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SUMMARY:
Plant process simulation modcls contain many parameters,
both single-valued and functional. which may influence
final biomass significantly. Response s~rface
techniques can identify sensitive parameters and
indicate parameters which could be determined less
accurately and with less costly field and laboratory
expe ri men tat ion.
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Parameter Sensitivity in Plant Process Models
Fred D. Baker (USDA/SRS)

INTRODUCTION

The application of various analytic techniques to plant process simulation (PPS) models
was initiated by USDAas a tool by which agronomists, agricultural engineers, and other
plant scientists could identify more clearly the structure of their plant process models and
the effectiveness of those models in mimicing the actual growth of a specific kind of
plant or plants. In addition, the sensitivities of various responses could be identified with
respect to model inputs, parameters, and substructures.

Plant modelers have had two basic objectives -- to study the individual plant processes
and their adaptation to various stresses and to model the actual plant biological yield.
The intricacy of the modeled growth processes varies; many of the parameter values for
differential equations which regulate growth and development and for functional
expressions are determined by either experimentally-derived regression equations or
calibration. In most cases a plant (or a small plot) is grown on a daily time step, where
the biomass is generated as a function of heat units or calendar days. The plant(s) may
become stressed as a reaction to initial conditions and daily input of environmental
variables such as maximum temperature, minimum temperature, solar radiation and
precipitation. Various models permit the user to apply fertilizers, pesticides, herbicides,
and/or irrigation treatments. Other models consider such environmental factors as soil
composition, insects and diseases."

If forecasts using a plant process model are desired, stochastic weather simulators (for
example, Larsen and Pense (1981» can be·introduced to generate possible future weather
conditions for given locations during the growing season. Actual weather data from a
historical data base also could be used. Aggregation of sample field estimates (or
forecasts) then could be utilized to obtain more universal values.

Problems in modeling ar ise whenever the model parameters are extremely sensitive to
plant location or variety. Most plant process simulation models do not contain sufficient
complexity to reduce this sensitivity. Since the aggregation of sample values occurs over
an entire state, or over regions of the United States, these factors betome very
important. If any location and variety parameters are not sensitive, then the time and
cost needed to ascertain these values can be reduced.

In the study of the structure of the model and of the interrelationships between variables
and parameters, the model author can provide important technical support. The
dependence of modeled yield on parameters and input variables can be identified for
specific subsets of pararrieters and var iables. Our concern has been the degree of
interrelationships and the sensitiviity of the yield response to various factors.

The traditional approach to studying the effect of varying relevant parameters in a
simulation model is the same as that used in any other interpolation problem: a
multidimensional regula falsi technique. The use of fractional factorial designs to limit
the number of simulation runs required, is clearly indicated when the number of factors
becomes large; Montgomery (1979) presents a detailed discussion of the use of such
techniques.
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As discussed in previous papers (Baker and Bargmann (1981), 1982», we have applied
response surface techniques to plant process models. Many of the resultant surfaces have
not been quadratic, but linear with large errors. The simple cubic response surface does
not permit easy identification of any factor effect on the given response. With a scaled
orthogonal central composite design, higher-order relationships (in the model) and the
sensitivity of the yield response to these relationships (as presented in the given model),
have been detected.

In this paper, we shall first indicate the assumptions under which we have applied response
surface techniques. Then we shall discuss several ways that the sensitivity of parameters
-- both single-valued and functional - have been evaluated.

RESPONSE SURFACE ASSUMPTIONS

In addition to the usual assumptions that the experiments (simulated growths of a plant)
can be performed and the response(s) measured at each of the design points, two special
assumptions have been made. First, it is assumed that an available simulation program is
the author's best description of the modeled plant processes. The model usually has been
validated by the author for several locations and the forecasting (estimation) ability of
the model should have been evaluated. Thus, the existing values of the factors <Calledthe
center point values) provide a good indication of the response and the response surface
interecept should be close to the center point response. Second, in the calibration of the
model parameters (selected as factors), a range of possible values (or a set of bounds) for
each factor has been determined by the model author. By setting the factor levels to be
+ land - I at these bounds, a design lattice is defined and provides a description of the
variation of the "real" response of the model expected under variation of parameters.

RELATIVESENSITIVITY

Although the physical units of the factors may be completely different and levels may
even be categorical in nature, use of the model author's calibration limits in setting the
factor levels standardizes the sensitivity of the response to all of the factors. Since the
intercept of the response equation is the best estimate of the response at the center and
"reality" lies inside the unit lattice, the contribution of each factor or factor combination
at the boundary (lattice points), can serve as an index of sensitivity. 'The maximum
contr ibution to the equation occurs when the factor level is "1" or "- I" and equals the
value of the coefficient. The ratio of this coefficient to the intercept has been defined to
be the "relative sensitivity" of the response to variation of a factor or factor combination.

APPLICATlONS

Two models have been uSed during the development of the analytic techniques. A
dynamic wheat growth and development simulator called TAMW("Texas A&MWheat
Simulation Model") (Maas and Arkin, 1980a) provided an early forum for the practicality
of the response surface technique. A early version of SOYGRO (a soybean Rrowth
simulation model developed at the University of Florida) (Wilkerson and others, 1981) was
used to extend these techniques.

As Baier (1977) points out, a proper plant process simulation model should reflect
differences in location and in variety. The current generation of plant process simulation
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models is usually calibrated to account for both of these factors with soil characteristics
as a major contributing factor. Ideally a model could be corrected internally for location
(with the same variety). Using the appropriate daily weather input, this model then would
produce "similar" response surfaces. In these cases the generality of the response model
would depend on, perhaps, the mean yield for each location with minor variation
attributable to the specific factors.

TAMWwas tested by its authors over ten different locations from Texas to South Dakota.
Preliminary results (Maas and Arkin, 1980b) indicated that although TAMWsimulated the
date of floral initiation later than it was observed in the field, the simulated yield did not
differ much from the actual yield for most fields. The larger differences occurred when
unmodeled management practices or severe weather conditions were present. Daily
weather data for the 1978-79 growing season and appropriate latitudes (for daylength)
were available for each of these locations •.

With the assistance of Maas, we selected three factors with yield dependence.

1. CVERN -- an input function which governs the effect of vernalization on the
vegetative phase (see Figure 1).

2. BETA -- the limiting value (or the asymptote) for the number of heads (H)
possible at head emergence, given the number of existing shoots (X)
at terminal spikelet.
H = a *0 - EXP(- a *X/a»

3. CGSET -- the fraction of wheat florets converted to grain

FIGURE 1: Picture of CVERN

\

•

DlIAlIlII OF 11IEPUIOll F'" EIOliOI1 TO FI.lIML
'111\ATllII AS A F_TllII OF Nll0P0lOll ••

VOllAlIZATllII .
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The levels of CVERN and other precisions of measurements were identified with the
assistance of Maas. The function (F) retained the same shape at each of the levels, but
had different y-intercepts. In the initial testing, the precision of measurement was
defined as a vertical shift of all four units. Similarly the precisions of measurement of
BETA and CGSET determined the parameter values at the levels for these variables (See
Table 1).

Table 1: Parameter Values for Factors from TAMW

Factor Level -2 -1 0 1 2
CVERN F-8 F-4 F F+4 F+8
BETA 620 670 720 770 820
CGSET .15 .20 .25 .30 .35

Response surfaces were generated for three data sets representing different
environmental conditions. The field sites were located near Temple, Texas (a wet
southern latitude growing season); Fort Pierre, South Dakota (a normal northern latitude
growing season); and Brewster, Kansas (a severe early-season water stress growing
season).

In this case the TAMSparameter values for all three factor variables are determined
experimentally. If yields are not significantly affected by any or all of the factors, then
less costly research could be possible in the determination of the corresponding parameter
values. Also, by comparison ot the response surfaces at different locations, the
portability of the INTERNAL TAMWparame.ters can be evaluated. The results are shown
in Table 2.

Table 2: Quadratic Response Surfaces for TAMW
(Coefficients Significant for a = .10

FACTOR/LOCATION

INTERCEPT
CVERN
BETA
CGSET
CVERN*BETA
CVERB*CGSET
BETA*CGSET
CVERN**2
BETA**2
CGSET**2

TEMPLE

3.85
- .13

.28

.77

BREWSTER

2.99

.59

- .12

fT • PIERRE

2.575
- .10

.15

.52

The response surface for Brewster, Kansas, with CI = .10 is

YIELD = 2.99 + .59 * CGSET - .12 + CVERN**2
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The relative sensitivity for CGSET is approximately .20 for each of the three

locations (.77 :::.59 :::.52 ). This large value indicates the importance of an
3.85 2.99 2.575

accurate identification of the percentage of florets converted to grain. Smaller relative
sensitivities for CVERN and BETA suggest that less precise experimentation may be sufficient
to simulate wheat yield with TAMW. BETA is less important when early season water stress is
present. Relative sensitivities for all factors are similar over location and the
coefficients vary proportionally to the intercept (center-point value).

In a second application, the response surface techniques were used with early versions of
SOYGRO. The behavior of daily photosynthesis in response to light had been modeled
from experimental data (Ingram and others, 1981). Maximum available photosynthate is
reduced by a series of effects including crop growth rate and temperature stress. These
effects are modeled from experimental field data to give the fraction of available
photosynthate which remains. The model authors had decided to model each of these
effects with specific types of behavior, but were concerned about sensitivity to any
changes in the corresponding functions.

For crop growth rate, the fraction of remaining photosynthate is dependent on leaf area
index (LAn and is assumed to be (1) equal to LAI for small values of LAI, (2) parabolically
increasing to a maximum for larger values of LAI, and then (3) exponentially and
asymptotically increasing to 1. The model equation is:

\

f =L [
~54 _ ,4778*L _ .0623*L 2

1 - 0.9l44L-e

o < L ~.1022

.1022 < L ~3.835

L > 3.835

If the model equation has this same structure, but with a different interval for the quadratic
relation~hip, th~n the end-points -- p1 and P2 -- of this interval determine the coefficient of the
quadratic equation.

in fact,

f =L

L

C + bL + aL2

1 _ eqL

-b
a = -- and c =

2P2

-5-



are known after calculation of

2P20 - PI - e. -qP2)
b = (P _ P )1-

2 1

for any given value of q which determines the rate of asymptotic convergence. The points PI
and P2 have been chosen as the first two factors in the sensitivity analysis.

The last two factors are the endpoints in the function describing the temperature stress. The
model equation is:

i
0.0

In (T - 5)/8

1.0

T~13

Assuming that the behavior is logarithmic between the endpoints, the two numeric
constants can be expressed as a function of these endpoints.

0.0

In (T - a)/b

1.0

Where

and

Wilkerson suggested degrees of precision for the factors and we generated the quadratic
response surfaces for each of the years 1978-1980 with weather data from Gainesville,
Florida. The parameter values at each level are listed in Table 3 and the response
surfaces are given in Table 4.
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Table 3: Parameter Values for Photosynthesis Factors from SOYGRO

\

Factor /Level - 1.141 - 1 0 1 1.141

.0794 .0822 .1022 .1222 .1250
3.607 3.635 3.835 4.035 4.063
11.86 12 13 14 14.14
24.72 25 27 29 29.28

Table 4: Quadratic Response Surfaces for Photosynthesis Parameters
(Significant Coefficients for a = .10)

FACTOR/YEAR

INTERCEPT
LAILO
LAIHI
TPHLO
TPHHI
LAILO*LAIHI
LAIHI*LAIHI
LAIHI*TPHHI
TPHLO*TPHHI
TPHHI*TPHHI

1978 1979 1980

104.46 369.89 217.87
0.44 2.07 3.67

- 1.12 - 4.91 - 8.48
- 0.10 - 1. 48 - 0.77
- 2.00 -14.48 - 5.66

0.10 0.58 0.36
- 1.29 0.22

0.17
- 0.11 - 0.93 - (t.36
- 1. 36 - 5.91 - 2.51

The relative sensitivities are c;llliess than .05 and suggest that as long as the degree .of
precision is as defined in Table 4, and the behavior of the functions is consistent with the
assumptions, then yh~ldhas minimal sensitivity to the choice of the points Pi' P2' P3' and

P4· The value for TPHHI (P4) "contributes" most to the model. Larger values of P4

require higher temperatures for the stress fraction to be 1.0 and thus d~creases the
amount of photosynthate available; consequently the biomass is smaller.

CONCLUSION

Response surface techniques in sensitivity analyses have helped to identify the relative
importance of parameters in the plant process simulation of various crops. Coefficients
of assumed functional relationships for the plant processes can be evaluated in terms of
the response of yield to changes in the coefficients. Those parameters which have
minimal effect on final yield could be established with less precise and less costly
experimentation.
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