 /n = .81 so
that the DE estimator would be 81% efficient with respect to the EB
estimator. Since SE == RMSE for the DE estimator. the MSE efficiency of the

DE estimator relative to the EB estimator is given by
2
u, /= { R.\ISE(yi* )/RMSE(yi )}
171
For example, if RMSE()"; )/RMSE(y;k ) = 0.9 and the EB estimator is used
with the present samnple size 11, then the sample size for the DE estimator

must be increased to u = Iii/.S]. = 1.23 i to give cqual RMSE estimates
for the EB and the DE estimators.

Averages over the 9 surveys of the varions bootstrap statistics are
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included in Tables 4.1 and 4.2. Table 4.3 contains only average for the
absolute relative biases (4.23b and 4.25b) and the CV, SE, RMSE, and
mRMSE ratios. For example, the average percent relative absolute bias is
obtained from (4.23b) and the average RMSE ratio in percent from (4.24) as
L 3 [BIAS(3)%| and %‘i{RMSE(y;‘)/RMSE(y;)}*IOO%,
i=1 i=1
where RMSE(y;‘) = SE(y;‘) .

4.3.3 Performance Results for the Empirical Bayes Estimators

The average performance results for the 28 different EB estimators
considered are summarized in Table 4.3. For each of the three sample and
population covariance structures represented the |BIAS%| tends to increase
and the SE tends to decrease as the local weighting dampening constant d
decreases. The same relation holds with the truncation constant t in all cases
where the population serial correlation coefficient p=0. Thus the BIAS and
SE components in the RMSE (see 4.24) tend to change inversely with d and/or
t. Choosing the values d=.9 and t=.647 provides a good BIAS-to-SE
compromise over the three states. In this case (d =.9, t =.647), the average
RMSE ratios in percent are respectively 93.3, 90.9, and 89.5 in Indiana, Iowa,
and Ohio when p=0 and ¥, = 42I; and 90.4, 90.5, and 87.4 when p=0
and ¥, = £,. Thus, only small reductions (0.2—-2.1% ) resulted from using
the arbitrary sampling covariance matrix instead of the covariance matrix
with constant variance (4°) and zero covariances between the DE estimates
from different surveys. As discussed in the preceding section, a RMSE ratio of
90% would require a 23% increase in sample size for the DE estimates to
produce about the same RMSE as the ED estimates based on the current
sample sizes. The mRMSE’s tend to be smaller than the corresponding

RMSE’s resulting from smaller model biases than (nonparametric) biases.

Tables 4.1. and 4.2 include performance evaluations of each survey for
the sampling covariance estimates % = 621 and £, = c6vMF with d=.9,
t =.674, and p =0 in each case. The various performance characteristics are
each seen to have considerable variation among the nine surveys. In fact, the
RMSE ratio exceeds 100% for at least one survey for all states in both tables.
The SE and CV ratios are less than 100% in all cases. At the bottom of
Tables 4.1 and 4.2, the estimates of the population variance 72 are scen to

have relatively large standard errors indicating that it is difficult to obtain
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precise estimates from only nine surveys. In the case when both p and r? are
unknown ( Table 4.3) the likelihood functions (4.15) were found to be very flat.
Good starting values were required to obtain convergence of the OPTIMUM
procedure in GAUSS over the 1000 bootstrap samples.

Scatter plots of the DE and EB estimates for the 1000 bootstrap
samples are given in Figures 4.1 and 4.2 for the March 1988 and June 1988
Surveys, respectively. Each figure contains scatter plots corresponding to the
4 combinations of the local weighting dampening constant and the truncation
constant: d =1, .9 and t =.674, oo; for Indiana, lowa, and Ohio. The DE and
EB estimates for the real data are indicated on each scatter plot as reference

values.
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Table 4.1. Empirical Bayes and Direct Expansion Estimates for Total Hogs
(1000) and Comparisons of Their Biases, Standard Errors, Coefficients of
Variation, and Root Mean Square Errors Using the Mixed Linear Model with:
Covariance Matricies: ¥¢= é?I and s = #2I (p=0)
Dampening Constant d = 0.900
Truncation constant t = 0.674

a. Indiana
Part 1: Estimates for the Real Data

y y > - EB —DE
Survey DE ﬂl(i) ﬂZ(i) ﬂ3(i) v T EB —E%

M87  4005.5 4337 -425 137 39121 -0.460 3924.2
J87  4005.1 4334 -430 137 4197.2 1.151 4103.0
S87 49246 4338 -435 124  4773.0 -0.443 4792.7
D87  4615.1 4336 -431 112  4448.2 -0.737 44824
M88  3873.1 4329 -427 90 39029  0.164 3899.0
J88 44209 4323 -420 68 42559 -0.787 4298.0
S88  4596.7 4313 -413 56  4726.0 0.576 4709.2
D88  4167.6 4306 -414 44  4350.2 0.891 4287.8
M89  3857.0 4306 -416 44  3889.5 0.174 3885.3

SroMNONNNN Y
O 00J©O -~k

RES MS = 42692.7 62 = 37143.9 #2 = 5548.8 S.C. =0.1
Part 2: Bootstrap Summary Statistics for the Empirical Bayes Estimates and
Comparisons with the Direct Expansion Estimates (R = EB/DE)

EB SE CV% RMSE mRMSE
Survey MEAN BIAS% mBIAS% EB R% EBR% EB R% EBR%

M87  3970.3 -1.1 1.2 146 82 3.7 83 153 85 153 86
J87 40854 1.8 -0.4 139 96 3.4 94 157 108 141 97
S87 48649 -14 1.5 251 84 5.2 8 261 87 261 88
D87 45446 -1.7 1.4 176 92 3.9 93 194 101 187 97
M88  3892.7 04 -0.2 132 82 34 81 133 82 132 82
J8&8 43413 -1.8 1.0 148 84 3.4 86 167 95 154 88
S88  4650.1 1.2 -1.3 171 89 3.7 88 181 94 181 95
D8’ 42416 1.9 -1.1 175 95 4.1 93 193 104 181 98
M9 38654 0.3 -0.5 133 82 34 81 134 82 134 82
MEAN 42729 -0.0 0.2 163 87 3.8 87 175 93 169 90

MEAN(|BIAS|%) = 1.3 %  MEAN(JmBIAS|%) = 0.9 %

~2 "2 2 - - -
Pr{+ >0} 7 o S.C. ﬁl(i) ﬂ?(i) '83(i)

MEAN  0.883 40491.6 35065.6 0.431 4327.7 -423.8 &9.9
SE 0.322  38752.2 6452.5 0.239 106.2 88.7 721




b. lowa

Part 1: Estimates for the Real Data

. p ; p 5 EB - DE
Survey DE ﬁl(i) ,320) ;33(0 v T EB ——D——%

MR7 122821 13500 788 13 12712.7  0.836 12629.2
JR7 131235 13512 -764 14 13497.7 T 13480.1
SR7T  14099.6 13534+ -744 -10 14278.1  0.297 14278.1
DR7  13501.5 13562 -735 -35 13527.5 0.041 13527.5
M2 13011.0 13591 729 -58 12861.9 -0.242  12861.9
JRg  14190.4 13615 -730 -81 13695.4 -0.933  13832.6
Sk 14409.4 13624 727 -T1 14351.6 -0.109  14351.6
pRx 13715.0 13632 721 -62 13570.5 -0.239  13570.5
MR9O 130544 13636 714 -62 12921.9 -0.250 12921.9

o
=1
<
-3

HEONE O
O o U= ) O~ 00 (T

RES MS = 174129.3 a? = 319964.4 #2 =0 5.C. =0

Part 2: Bootstrap Sumiary Statistics for the Empinical Bayves Estimates and
Comparisons with the Direct Expansion Estimates (R - EB/DE)

EB SE CV % RMSE  mRMSE

Survey MEAN BIASZ mBIASY% EB R% EBRY EB R% EBR%
M=7 125047 1.8 -1.0 480 92 3.3 91 529 102 496 95
JR7 133351 1.6 -1.1 487 92 3.7 90 532 100 508 96
S87 141876 0.6 -0.6 519 86 3.7 85 527 8T 527 8T
DR7T 135022 -0.0 -0.2 331 8 3.9 85 531 85 332 85
MR&  12900.3 -0.8 0.3 466 79 3.6 S0 478 81 468 79
JRx 139815 -1.4 1.1 503 93 3.6 94 539 100 524 97
sex 0 143947 -0.1 0.3 491 90 3.4 90 492 90 493 90
D& 13660.6 -0.5 0.7 5025 87 3.3 S8 529 88 533 89
Mo 130044 -0.5 0.6 449 85 35 86 454 86 456 8T
MEAN 13496.8 0.1 0.0 495 88 3.7 83 512 91 504 89

MEAN(|BIAS|%) = 0.5 '{  MEAN(|mBIAS|%) = 0.7 %

~2 =2 ~2 ‘ - - .
Pr{#“>0} , & S.C. ’gl(i)w ,_,,__f?“) 930

MEAN  0.600 157567.2 263758.5 0.249 13579.9 -737.3 -30.5
SE  0.490 234469.8 473279 0.269 403.0 1589 171.9
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c. Ohio
Part 1: Estimates for the Real Data
- P e * - EB - DE

Survey DE ﬁl(i) ;32(0 ﬁ3(i) v T EB BB %
M7 1903.1 2101 -184 -83 1916.8 0.072 1916.8 0.7
JR7 2144.7 2101 -184 -83 2184.2 0.201 2184.2 1.8
SR’T 2163.1 2103 -183 -85 2286.0 0.500 2286.0 4.2
DR7T 2035.9 2108 -188 -88 2019.7 -0.067 2019.7 -0.8
MR& 1797.7 2112 -193 -92 19189 0.835 1895.5 5.4
J&& 2385.2 2119 -192 -95 22146 -0.928 22614 -5.2
SK’R 2268.6 2122 -190 -88 23114 0.232 23114 1.9
D&]& 2166.2 2125 -190 -80 2045.5 -0.673 2045.5 -5.6
MR9 1935.8 2125 -190 -80 1934.9 -0.006 1934.9 -0.0

RES MS = 14417.1 2 = 34666.8 $2=0 S.C. =0

Part 2: Bootstrap Summary Statistics for the Empirical Bayes Estimates and
Comparisons with the Direct Expansion Estimates (R = EB/DE)

EB SE CV% RMSE_ mRMSE
Survey MEAN BIAS% mBIAS% EB R% EBR% EB R% EB R%
M&7 1909.9 -0.1 -0.4 136 74 7.1 74 136 74 136 T4
J&7 21805 1.1 -0.2 170 88 7.8 8 172 89 170 88
S&7 22572 2.9 -1.3 170 96 7.5 93 182 102 173 97
D87 20145 -0.8 -0.3 177 73 88 74 178 73 177 73
M&S 1863.1 3.3 -1.7 130 8 7.0 84 143 95 134 89
J&&  2299.1 -4.2 1.7 159 89 6.9 93 188 106 163 92
s’k 23102 1.5 -0.1 167 92 7.2 90 171 94 167 92
DR8]  2100.0 -3.6 2.7 149 85 7.1 8 169 96 158 90
M&9 1945.3 0.1 0.5 124 76 6.4 76 124 76 125 77
MEAN 2097.8 0.0 0.1 154 84 7.3 84 162 90 156 86
MEAN(|BIAS|%) =11 % MEAN(|mBIAS|%) = 0.7 %
A2 A2 ~D a - N
Pr{#>0} 7 & S.C. ﬁl(i) ﬂ?(i) ﬂ3(i)
MEAN  0.497 11065.5 34166.0 0.171 2119.9 -186.6 -90.5
SE 0.500 19049.0 8769.5 0.225 120.3 59.8 823




Table 4.2. Empirical Baves and Direct Expansion Estimates for Total Hogs

(1000) and Comparisons of Their Biases, Standard Errors, Coecfficients of

Variation, and Root Mean Square Errors Using the Mixed Linear Model with:
Covariance Matricies: ¥¢= £, (arbitrary) and s = 5 |
Dampening Constant d = 0.900

Truncation constant t = 0.674
a. Indiana
Part 1: Estimates for the Real Data
; P p . EB — DE

Survey DE By P20 ,630) y T EB T%
M7 4005.5 4292 -356 113 3936.2 -0.196 3970.8 -0.9
J87 4005.1 4288 -359 112 4176.2 0.468 4073.1 1.7
S&7 49246 4297 -367 100 4664.7 -0.748 4723.8 4.1
DR7 4615.1 4300 -367 90 4389.6 -0.804 44824 -2.9
MR 3873.1 4293 -366 68 3926.9 0.128 3893.4 0.5
JR& 4420.9 4289 -362 47 42420 -0.442 4340.3 -1.8
S&8 4596.7 4275 -358 38 4633.7 0.014 4599.4 0.1
DK 4167.6 4266 -359 29 4295.5 0.377 4234.8 1.6
M&9 3857.0 4266 -361 29 3904.7 0.263 3900.4 11
#2 = 18803.92

Part 2: Bootstrap Summary Statistics for the Empirical Bayes Estimates and
Comparisons with the Direct Expansion Estimates (R = EB/DE)

EB SE CV% RMSE mRMSE

Survey MEAN BIASY% mBIAS% EB R% EBR% EB R% EB R%
M&7 3980.0 -0.9 0.2 146 81 3.7 82 150 84 146 82
J87 4043.8 0.8 -0.7 143 98 3.5 98 146 101 146 101
S&7 4795.3 -2.8 1.5 222 74 46 77 263 88 233 78
D&7 4520.3 -2.3 0.8 166 87 3.7 89 197 102 171 89
M88 3877.3 0.0 -0.4 140 87 3.6 87 140 87 141 87
J8& 4366.4 -1.2 0.6 151 8 3.5 87 160 91 153 87
S&] 4590.4 -0.1 -0.2 159 83 3.5 83 159 83 159 83
D88 4197.2 0.9 -0.9 165 89 3.9 88 169 91 169 92
M&9 3872.9 0.5 -0.7 140 8 3.6 8 142 87 143 88
MEAN 42493 -0.6 0.0 159 8 3.7 86 169 90 162 87

MEAN(|BIAS|%) = 1.05 %  MEAN(|mBIAS|%) = 0.67 %

"2 A2 p. y, p
Pr{#>0} 7 By Poy ?_3(‘)
MEAN 0.977 39751.7  4282.1 -373.3 69.6
SE 0.150 26276.9 103.4  69.2 66.5
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b. Iowa

Part 1: Estimates for the Real Data

- T EB EB —DEg

Survey DE ﬁl(i) ﬂ?(i) ;630) N 0

DE
M87 122821 13277 -684 -60 12593.1 0.604 12593.1 2.5
J87 13123.5 13316 -674 -52 13368.5 0.463 13368.5 1.9
S87 14099.6 13411 -668 -60 14078.7 -0.035 14078.7 -0.1
D87 13501.5 13494 -659 -71 13423.1 -0.125 13423.1 -0.6
M88 13011.0 13560 -654 -89 12905.3 -0.171 12905.3 -0.8
J88 14190.4 13597 -656 -108 13705.7 -0.913 13832.6 -2.5
S8&8  14409.4 13576 -656 -105 14231.9 -0.336 14231.9 -1.2
D88 13715.0 13569 -654 -100 13468.5 -0.407 13468.5 -1.8
M89 13054.4 13566 -650 -101 12915.7 -0.266 12915.7 -1.1

=0
Part 2: Bootstrap Summary Statistics for the Empirical Bayes Estimates and
Comparisons with the Direct Expansion Estimates (R = EB/DE)

EB SE CV% RMSE mRMSE
Survey MEAN BIAS% mBIAS% EB R% EBR% EB R% EB R%

M7 124734 1.5 -1.0 476 91 3.8 90 512 98 490 94
J87 13230.8 0.8 -1.0 465 87 3.5 87 477 90 485 91
S87 14087.4 -0.1 0.1 496 82 3.5 82 496 82 496 82
D87 13434.8 -0.5 0.1 511 82 3.8 82 516 83 511 82
M88 12918.3 -0.7 0.1 463 78 3.6 79 471 80 463 78
J88 13896.8 -2.0 0.5 48 90 3.5 92 560 103 490 90
S8&8 142286 -1.3 -0.0 498 91 3.5 93 532 98 498 91
p8s  13515.0 -1.5 0.3 507 84 3.7 8 549 91 509 85
MR9 129164 -1.2 0.0 450 85 3.5 8 476 90 450 85
MEAN 13411.3 -0.5 -0.1 483 86 3.6 8 510 91 488 87

MEAN(|BIAS|%) = 1.07 %  MEAN(|mBIAS|%) = 0.34 %

.2 .2 . s 5
Pr{r >0} T ﬂl(i) ﬂ?(i) B3(i)

MEAN 0.764 114066.4 13470.5 -683.2 -70.0
SE 0.425 143121.8 400.1 157.3  167.7




c. Ohio
Part 1: Estimates for the Real Data

. . . . EB-DE g
Survey DE gy P2y P3aiy y T EB DE %

M&7 1903.1 2061 -176 -98 1885.3 -0.123  1879.9
JRT 21447 2063 -176 -98 21615 0.100 2164.3
S&7 2193.1 2065 -176 -99 22411 0.206 2231.4
D&7T 2035.9 2075 -181 -100 1975.2 -0.213 1984.7 -2.
M&R 1797.7 2081 -185 -104 1895.5 0.539 1875.9
J8R 2385.2 2096 -186 -106  2202.1 -0.846 2261.4
S&& 2268.6 2092 -183 -96  2274.6 -0.083 2253.3
DR& 2166.2 2101 -185 -87 2014.8 -0.725 2045.3
M&9 1935.8 2099 -185 -87 19144 -0.175 1908.4

GO G o
e O ~I DN > O =1 O N

#? = 3367.97
Part 2: Bootstrap Summary Statistics for the Empirical Bayes Estimates and
Comparisons with the Direct Expansion Estimates (R = EB/DE)

EB SE CVY% RMSE  mRMSE
Survey MEAN BIASY mBIAS% EB R% EBRY% EB R% EB R%

M&7 19099 -0.1 -0.4 136 74 7.1 74 136 T4 136 74
M&7 1872.4 -2.1 -0.4 131 71 7.0 73 137 75 131 71
JR7 2134.0 -1.1 -1.4 156 81 7.3 82 158 82 159 82
S87 21785 -0.7 -2.4 156 88 7.2 88 157 88 165 93
D87 1985.1 -2.3 0.0 174 72 88 73 180 T4 174 72
MER 1833.0 1.6 -2.3 124 83 6.8 81 128 85 132 87
J88 22919 -4.5 1.3 157 88 6.8 92 190 107 160 90
S&8 22184 -2.5 -1.6 160 88 7.2 90 170 93 164 90
D&K 2084.5 -4.4 1.9 153 87 7.3 91 180 102 158 90
M&9 1908.6 -1.8 0.0 126 78 6.6 79 131 81 126 78
MEAN 2056.3 -2.0 -0.5 149 82 7.2 83 139 87 152 84

MEAN(|BIAS|%) = 2.32 %  MEAN(|mBIAS|%) = 1.25 %

L2 ¢ -2 3 5 :
Pr{#°>0} T ﬂ](i) gQ(i) ’b(‘?_?_

MEAN 0.932 16546.8  2061.5 -171.7 -95.5
SE 0.252 15396.5 112.1 56.5 62.0




Table

Absolute BIAS and mBIAS of the EB Estimators.

4.3
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Performance Comparisons of EB and DE Multiple Frame
Estimators for Total Hogs (1000) Based on Ratios of Average CV, SE, RMSE,
and mRMSE Over the Nine Quarterly Surveys with Average Relative
Parameters for the EB

Estimators are:

a. Indiana

p = Scrial Correlation Coefficient for Population Totals

Y¢ = Sampling Covariance Matrix for DE Estimators
d = Dampening Constant for Local Weighting
t = Truncation Constant

Relative Biases %

Ratio (EB/DE)

d t IBIAS| inBIAS]| CcV RMSE  mRMSE
p =0 and ¥ = 621
1.0 0 1.8 1.3 4.3 96.3 90.8
1.0 1.000 1.7 1.2 841.6 91.8 8O.8
1.0 0.6741 1.4 1.0 &86.1 93.4 829.2
1.0 0.130 1.1 0.7 89.3 93.1 00.7
0.9 o0 1.5 1.1 86.1 91.0 90.6
0.9 1.000 1.5 1.1 G.3 941.0 90.6
0.9 0.671 1.3 0.9 7.2 93.3 90.2
0.9 0.130 1.0 0.7 89.7 93.3 91.3
0.8 20 1.2 0.9 BR.H 93.9 01.3
0.8 1.000 1.2 0.9 8R.6 93.8 91.6
0.8 0.671 1.1 0.9 89.0 03.6 91.7
0.8 0.-130 0.9 0.7 90.6 93.7 92.1
p =0 and ¥, = ¥, (arbitrary)
1.0 o0 1.5 0.6 81.6 91.8 R2.6
1.0 1.000 1.4 0.8 82.6 90.6 1.1
1.0 0.0671 1.2 0.7 &1.9 90.0 RG.5
1.0 0.130 0.9 0.6 8R.3 90.9 829.3
0.9 o0 1.3 0.5 83.7 91.3 21.3
0.9 1.000 1.2 0.6 84 .4 90.7 K5.41
0.9 0.0674 1.0 0.7 R6.2 90.41 7.3
0.9 0.430 0.8 0.6 KR .8 91.1 89.9
0.8 o0 1.1 0.5 86.6 91.7 EG6.R
0.8 1.000 1.0 0.5 6.9 91 .4 K7.3
0.8 0.0671 0.9 0.6 EK.1 91.4 29.0
0.8 0.130 0.7 0.5 90.1 92.0 90.6
p=p and ¥ = B (arbitrary)
1.0 o0 1.8 1.3 84.3 96.3 90.8
1.0 1.000 1.7 1.2 &14.6 94 .8 RO .8
1.0 0.671 1.4 1.0 86.1 03.41 89.2
1.0 0.430 1.1 0.7 89.3 93.1 90.7




b. Iowa

Relative Biases % Ratio (EB/DE)

d t IBIAS| jmBIAS] CvV RMSE  mRMSE

p =0 and ¥e = 521

1.0 oo 1.3 0.9 85.2 93,41 R .3
1.0 1.000 1.2 0.9 &5.41 91.8 89.2
1.0 0.67-1 1.0 0.7 86.9 91.1 8R.9
1.0 0.130 0.7 0.6 89.6 91.7 91.2
0.9 00 1.0 0.7 86.5 91.9 8.5
0.9 1.000 1.0 0.7 EG. T 91.3 KO .2
0.9 0.671 0.8 0.7 87.0 90.9 290 .4
0.9 0.430 0.6 0.5 89.7 91.6 90.8
0.8 00 0.7 0.5 8.5 91.5 89.6
0.8 1.000 0.7 0.5 R&.5H 91.4 8O.7
0.8 0.671 0.7 0.5 89.0 21.3 90 .4
0.8 0.430 0.5 0.4 90.1 91.9 91.2
g =0 and % = L, (arbitrary)
1.0 o0 1.7 0.8 83.6 91.8 6.0
1.0 1.000 1.6 0.8 83.6 93.3 85.8
1.0 0.674 1.3 0.8 85.8 92.0 87.6
1.0 0.430 0.9 0.6 89.3 92.2 90 .4
0.9 o) 1.3 0.3 85.1 91.2 85.4
0.9 1.000 1.2 0.4 85.1 90.8 85.6
0.9 0.671 1.1 0.3 86 .2 90.5 86.6
0.9 0.430 0.8 0.4 89.1 91.4 89.6
0.8 00 0.8 0.3 87.9 90.3 87.8
0.8 1.000 0.8 0.3 87.9 90.3 87.8
0.8 0.674 0.7 0.3 8R.2 90.3 8.3
0.8 0.130 0.6 0.3 R9.9 91.2 90.0
p == p and ¥P¢ = ¥ (arbitrary)
1.0 o0 1.8 1.3 84.3 96 .3 90.8
1.0 1.000 1.7 1.2 &1.6 94 .8 89.8
1.0 0.674 1.4 1.0 86.1 03.4 8O.2
1.0 0.430 1.1 0.7 89.3 93.1 90.7




c. Ohio

Relative Biases %

Ratio (EB/DE)

d t |IBIAS| |mBIAS]| CV RMSE mRMSE
p =0 and ¥ =521
1.0 00 2.5 0.8 81.9 90.7 &83.1
1.0 1.000 2.3 1.0 82.7 90.1 84 .3
1.0 0.674 2.0 1.0 &84.4 89.5 85.8
1.0 0.430 1.5 0.7 87.8 90.5 88.5
0.9 o0 2.5 0.8 81.9 90.7 83.1
0.9 1.000 2.3 1.0 82.7 90.1 84.3
0.9 0.674 2.0 1.0 84.4 89.5 &85.8
0.9 0.430 1.5 0.7 &7.8 90.5 8.5
0.8 00 1.2 0.9 88.5 93.9 91.3
0.8 1.000 1.2 0.9 88.6 93.8 91.6
0.8 0.674 1.1 0.9 89.0 93.6 91.7
0.8 0.430 0.9 0.7 90.6 93.7 92.1
p =0 and ¥, = £, (arbitrary)
1.0 o0 3.0 1.6 78.8 87.6 79.2
1.0 1.000 2.8 1.6 79.5 86.8 K0.3
1.0 0.674 2.3 1.4 82.4 86.8 83.0
1.0 0.430 1.6 1.1 86.8 88.5 &7.1
0.9 00 2.9 1.4 80.5 87.5 80.5
0.9 1.000 2.7 1.4 81.0 87.3 81.3
0.9 0.674 2.3 1.3 83.3 87.4 83.6
0.9 0.430 1.7 1.0 87.3 88.9 7.2
0.8 lo'e) 2.7 1.2 83.1 88.5 82.6
0.8 1.000 2.6 1.1 83.6 8&.5 83.2
0.8 0.671 2.3 1.1 85.2 BR.7 &85.1
0.8 0.430 1.8 1.0 88.4 90.0 8K.1
p = p and Y. = L, (arbitrary)
1.0 o0 1.8 1.3 84.3 96.3 90.8
1.0 1.000 1.7 1.2 84.6 94.8 89.8
1.0 0.674 1.4 1.0 86.1 93.4 89.2
1.0 0.430 1.1 0.7 89.3 93.1 90.7
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Chapter 5

Censored Sample Estimators

Ernst (1979) compared seven modifications of the sample mean
estimator for reduciug the effect of very large observations under simple
random sampling from a highly skewed population. Four of the estimators,
including the censored direct expansion (CDE) estimator (1.1), adjust for
observations greater than some prespecified cutoff value ¢, The other three
estimators adjust for the prespecified r largest observations, and consist of
the Winsorized, trimmmed mean, and one other estimator. He showed that
there alwayvs exists an oprimal cutoff value ¢ such thar the CDE estimator has

smaller mean square error than the other six estimators.

In this chapter. we consider an extension of the wsual CDE estimator to
the dual frame stratified sampling used by NASS.  All expanded observations
in the NOL samples that are larger than a prespecified cutoff value ¢ are
replaced by the value ¢ and then the DE estimator for the NOL is calculated
from samples of modificd {censored) observatious.  Since we apply censoring
only to the NOL sample, the usual DE estimator 1s used for the list component
i the multiple frame CDE estimator. Assuming that the DE estimator is
unbiased, the CDE estimmator will then tend to underestimate the population
total, that 1s will have o negative bias, because it 1s always less than or equal
to the corresponding DE estimator.  As the cutoff value ¢ is decreased the
CDE estimator will become more biased.  To reduce the negative bias, the
CDE is adjusted by the ratio of the mean for the (multiple -frame) DE
estimators from the (narterly surveys to the corresponding mean of the CDE
estimators.  This modified estimator 1s called the acjusted censored direct
expansion (ACDE) estimator. In addition to the CDE and ACDE estimators,
the EB technique described in Chapter 4 1s applied to the ACDE estimators.

5.1 Descriptive of The Censored Sample Estimators

Let ¢ denote a prespecified cutoff (censoring) value.  Denote the
censored values for the expanded characteristic of tract j (j = 1, 2, ..., ghk) n
segment k (k= 1,2, . . n,) from paper stratum h (L = 1,2, ..., H) ina

particular survey as



1 >
Iigl©) = { i 2
hki c otherwise ,

C

where

g, = number of tracts in the k' segment of the h'" paper

stratum,
n,, = number of segments sampled from the h'" paper stratum,

H = number of paper strata,
_ “hkj .
Zoii = Chig Xnki bhkj 6hki denote the expanded value of tract j in
the k™" segment of the h'" paper stratum,

= the expansion factor for tract j in segment k of the hth

e
hky
paper stratum,
Xoki = value of the characteristic for tract j in segment k from
the ht" stratum,
a ;= acreage of tract,
thj = acrecage of farm,
{1 if the hkj'" farm is in the NOL domain
§ =
nki 0 otherwise.
Then, the CDE estimator for the total of the NOL domain is
H "nh %hk
NOL .
y g z {C), 52

and the multiple frame CDE estimator for the State total is

where y"! is the DE estimator for the list defined by (2.1).
Now, let yMF(i) denote the DE estimator and yz/”: (i) the CDE
estimator for the population total corresponding to the it" survey out of the I

consccutive quarterly surveys. The ACDE estimator of the total for the ith

survey is given by

MF MF g™
yWRE) = MR (5.4)
Ye
I I
where yMF: % P> yMP(G)  and }'72/”:: % > yL\AF(i).
i=1 i=1
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The empirical Baves technique deseribed in Clhapter 4 1s applied to the
ACDE estimators to produce the EBACDE estimators. These empirical Bayes
estimators are of the same form as those defined in Chapter 4, except that the
y vector will now denote the ACDE estimator vector for I consecutive
qnarterly surveys. For the vartance and covariance estimation of the CDE
estimators used 1n the empirical Baves method we ignore the sampling

F, MF
[y

vartation iu the adjustinent factor v That 1+, the adjustment factor

1s treated as a constant in the variance and covariance estimation.

5.2 Performance of the Censored Sample Estimmators
1

Each set of 1000 bootstrap NOL samples (described in Secetion 3.3.2)
was censored using fve different cutoff values ¢ The cutoff values are chosen
corresponding to specified upper p* quantiles in the NOL sample  of positive
expanded bootstrap obscrvations. X7 > 0. (As discussed in Section 3.3.2, the
expanded real observations, X, were adjusted by the ratio of the real sample
size to the corresponding bootstrap sample size within cach list and area frame
stratum to produce the expanded bootstrap observations, x7.)  Then, for a
specified value p* for a particular State

#of "> ¢}
Kol (x>0 Y

Table 5.1 lists the five values of p™ and the «crresponding cutoff values
that we sclected for Indiana, lIowa, and Ohio. We selected smaller values of p*
tor Indiana than for the other two states because the distributions of expanded
weighted total hogs fur Indiana NOL samples are relarively thin. For example,
the ratio of the npper 0.91 and 0.12 ¢uantiles 1x mech larger for Indiana than

for the other two states
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Table 5.1. Cutoff Values (c) for the Expanded Weighted Total Hogs (X in
1000) from Tracts in the NOL Samples for Indiana, Iowa, and Ohio

Indiana Jowa Ohio
c p* c p* c p*
67.0 .0025 241.0 .01 117.0 .01
42.1 .0050 161.0 .02 56.9 .02
32.4 .0100 135.1 .04 50.3 .04
25.3 .0150 99.7 .08 33.7 .08
20.7 .0200 75.0 .12 27.9 .12

The three multiple frame censored sample estimators: the CDE (5.3),
the ACDE (5.4), and the corresponding empirical Bayes (EBACDE) were then
evaluated for each set of censored bootstrap samples. The EBACDE
estimates were calculated using the population covariance r2I (p = 0) and
arbitrary sample covariance ¥, structure with local weighting dampening

constant d = 1, .9 and truncation constant t = oo, .674 .

Table 5.2 contains averages of absolute biases and comparison ratios of
CV’s, SE’s, and RMSE’s, where the averages are over the nine surveys and the
(uncensored ) DE estimator corresponds to the denominator in the comparison
ratios.  The criteria and corresponding notation used in Table 5.2 are the
same as defined in Section 4.3 and used in the corresponding Table 4.3. The
special case ¢ = oo, corresponding to uncensored samples, is included for

comparison with EB estimators evaluated before in Table 4.3.

For the CDE estimators, as the cutoff value ¢ is decreased the average
CV and SE ratios decrease and the |BIAS%)| increases in Table 5.2 as
expected. Regarding the average RMSE, the bias component of MSE is scen
to dominate the reduction in the SE except for the larger cutoff values
corresponding to the smaller censoring proportions p™.  Tables 5.1 and 5.2
show that the estimated average RMSE is minimized for Indiana, Iowa, and
Ohio for p* < 0.005, 0.02, and 0.04 respectively.

Table 5.2 shows that the bias adjustment used in the ACDE estimator
is effective in reducing the average absolute bias in each of the three states.
However, the average RMSE for an ACDE estimator only shows a small

reduction from the corresponding DE estimator over the range of cutoff values
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used in Indiana, Iowa. and Ohio.

When the empirical Bayes technique is applied to the ACDE estimates
to produce the EBADCE estimates, the average RMSE ratios are reduced from
about 8% to 11% over all cases in Table 5.2. In most cases, censoring the
NOL samples before applying the empirical Bayes techuique produced only a
slight reduction in the average RMSE. In particular, comparison of the
average RMSE’s for the EBACDE estimators with those for the corresponding
EB estimators from uncensored samples (¢ = oc) shows a reduction of at most

3.2%, which occurs in Ohio with d = .9, t = o« and ¢ = 33.8.
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Performance Comparisons of CDE, ACDE, EBACDE and DE
Multiple Frame Estimators for Total Hogs (1000) Based on Ratios of Average
CV, SE, RMSE, Relative Absolute BIAS over the Nine Quarterly Surveys.
Parameters for the EBACDE Estimators are:

Covariance Matricies: ¥,

I

= ¢ (arbitrary) and ¥, = #2I
Dampening Constant d =1

Truncation constant t oo, 674
a. Indiana
Ratios % (Est/DE) Ratios % (Est/DE)
c |Bias %| CV SE  RMSE |Bias%| CV SE RMSE
CDE ACDE

oo} 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0
67.0 0.8 93.8 93.2 97.0 0.1 95.5 95.7 98.8
42.1 1.6 8.8 87.5 97.6 0.1 92.0 92.2 97.6
32.4 2.1 85.4 83.6 102.1 0.1 &9.9 90.1 97.0
25.3 3.4 82.2 79.7 111.9 0.1 8&.2 &8.5 96.8
20.7 1.2 R0O.1 7T7.0 122.8 0.1 &7.2 &K7.5 97.2
EBACDE: d = 1, t = oo EBACDE: d = .9, t = o
o 1.5 &1.6 &81.0 91.8 1.3 &3.7 &83.2 91.3
C7.0 1.6 &80.7 &0.5 90.7 1.4 &82.6 &2.4 90.7
42 .1 1.6 79.0 78.9 89.6 1.3 79.8 &80.6 &89.7
32.41 1.5 7T&8.3 7TR.2 8KR.7 1.3 79.8 79.7 &8&8.9
25.3 1.5 77.5 7T7.3 &8KR.6 1.4 78.83 7.7 &K8.8
20.7 1.6 76.7 7T6.6 &9.2 1.5 7.0 77.9 89.5
EBACDE: d =1, t = .674 EBACDE: d = 9, t = .674
o 1.2 &81.9 &84.4 90.0 1.0 &6.2 85.7 90.4
67.0 1.1 &5.7 &85.6 90.3 1.2 &5.2 &85.0 90.6
d2.1 1.0 85h.5 &5.5 &89.5 1.0 &86.3 86.3 8&89.9
32.4 0.9 85.5 8h»h.Hh 8.8 0.8 86.2 R6.2 89.2
25.053 0.8 8h.7 &8bh.7 B8BR.8 0.8 &86.3 86.4 &89.3
20.7 0.8 86.0 86.0 8&89.1 0.8 86.6 86.6 K89.6




b. lIowa

Rafiui% (Est/DE)

Ratios % (Est/DE)

¢ Bias%| CV SE  RMSE

Bias%| CV

SE

RMSE

CDE

o 0.0 100.0 100.0 100.0
2:41.0 0.6 95.6 95.0 96.7
161.0 1.4 91.1 90.1 96 .8
13501 1.9 =R9.3 87.6 99.3

99.7 B T I R1.3 1114.8

5.0 .l T3 T75.3 14143.6

EBACDE: d =1,t = x

~C 1.7 =N3.6 82,9 61.8
2:110.0 1.7 K2.x 82.3 93.5
161.0 1.7 K200 K2.2 93.0
1335, 1 1.7 X206 82,2 92,8
99 .7 1.6 N2, 82,1 92.1
TH.0 1.6 =200 K825 918

EBACDE: d = 1.t = .674

X 1.3 RH.= 85,2 92.0
2:41.0 1.3 =Hh.7 8h.2 91.6
16G1.0 1.3 XH.o 85.5 91.4
1351 1.2 S6.0 &5.7 91.2
99.7 1.1 S b 861 90.9
TH.0 1.1 =T RGO 91,0

cCcCcCcoCcoo

Ll (VAR CVA NVRR
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c. Ohio
Ratios % (Est/DE) Ratios % (Est/DE)
¢ |Bias%| CV SE RMSE |Bias%| CV SE  RMSE
CDE ACDE

oe 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0
117.0 0.9 95.2 94.5 95.3 0.0 96.6 96.7 97.1
57 .0 2.9 &87.9 &85.6 92.9 0.0 93.8 94.0 96.1
51.0 3.3 86.9 84.2 93.7 0.0 93.3 93.5 96.
33.8 5.7 K2.5 7T&R.0 102.5 0.0 91.2 91.14 95.2
28.0 T.0 K0.3 7T4.8 110.0 0.0 90.3 90.6 95.0
EBACDE:d = 1,t = o EBACDE:d = 9, t =
¢ 3.0 7TR.8&8 7T6.7 &7.6 2.9 RK0.5 7T&.4 87.5
117.0 3.0 77.2 7T5.4 86.0 2.8 7.9 77.1 86.0
57.0 2.0 76.3 7T5.1 &85.0 2.6 77.9 76.8 &8&4.9
51.0 2.9 76.5 7T75.3 &85.0 2.6 78.0 7T76.9 &1.9
33.8 2.5 77.1 76.3 84.2 2.3 78.5 T77.7 &84.3
28.0 2.4 T7.6 T76.9 84.3 2.2 79.0 7T8.3 Z4.4
EBACDE: d =1, t = .674 EBACDE: d = 9, t = .674
¢ 2.3 R2.4 80.8 R6.8 2.3 &83.3 &81.7 &87.4
117.0 2.2 RK2.3 R1.0 86.7 2.1 83.3 81.9 &7.1
57.0 2.1 RKR2.8 82.0 &86.8 1.9 &83.5 &K2.7 &7.0
51.0 2.0 82.9 &K2.1 86.9 1.8 83.6 &82.8 &87.0
33.8 1.7 83.5 82.8 &806.7 1.6 &4.1 &83.5 &6.8
2%.0 1.6 =24.1 &3.6 &87.0 1.5 &1.7 &84.2 &7.1
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Chapter 6

Empirical Bayes Estimation for the 10 Major Hog Producing States

The empirical Baves approach described in Chapter 4 is applied to the
multiple frame (operational) direct expansion (DE) estimates for total hogs
and pigs from the 33 quarterly surveys: December 1981 — December 1989 for
the 10 major hog producing states: Georgia, Illinois, Indiana, Iowa, Kansas,
Minnesota, Missouri, Nebraska, North Carolina, and Ohio. The component,
DE,, consisting of the sum of all fully expanded values which exceed a
specified cutoff value aud its complement, DE — DE‘.Z* are also considered. The
same cutoff 1s used for fully expanded values from both the list and NOL. The
cutoff values for large observations are included at the top of Table 6.2 for the
ten states.  We use the following notation for the estimates and standard

errors contained in the NASS summary file:

DE = operational direct expansion estimate

SE = standard error of DE
DE, = large expanded value component of DE
SE, = standard error of DE,,

BD = most recent revised board estimate

From these statistics the complement of DE,, and a rongh approximation to its
standard error can be obtained as

SE, = |SE? - SE2
Three different cipirical Bayes estimators are cousidered:
EB, = EB(DE)
EB, = DE, + EB(DE,)
EB; = EB(DE,) + EB(DE,).

<

The empirical Bayes rechuique is applied to the DE. DE|. and DE,, estimates
from the quarterly estimates in the series {1,2,... .k}, where k=7.,8...., 33
represents  the current swrvey for which the estimate s sought.  Ouly
information which oceurs on or before the current survey k is used in the

calculation of the empirical Bayes components EB(DE1 EB(DE,), EB(DE,)).

Each of the empirical Baves component estimates 1= hased on the assumption



79
of uncorrelated direct expansion (component) estimates with constant variance
(see equations 4.16 —4.18). The local weighting dampening constant d=.9
was used for each empirical Bayes estimator (see equation 4.11). This local
weighting is also applied to the series {1,2,...,k} of variance estimates for the
direct expansion (component) estimators in order to obtain estimates which
are more robust with respect to the assumption of common vanance
throughout the series. The truncation constant t=.674 is used so that each
empirical Bayes estimate is constrained to the approximate 50% confidence
interval constructed from the DE estimator for the population mean (see
equation 4.20). For the empirical Bayes estimators with two components, EB,
and EB,, the truncation is applied to the sum of the two components. Hence,
|EB,~ DE| <.674 SE where SE is the (unsmoothed) standard error of DE. We
were unable to apply the empirical Bayes technique that was developed in
Chapter 5 for censored samples because the number of units in the DEy sum

was not available in the NASS summary file.

The empirical Bayes estimates EB;, EB,, and EB; are shown
graphically in Figures 6.1.a—6.1.1, 6.2.a—6.2.1, and 6.3.1—6.3.1; respectively, for
cach of the 10 states. The corresponding DE and BD (most recent revised
board) estimates are also plotted in each case. The empirical Bayes technique
is scen to rednce the effect outliers in the extreme cases. For example, notice
the September 1989 and December 1989 surveys in Georgia (see Figures 6.1.a,
6.2.a, 6.3.a) and the December 1983 survey in North Carolina (see Figures
6.1.h, 6.2.h, 6.3.h). Table 6.1 includes means of the direct expansion,
empirical Bayes, and board estimates, and their differences, over the 26
quarterly surveys: June 1983 — September 1989.  (The first 6 surveys:
December 1981 -March 1983 were used to initialize the empirical Bayes
technique to the series and the board revised estimate was not available for

the December 1989 survey.

Table 6.2 contains Root Mean Squared Deviations (RMSD) and Mean
Absolute Deviation (MAD) comparison of the EB, DE, and BD estimates for
the 10 major hog producing states. For example, the average RMSD over the
10 states shows the EB4 estimates to be about 12% closer (150 compared to
171) to the revised board estimates than are the corresponding DE estimates.
The corresponding average MAD for the EBy estimates is about 10% closer
(120 compared to 133) to the revised board than are the DE estimates.

However, the EB estimates tend to have worse agreement with the revised
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board estimate than does the DE estimates for the for states: Illinois,
Minnesota, Nebraska, and Ohio. In each of 4 states the EB estimates tend to
be too low during the three years when the hog populations were tending to
increase.  Construction of a multivariate empirical Bayes estimator for the 10

states might overcome this deficiency.
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Table 6.1 Means of Estimates, Differences of Estimates, and Standard Errors for Total
Hogs and Pigs (1000) over the 26 Surveys: June 1983 - September 1989 for the 10 Major
Hogs Producing States. Also Included Are the Cutoff Values for Large Expanded Units

Mean
over the
GA IL IN TA KS MN MO NE NC OH 10 states
Cutoff 25 50 40 80 20 40 40 40 30 25
DE 1157 5347 4318 13477 1440 4233 3003 3741 2485 1997 4120
SE 102 277 260 564 122 237 174 200 152 174 228
DE, 1042 4964 4021 12358 1237 3705 2773 3483 2244 1647 3747
Sk, 49 199 138 394 52 145 116 127 % 86 136
DE, 115 383 296 1119 202 529 230 257 241 350 372
Sk, 84 187 198 398 106 211 121 149 132 148 173
BD 1201 5506 4287 13833 1513 4302 3088 3879 2418 2043 4207
DE-BD -44  -159 31 -355 -73 -68 -86 -138 67 -46 -87
EB, = EB(DE)
EB, 1163 5330 4285 13526 1456 4165 3037 3695 2425 1964 4105
EB,-DE 6 -17 -33 48 17 -68 34 -46 -60 -33 -15
EB,-BD -38  -176 -2 -307  -56 -136 -51  -184 7 -79 -102
EB, = DE; + EB(DE,)

EB, 1150 5345 4292 13492 1463 4220 3031 3751 2489 1966 4120
EB,-DE -6 -2 -26 15 23 -13 28 10 4 -31 0
EB,-BD 51 -160 5 -341 -50 -81 -57  -128 71 -7 -87
EB; 1156 5337 4291 13527 1463 4174 3036 3712 2480 1962 4114
EB;-DE -1 -11 -27 50 24 -59 34 -29 -5 -35 -6
EB;-BD -45  -169 4 -306 -49  -127 -52  -167 62 -81 -93
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Table 6.2 Root Mean Squared Deviation (RMSD ) and Mean Absolute Deviation
(MAD) Comparisons of the EB, DE, and BD Estimates for Total Hogs and Pigs
(1000) Over the 26 Surveys: June 1983 - September 1989 for the 10 Major Hog
Producing States

RMD Comparison MAD Comparison

State DE,BD EB,BD DE,EB DE,BD EB,BD DE,EB

EB = EB(DE)

GA K3 56 56 66 42 42
IL 193 227 141 165 1902 123
IN 205 103 145 147 K6 102
ITA 420 412 267 367 345 243
KS 106 &0 60 87 G4 52
MN 117 185 143 95 152 123
MO 106 &4 74 95 G-1 66
NE 204 200 90 160 186 72
NC 185 76 139 90 H0 841
OH 95 107 76 59 K7 63
MEAN 171 151 119 133 127 97

EB = DE; + EB(DE,)

GA &3 69 75 60 58 43
IL 193 203 111 165 177 90
IN 205 atal 171 147 66 123
IA 120 428 247 367 358 214
KS 106 7T 65 87 H& 52
MN 117 130 96 95 99 75
MO 106 talal T 95 TH 67
NE 2041 183 T2 160 143 59
NC 185 131 92 90 K3 55
OH 95 129 86 59 106 75
MEAN 171 153 109 133 122 &5

FB = EB(DE;) + EB(DE,)

GA &3 62 72 66 50 49
IL 193 212 128 165 178 104
IN 205 T 162 147 G2 117
IA 420 37X 234 367 306 195
KS 106 0 59 87 51 48
MN 117 172 134 95 138 114
MO 106 =1 &1 95 61 71
NE 20-1 197 &4 160 172 63
NC 185 124 95 90 T 57
OH 95 121 83 59 101 72
MEAN 171 150 113 133 120 K9
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Fig. 6.1.d lowa: EB(DE)
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