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ABSTRACT

The National Agricultural Statistics Service is developing strategies that limit the amount of sample overlap across
unrelated surveys by using multi-phase sampling principles.  In its simplest form, Sample A is selected first, and then
Sample B is chosen from among those members of the population not selected for Sample A.  Effectively, Sample B is
selected in two-phases.   This two-phase approach extends easily to the coordination of more than two samples, although
meeting accuracy and/or sample-size targets while maintaining strict sample exclusivity is not always possible.   Variation
of the basic approach address this problem, but lead to some theoretical difficulties.  Sampling weights may be  based on
products of conditional selection probabilities rather than on unconditional selection probabilities.  Randomization-based
variance estimation likewise may depend on the product of conditional joint selection probabilities.   In practice, variance
estimates will be reasonable but may not always be randomization consistent. 
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1.  INTRODUCTION

We will describe a potential methodology for drawing a particular sample ! the Agricultural Resource
Management Study (ARMS) screening sample ! in a manner that limits overlap with other surveys.  Unlike the
“Perry-Burt” technique (see Perry et al. 1994) currently used at the National Agricultural Statistics Service (NASS),
this new methodology handles unstratified, unequal probability sampling designs properly.  Such a design is already
being used in the new Crops/Stocks Survey (CS) and may be used in drawing the ARMS screening sample in the
future.  Bailey and Kott (1997) provide a description of the CS sample design.  

The basic concepts of the new methodology in an idealized environment will be outlined first.  We will then
show how it can be applied to a particular NASS application.   Unfortunately, the basic concept as outlined can not
always be applied in practice.  Consequently, a few variations are proposed.  A discussion follows.    

2.  THE BASIC CONCEPT

Suppose we want to draw R samples sequentially.  Our principle interest  is the sample design for the last
survey (denoted R).  For now, assume that the first R !1 samples are drawn independently.   Our goal is to limit the
possibility that a farm selected for (at least) one of the previous R !1 samples is selected again for Sample R.  It is
not necessary that the populations of interest be the same for all the samples.  We do require, however, that we can
identify whether or not a unit (farm) in the population of interest for one sample, say Sample r ( = 1, ..., R), is also
in the population of interest for another sample, say Sample s, s � r.   
  The conditional selection probability of a farm for Sample r  is the probability of selecting the farm for
Sample r at the time of selection.  We denote this probability by pr (we suppress the subscript denoting the farm for
convenience).  By convention, a farm not eligible for selection in r has pr = 0.

The effective unconditional selection probability of a farm for Sample r is its conditional selection
probability times the probability that it is available for sampling (more on “availability” later).  We denote this by
Br.  It is this value we use in estimation, albeit often in adjusted form.    

_____________________
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For all Samples r < R, a farm’s conditional and effective unconditional selection probabilities are equal; that
is, pr = Br.  Ideally for Sample R, we want to set pR = 0 when the eligible farm has been selected in a previous sample.
 Such a farm is said to be unavailable for Sample R.  Notice the distinction between the eligibility of a farm for
Sample R ! meaning that it meets the requirements for sampling ! and its availability ! meaning it has not been
selected for one of the other samples.

The effective unconditional selection probability for a farm being in Sample R is
 
                                                       BR = (1 ! p1)(1 ! p2) 

. . . (1 ! pR!1)pR;                                                                 (1)

that is, the probability of the farm not being selected for Sample 1, not being selected for Sample 2, ..., not being
selected for Sample R !1, and then being selected for Sample R.   Equation (1) also defines the true unconditional
selection probability of the farm when pR is set independently of the first R !1 samples.  In practice, this may not be
the case. 

Equation (1) tells us that, for a farm not selected in a previous survey, the Sample-R conditional selection
probability is  
 
                                                             pR = BR / [(1 ! p1) 

. . . (1 ! pR!1)]                                                                    (2) 

as long as no pr = 1 for r < R ; otherwise, pR would be undefined.  This is an important but obvious restriction.  If a
farm was a certainty in a previous sample, there is no way to avoid the possibility it will also be in Sample R without
violating randomization-based principles (observe that BR in equation (1) would be zero, an unacceptable value,  no
matter to what value pR is set).  This means as a practical matter, the “1 ! pr” term must be removed from “(1 ! p1)
. . . (1 ! pR!1)” in equations (1) and (2) when pr = 1.   For ease of exposition, we will assume that all pr < 1 from now
on.   

3.  AN APPLICATION AND A SMALL EXTENSION 

Suppose we want to co-ordinate the ARMS screening sample with  R !1 other independently drawn samples
in the same survey year.  If possible, we want no farm in one of the other samples to be drawn into the ARMS sample.
As long as there are no certainties is any of the other samples, this is a simple matter.  Calling the ARMS screening
Sample R and drawing it last, we need only set the pR and use equation (1) to determine the BR.    

Setting the pR)values makes sense when our only concern is assuring that a required number of farms of
various types get in the ARMS screening sample.  If we are more concerned with the efficiency of the ARMS
estimation strategies, we may want to target farm BR)values.   This can cause additional complications we will
consider later. 

It is a simple matter to extend this framework to include previous ARMS screening samples by allowing the
farm’s conditional and effective unconditional selection probabilities for Sample r < R to be unequal.   Our focus
remains the final ARMS screening sample (R).  The new potential inequality of selection probabilities has no effect
on equations (1) and (2), since each pr, r < R, clearly denotes a conditional selection probability. 

The CS is made up of three separate and dependent modules (two yield modules and a crops/stocks module).
For our purpose, these can be looked at as three different samples (among the first R !1)  where, as with previous
ARMS screening samples,  the farm conditional and effective unconditional selection probabilities need not be equal.
   
                                     4.  TARGETING THE UNCONDITIONAL PROBABILITIES

As noted previously, one way to design the ARMS screening sample is to target the conditional selection
probabilities among farms available for sampling (i.e., after removing selections for any of the other R !1 samples).
 Unfortunately, this can lead to farms with very large sampling weights (a farm’s unadjusted weight is 1/BR).   An
alternative approach is to target BR!values and let equation (2) determine the conditional probabilities for the ARMS
screening sample.    

A problem with this approach is that it may be difficult to accurately target the number of farms with
particular control characteristics that will fall into the ARMS screening sample.   For example, suppose we want n



farms in the sample to have positive cattle-control data.  We could set  the  BR!values for all eligible list-frame farms
with positive cattle-control data so that the sum of these BR!values equals n (recall that “eligible” means meeting the
requirement for  the ARMS screening sample as opposed to being available for sampling).  This only assures that
the expected number of farms in the sample with positive cattle-control data is n.  The actual  number may vary,
which can be a cause of concern.  

Systematic (unequal) probability sampling can be used to mitigate this concern.  For example, suppose  we
separate the available sample into mutually exclusive groups along the lines of the present ARMS screening strata
and choose a constant BR!value for each group as we do now for each stratum.  Drawing a systematic probability
sample within each group using pR!values derived from equation (2) should yield  a number of hits per group very
close to its expected value.   

In the future, NASS may select the ARMS screening sample in a manner similar to the  CS; that is, draw
dependent samples for a number of survey items by setting a farm’s effective unconditional selection probability for
an item equal to the item’s target sample size times the item’s frame-specific “measure of size” raised to the 3/4'th
power.  The combined sample often produces counts that exceed each item-specific sample-size target (see Bailey
and Kott, 1997). 

4.1  A “Generalized” Solution
A problem with targeting BR!values and applying equation (2) is that there is no guarantee that the resulting

conditional selection probability, pR, will less than or equal to 1, a requirement for a probability.   To assure that this
requirement is satisfied, we can generalize the method of bit.    Let us suppose that there is a target BR for each
eligible farm (available or not).  When the resulting pR is greater than 1, we allow the possibility that the farm is in
both (some) r and R and drop  “1 ! pr”  from “(1 ! p1) 

. . . (1 ! pR!1)” in equation (2).  
Dropping 1 ! pr may not be enough to assure pR is no greater than 1.  We may be forced to allow a farm into

Sample R that is in two (or more) other samples.   

4.2  A “Modified” Solution 
Rules for potential sample overlap have to be determined before looking at the particular farms affected.  We

may also want to require pR be less than 1/m since we need to control the probability that a farm will be in one of the
next m !1 ARMS screening samples. 

We suspect that in practice some combination of setting the pR and BR!values will evolve from trial-and-
error.  For example, we may first set the Sample-R target effective unconditional probability for a farm at BR

(t) and
then let 
                                                          pR = min{1/m,  BR

(t) /[(1 ! p1) 
. . . (1 ! pR!1)]}.

Consequently, the effective unconditional selection probability of the farm would be modified to     
                           
                                                          BR = min{(1/m)(1 ! p1) 

. . . (1 ! pR!1), BR
(t)}.

This could, of course, defeat whatever purpose we had for setting the original target effective unconditional selection
probabilities.  Some work is definitely needed in this area.   

Observe that even with an m as small as 3,  the largest value BR can take is (1/3)(2/3)(2/3) = 4/27, and that
assumes the farm is not eligible for any other sample but the ARMS screening samples.   This suggests that we may
want to determine m on a farm-by-farm basis when using this approach with larger farms getting a small m and
smaller farms a larger m. 
                                                  
4.3  Using Permanent Random Numbers

One way to keep the target BR!values but limit the potential for sample overlap when Samples 1 through R!1
are selected independently  is to do the following.  Let BR!1 = 1 ! (1 ! p1) 

. . . (1 ! pR!1) be the probability that the farm
is a selection in at least one previous (to R) sample (we are again, for simplicity,  ignoring the possibility that the farm
is a certainty selection in a previous sample).  If the farm is eligible for Sample R, choose a uniform random number,
D*,  from the unit interval, [0, 1).  Assign the farm the permanent random number (PRN): 



D = D*BR!1                         if it has been selected in a previous sample, 
D = BR!1 + D*(1 ! BR!1)    otherwise.  

Observe that the probability density for each possible PRN in [0, 1) is the same, which is a requirement for PRN’s.
The farm  is  selected  for  Sample R  if it is not  a selection in a previous sample,  and its PRN is less than

BR!1 + BR.   If the farm  is in a previous sample,  it is also selected for Sample R when D is less than BR!1 + BR ! 1.
This method of sample selection is a form of Poisson PRN sampling.  A farm is chosen for R if 

D 0 [ BR!1, BR!1 + BR)                        when BR!1 + BR # 1, or 
D 0 [ BR!1, 1) ^  [0, BR!1 + BR ! 1)    otherwise.  

Thus, the farm’s selection probability is BR.   The sets [ BR!1, BR!1 + BR) and [ BR!1, 1) ̂   [0, BR!1 + BR ! 1) are called
Poisson PRN sampling ranges.

With this sampling method, we do not explicit calculate conditional selection probabilities for the farms in
Sample R.   Nevertheless, note that the old requirement  to assure that Sample R not overlap a previous sample,
namely, that pR in equation (2) be less than or equal to 1, is equivalent to the requirement BR!1 + BR # 1. 
          Observe that if  R=2, the probability of the farm being in both samples when  B2 + B1 > 1 is  B2 + B1 ! 1.   
Using the “generalized” method described in Section 4.1,  it is B2 B1, which is greater than  B2 + B1 ! 1 unless B2 or
B1 equal 1.  This is because  (1 ! B2)(1 ! B1) > 0 implies  B2 B1 >  B2 + B1 ! 1.

5.  DISCUSSION

The Poisson PRN method for choosing Sample R requires that the R!1 previous samples be independently
drawn (effectively, the methods treats the union of Samples 1 through R!1 as if it were drawn using a Poisson PRN
process).  This is not always the case for the ARMS screening sample.  

The problem of non-independent previous samples disappears when R=2.  In fact, it is a simple matter to co-
ordinate any number of samples by creating farm-specific Poisson PRN sampling ranges for the current sample that
begin where the previous ranges end.  Moreover, when some overlap across samples becomes unavoidable, we can
order the samples in such a way that the probability of being in two particular samples is minimized (e.g., making
them adjacent in the order of sample selection).

Extending the “generalized” and “modified” approaches of Sections 4.1 and 4.2 in a similar manner is more
difficult.  We need to keep track of a variety of conditional probabilities depending on which previous samples we
allow to overlap the one currently being selected.  These methods do have the advantage of being better able to meet
sample-size targets because it is always possible to adjust the latest conditional selection probability as needed. 

With the kinds of sampling designs we have discussed here, a calibration technique should be used to
estimate an item-specific mean or total (when estimating ratios, by contrast, calibration often provides little of value).
A reasonable  estimator for the model variance and randomization mean squared error of a calibration estimator based
on Sample R, say, is 

                           v =    3    (ajej)
2 (1 ! BjR),                                                                       (3)

                                                                          j0SR 
where aj    is the calibrated weight for farm j, 
           ej    is the item-specific residual for farm j, and 
           BjR  is the effective unconditional selection probability of farm j for Sample R.
We are now allowing the possibility that Sample R is co-ordinated with a number of previous samples and not just
the union of all previous samples taken as a whole.   The variance estimator v is missing terms of the form
(ajej)(akek)(Bjk ! BjBk), where Bjk is the product of joint conditional probabilities of selection.  Unless the R samples
are all Poisson (so Bjk = BjBk when j � k), this omission renders v in equation (3) biased as an estimator for
randomization mean squared error.  It is doubtful, however, that the bias will be of practical importance. 

NASS actually uses a jackknife to estimate variances, which is asymptotically equivalent in expectation to
ignoring the finite population correction terms (the (1 ! BjR)) in equation (3).  Kott (1997) discusses the need for the
model on which the calibration is based to include an intercept when Poisson sampling is used.

In practice, all three techniques, generalized, modified, and Poisson PRN, may be used in combination.



Allocation using the multivariate schemes described in Bailey and Kott (1997) is not an exact science, so it may not
be imprudent to truncate effective unconditional selection probabilities liberally if not universally (i.e., often, but not
always).     
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