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Summary

The National Agricultural Statistics Service (NASS)
surveys the United States population of farm
operators numerous times each year. The list
components of these surveys are conducted using
independent designs, each stratified differently. By
chance, NASS samples some farm operators in
multiple surveys, producing a respondent burden
concern. Two methods are proposed that reduce
this type of respondent burden. The first method
uses linear integer programming to minimize the
expected respondent burden. The second method
samples by any current sampling scheme, then,
within classes of similar farm operations, it
minimizes the number of times that NASS samples
a farm operation for several surveys.

The second method reduces the number of times
that a respondent is contacted twice or more within
a survey year by about 70 percent. The first method
will reduce this type of burden even further.

Introduction

The National Agricultural Statistics Service (NASS)
surveys the United States population of farm
operators numerous times each year. Some surveys
are conducted quarterly, others are conducted
monthly and still others are conducted annually.
Each major survey uses a list dominant multiple
frame design and an area frame component that
accounts for that part of the population not on
the list frame. The list frame components of these
surveys constitute a set of independent surveys,
each using a stratified simple random sample design
with different strata definitions. With the current
procedures some individual farm operators are
sampled for numerous surveys while other farm
operators with similar design characteristics are
hardly sampled at all. Within the list frame

component, two methods of sampling are proposed
that reduce this type of respondent burden.

Historically, NASS has attempted to reduce
respondent burden and also reduce variance. In
1979, Tortora and Crank considered sampling with
probability inversely proportional to burden. Noting
a simultaneous gain in variance with a reduction in
burden, NASS chose not to sample with probability
inversely proportional to burden. NASS has reduced
burden on the area frame component of its surveys.
There, a farmer sampled on one survey might be
exempt from another survey, or farmers not key
to that survey might be sampled less intensely.
Statistical agencies in other countries have also
approached respondent burden. For example, the
Netherlands Central Bureau of Statistics does some
co-ordinated or collocated sampling, ingeniously
conditioning samples for one survey on previous
surveys (de Ree, 1983).

Formal Description of Methods I and II

Method I is formally described by four basic tasks.

(a) Cross-classify the population by the stratifi-
cations used in the individual surveys. This
produces the coarsest stratification of the pop-
ulation that is a substratification of each indi-
vidual stratification.

(b) Proportionally allocate each of the individual
stratified samples to the substrata. Use
random assignment between substrata where
necessary.

(c) Apply integer linear programming within each
substratum to assign the samples to the labels
of units belonging to the substratum so that
the respondent burden is minimized.

(d) Randomize the labels to the units of
substratum. The final assignment within each
substratum is a simple random sample with
respect to each of the proportionally allocated
samples.



Method II is formally described by four basic tasks.

(a) Using an equal probability of selection tech-
nique within a stratum, select independent strat-
ified samples for each survey. Notice that the
equal probability of selection criterion permits
efficient zonal sampling techniques on each sur-
vey within strata. Currently, within strata
samples are selected systematically with re-
cords essentially in random order.

(b) Substratify the population by cross-classifying
the individual farm units according to the
stratifications used in the individual surveys.

(c) Randomly reassign within each substratum
the samples associated with units having
excess respondent burden to units having less
respondent burden.

(d) Iterate the reassignment process until it
minimizes the number of times that NASS
samples a farm operator for several surveys in
the substratum.

For both methods, define respondent burden by an
index that represents the comparative burden on
each individual sampling unit in the population.
Each survey considered is assigned a burden value.
When a sampling unit is selected for multiple
surveys, the burden index may be additive or
some other functional form dependent on the
individual survey burden values. Consequently,
each sampling configuration is assigned a unique
respondent burden index.

For any reasonable respondent burden index, the
first method minimizes the expected respondent
burden. This follows easily from the following
observations, where it is assumed that for each
of the original surveys an equal probability of
selection mechanism (epsm) is used within strata.
First, from the independence of the original sample
designs, it follows that for each individual unit the
expected burden from the original stratified samples
is equal to the expected respondent burden using
proportional allocation followed by epsm sampling
within substrata. Since the respondent burden
over any population is the sum of the respondent
burden on the individuals of the population, the
equality holds for the entire population or any
subpopulation including the substrata. That is,
the expected respondent burden over any arbitrary
substratum for the proportionally allocated samples
is equal to the expected respondent burden of

the original stratified sample allocations over the
substratum. Originally, these allocations are
random to each substratum, constrained only so
that the substratum sample sizes sum to their
stratum sample size. Second, for the first method
the respondent burden is minimized over each
substrata by the linear programming step.

Regarding variance reduction, this means that if the
original sample was selected using simple random
sampling within each stratum, then the first method
reduces respondent burden without any offsetting
increase in variance, since proportional allocation
is at least as efficient as simple random sampling.
However, the first method would be less efficient
for variance than zonal sampling unrestricted by
burden. But the second method, by reallocating
some zonal sampling units to reduce respondent
burden, may only slightly increase variance over no
reallocation and then only when zonal sampling is
effective.

A Simple Simulation of Method I

Method I reduces respondent burden in the following
simulation of two surveys. Survey I samples n = 20
from N = 110. Survey II also samples n = 20 from
N = 110, though each of its strata has either a larger
or smaller population size (N.1 = 40 and N.2 = 70)
than the corresponding strata of survey I (N1. = 30
and N2. = 80). Here, the first subscript corresponds
to the first survey, with its strata 1 and 2. Simi-
larly, the second subscript corresponds to the second
survey. For example, N21 = 30 corresponds to the
size of the population in stratum 2 of survey I and
in stratum 1 of survey II, while n̄

(1)
21 = 3.75 corre-

sponds to the proportional allocation of survey I’s
stratum 2 sample, n

(1)
2. = 10, to the population in

both stratum 2 of survey I and stratum 1 of survey
II.

Survey I Survey II

Stratum 1 Stratum 2

N11 = 10 N12 = 20 N1· = 30

Stratum 1 n̄
(1)

11
= 3.33 n̄

(1)
12

= 6.67 n
(1)
1· = 10

n̄
(2)

11
= 2.5 n̄

(2)
12

= 2.85

N21 = 30 N22 = 50 N2· = 80

Stratum 2 n̄
(1)

21
= 3.75 n̄

(1)
22

= 6.25 n
(1)
2· = 10

n̄
(2)

21
= 7.5 n̄

(2)
22

= 7.15

N·1 = 40 n
(2)
·1 = 10 N·2 = 70 n

(2)
·2 = 10



With two surveys, at most we will sample a
respondent twice. For the above two surveys,
without any proportional allocation, we simulated
two independent stratified simple random samples 3
million times. These simulated samples produced,
on average, 3.6 double hits for the whole population
of 110 potential respondents, and four percent of
the simulations produced 7 or more double hits.
With the proportional allocations indicated in the
diagram for Method I, the population exceeds the
total sample for both surveys in each substratum,
so no sampling unit needs to be selected for
both surveys. The high respondent burdens of
independent sampling are reduced to 0 double hits
with Method I!

Operational Description

Basic Notation

Let U = {ui}N
i=1 be a finite population of size N.

Suppose that U is surveyed on K occasions and that
on each occasion a different independent stratified
design is used. For these K stratified designs, denote
the survey occasion by k = 1, 2, . . .K and let us use
the following notation.
H(k) :the number of strata for design k,

U(k)
h

:the units (the set of them) in stratum h for design k,

N
(k)
h

:the size of stratum h for design k,

n
(k)
h

:the sample size in stratum h for design k,

f
(k)
h

= n
(k)
h

/N
(k)
h

:the sampling fraction in stratum h for design k,

n(k) =

H(k)∑
h=1

n
(k)
h

:the overall sample size for design k, and

N = N(k) =
∑H(k)

h=1
N

(k)
h

:the overall population size.

Remark

Requiring the population to be exactly the same for
each survey may seem rather restrictive. However
it is not, since, for each survey, one can easily
introduce an extra stratum that contains the units
not covered by that survey. Obviously the sample
sizes associated with the extra noncovered strata are
taken to be zero. This permits one to apply either
Method I or Method II over years.

Warning: In multiyear applications, care must be
taken to ensure that no information from the sample
data is used to update any of the frames being
considered. Failure to do so can lead to biased

estimates. These are the same restrictions that
apply to the permanent random number techniques
discussed by Ohlsson (1993).

Method I

Using this notation for Method I, we next describe a
sequence of simple data manipulation steps that can
be used operationally to perform tasks (a) through
(d) on page 1 for each of the K surveys.

Suppose that each unit, ui, of the population U has
been stratified for each of the K surveys. Further
suppose that this information has been entered into
a file containing N records, so that the ith record
contains the stratification information for unit i. To
be definitive, assume that the variable S(k) denotes
the stratum classification code for survey k and
that S(k : i) denotes the value of the stratum
classification code for unit ui.

For each survey k (k = 1, 2, . . . , K) perform the fol-
lowing sequence of operations.

(a) Sort the data file by the variables S(k), . . . ,
S(K), S(1), . . . , S(k − 1). This will
hierarchically arrange the records of the
population, first by the stratification of survey
k, by the stratification of survey k + 1
within the stratification of survey k, then
by the stratification of survey k + 2 within
the stratification of survey k + 1, . . . , by
the stratification of survey K within the
stratification of survey K − 1, then by
the stratification of survey 1 within the
stratification of survey K, . . . , then by
the stratification of survey k − 1 within the
stratification of survey k − 2. In terms of the
substrata formed by the cross-classification,
the records of the population are arranged
sequentially after sorting as

U (k,k + 1,. . . ,K,1,. . . ,k − 2,k − 1)
1 , 1 ,. . . , 1 ,1,. . . , 1 , 1 ,

U (k,k + 1,. . . ,K,1,. . . ,k − 2,k − 1)
1 , 1 ,. . . , 1 ,1,. . . , 1 , 2 ,

...

U (k,k + 1,. . . ,K,1,. . . ,k − 2, k − 1 )

1 , 1 ,. . . , 1 ,1,. . . , 1 ,H(k-1) ,

U (k,k + 1,. . . ,K,1,. . . ,k − 2,k − 1)
1 , 1 ,. . . , 1 ,1,. . . , 2 , 1 ,

...

U (k , k + 1 ,. . . , K , 1 ,. . . , k − 2 , k − 1 )

H(k),H(k+1),. . . ,H(K),H(1),. . . ,H(k−2),H(k−1) − 1 ,

U (k , k + 1 ,. . . , K , 1 ,. . . , k − 2 , k − 1 )

H(k),H(k+1),. . . ,H(K),H(1),. . . ,H(k−2),H(k−1)



where

U (k ,. . . , K , 1 ,. . . ,k − 1)
hk,. . . ,hK ,h1,. . . ,hk−1

= U (k)
hk

⋂
. . .

⋂U (K)
hK

⋂U (1)
h1

⋂
. . .

⋂U (k−1)
hk−1

= U (1)
h1

⋂
. . .

⋂U (k−1)
hk−1

⋂U (k)
hk

⋂
. . .

⋂U (K)
hK

= U (1 , 2 ,. . . ,k − 1, k ,k + 1,. . . , K )
h1,h2,. . . ,hk−1,hk,hk+1,. . . ,hK

Both the size and sequential arrangement of
the substrata of stratum h for survey k are
displayed schematically as

N
(k,k + 1,. . . ,K,1,. . . ,k − 2,k − 1)
h , 1 ,. . . , 1 ,1,. . . , 1 , 1

N
(k,k + 1,. . . ,K,1,. . . ,k − 2,k − 1)
h , 1 ,. . . , 1 ,1,. . . , 1 , 2

...

N
(k,k + 1,. . . , K , 1 ,. . . ,k − 2,k − 1)

h ,hk+1,. . . ,hK ,h1,. . . ,hk-2 ,hk-1

...

N
(k, k + 1 ,. . . , K , 1 ,. . . , k-2 , k-1 )

h ,H(k+1),. . . ,H(K),H(1),. . . ,H(k-1)-2,H(k-1)-1

N
(k, k + 1 ,. . . , K , 1 ,. . . , k-2 , k-1 )

h ,H(k+1),. . . ,H(K),H(1),. . . ,H(k-1)-1,H(k-1)

where
N

(k ,. . . , K ,1,. . . ,k − 1)
hk,. . . ,hK ,1,. . . ,Hk−1

denotes the number of units in

U (k ,. . . , K ,1,. . . , k − 1 )
hk,. . . ,hK ,1,. . . ,Hk − 1

.

(b) To randomly proportion the sample n
(k)
h for

stratum h of survey k to the subintervals of
stratum k:

(1) Divide the length of stratum h for
survey k, N

(k)
h , into a sequence of

n
(k)
h subintervals of integer length that

differ in length by at most 1. Do

this by forming
N

(k)
h

n
(k)
h

as yet unpopulated

subintervals, each with the length n
(k)
h ,

leaving N
(k)
h −

([
N

(k)
h

n
(k)
h

]
n

(k)
h

)
imagi-

nary population units to be assigned.
Randomly distribute these remaining
imaginary units (without replacement)

to the
[

N
(k)
h

n
(k)
h

]
subintervals. Now

populate these subintervals by randomly
selecting a starting unit from the N

(k)
h

units. This starting unit begins the
first subinterval, with its size randomly

determined as above,
[

N
(k)
h

n
(k)
h

]
or

[
N

(k)
h

n
(k)
h

]
+

1. Sequentially continue to populate the
above subintervals, wrapping around to
the first unit for one of the subintervals.
This method of forming subintervals
will let us keep the same probability

of selection
n

(k)
h

N
(k)
h

for each unit in that

subinterval. It does not choose a sample.

(2) Randomly select an integer from each sub-
interval [while this integer corresponds to
a population unit, it is not used here to
select that population unit–for that, see
(d) below].

The number of these random integers falling
in the interval corresponding to

N
(k ,k + 1,. . . , K , 1 ,. . . ,k − 2,k − 1)
hk,hk+1,. . . ,hK ,h1,. . . ,hk-2 ,hk-1

in the sequential ordering is the size of the
randomly proportioned sample for survey k to
be drawn from the substratum population

U (k ,k + 1, . . . , K , 1 , . . . , k − 2 , k − 1 )
hk,hk+1, . . . ,hK ,h1, . . . ,hk − 2,hk − 1

.

Denote this sample size for the substratum by

m
(k ,k + 1,. . . , K , 1 ,. . . , k − 2 , k − 1 )
hk,hk+1,. . . ,hK ,h1,. . . ,hk − 2,hk − 1

or
m

(k)
h1,...,hk,hk+1,...,hK

where the subscripts in the last expression are
understood to be in natural order.

Repeating steps (a) and (b) above for
each of the K surveys, we have randomly
proportioned the K original stratified sample
sizes to the substrata.

(c) Next we describe how to use integer linear
programming to assign within a substratum
the above proportioned samples to the
substratum unit labels–not specific population
units yet. We do this so that the respondent
burden is minimized for an arbitrary positive
linear respondent burden function (index).

Suppose that m(1), m(2), . . . , m(K) samples
have been randomly proportioned to a
substratum of size M . Clearly the random
proportioning procedure described above
insures that m(k) ≤ M for k = 1, 2, . . . , K.



Moreover, if the size of the total sample m =
m(1)+m(2)+. . .+m(K) randomly proportioned
to the substratum is less than or equal to M ,
then any positive linear respondent burden
index is minimized by selecting the total
sample m by simple random sampling (SRS)
without replacement (WOR) where the first
m1 units selected are associated with survey
I, the second m2 units selected are associated
with survey II, etc.

If the size of the total sample m =
m(1) + m(2) + · · · + m(K) is greater than
M , then linear integer programming can
be used to find an assignment of the
total sample to the (unspecified) labels of
the stratum that minimizes the respondent
burden. Reiterating, we are working with
labels here, so we are considering the burden
of an arbitrary unit in the substratum, not the
population units themselves, though we will
use the natural terminology “population unit.”
When assigning samples from K surveys to
the population units, there are 2K possible
ways of assigning the samples to any one
population unit. These possible assignments
can be represented by the 2K K-dimensional
vectors, call them assignment configurations,

~v1 =




0
0
0...
0


 , ~v2 =




1
0
0...
0


 , ~v3 =




0
1
0...
0


 ,

...

~v
K+1 =




0
0
0
0...
1


 , ~v

K+2 =




1
1
0
0...
0


 , ~v

K+3 =




1
0
1
0...
0


 ,

...

~v
2K−1

=




0
1
1
1...
1


 , ~v

2K =




1
1
1
1...
1


 .

where component k of the vector is 1 if
the unit is sampled for the kth survey and
0 otherwise. Now we must determine the
number x1 of the population units to assign
the configuration ~v1, the number x2 to assign
the configuration ~v2, . . . , the number x

2K to

assign the configuration ~v
2K .

Suppose the ith assignment configuration, rep-
resented by the ith assignment configuration
vector ~vi, produces a respondent burden of
bi ≥ 0. Then the problem of assigning the
m(1),m(2), . . . , m(K) samples to the M (un-
specified) unit labels such that the total re-
spondent burden over the substratum is min-
imized is equivalent to minimizing the linear
objective function (respondent burden index)

f(x1, x2, . . . , x2K
)

= b1x1 + b2x2 + . . . + b
2K x

2K

= ~b ~xT

subject to the K + 1 linear constraints




~v1x1 + ~v2x2 + · · ·+ ~v
2K

x
2K

= ~m =

(m(1), m(2), . . . , m(K))′ ← K constraints

x1 + x2 + · · ·x
2K

= M ,

where x1, x2, . . . , x
2K are non-negative inte-

gers.

Since ~vK+2 , . . . , ~v
2K can each be written as

a nonnegative integer combination of ~v2, . . . ,
~vK+1 and since m(k) ≤ M for each k, it is easy
to see that

~v2x2 + ~v3x3 + · · ·+ ~v
2K

x
2K

= (m(2),m(3), . . . , m(K))′

has a solution over the nonnegative integers,
say x2, . . . , x

2K . Setting

x1 = M − x2 − x3 − · · · − x
2K

then provides a feasible solution to the integer
linear programming problem. So there exists
a solution and hence there exists an optimal
solution.

(d) Finally, select specific sampling units ui from
the population. Consider a specific substra-
tum and treat other substrata similarly. From
the results of (c) above, we now randomly choose
x2 farmers from the M substratum farmers
for the configuration ~v2, randomly choose x3

farmers for the configuration ~v3, . . . , randomly
choose x

2K
farmers for the configuration ~v

2K
.

This sample of farmers reduces burden, yet
within each stratum of each survey, this ap-
proach selects farmers with equal probability.
Note that this sample is not a type of
systematic sample–the randomness in (b)-(2)
reveals this.



Method II

In Method II, a sample is selected by some preferred
technique. That sample might be selected by
some equal probability of selection technique using
zonal sampling to reduce variance, eg, by Chromy’s
Procedure, Chromy (1981). Method II largely
retains that sample, but alters it to reduce burden.
Thus Method II alters the sample by redistributing
it within the substrata.

Since this Method II is no more complicated than
Method I and has many similarities to it, the
following description is brief.

(a) Within each stratum of each of the K surveys,
independently select a sample with equal
probability.

(b) Cross-classify the population as in (a) of
Method I. This not only cross-classifies the
population, it also cross-classifies the sample
chosen in (a) of Method II. From the

N
(k ,k + 1,. . . , K , 1 ,. . . ,k − 2,k − 1)
hk,hk+1,. . . ,hK ,h1,. . . ,hk-2 ,hk-1

units in the substratum population

U(k ,k + 1, . . . , K , 1 , . . . , k − 2 , k − 1 )
hk,hk+1, . . . ,hK ,h1, . . . ,hk − 2,hk − 1

,

denote the number sampled by

m
(k ,k + 1,. . . , K , 1 ,. . . , k − 2 , k − 1 )
hk,hk+1,. . . ,hK ,h1,. . . ,hk − 2,hk − 1

.

This subsample size will not be changed, but
it will be distributed among the substratum’s
population in (c) below.

(c) Within a substratum, reassign or swap some
of the surveys associated with a sampling
unit having excess respondent burden to a
sampling unit have less respondent burden. If
the respondent burden index is linear, then
only one survey for one sampling unit need
be reassigned to reduce burden. For example,
when we measure respondent burden by the
number of times we hit a farmer with a survey.
Then we would move one survey from the
farmer who got 4 hits to the farmer who got
0 hits, or to the farmer who got 2 hits if no
farmer got 0 or 1 hit.

If the respondent burden is non-linear,
then sometimes more than one survey must
be reassigned to reduce burden. And
when respondent burden in non-linear, then
sometimes three sampling units (not two)
must swap to ever reduce burden.

(d) Repeat (c) above until no reassignments can
be made. Then respondent burden has been
minimized.

With this method, one might want to retain
most of the original sample selection for the
first survey but not necessarily for the other
surveys. Then, in (c), try to reassign other
surveys before reassigning the first survey.
Sequential application of Method II is justified
since each survey uses equal probability of
selection in each stratum which implies that
all units of a substratum have the same
selection probability for any given assignment
configuration.

Some NASS Examples

NASS administers many surveys with a large
number of strata. For example, the Farm Costs
and Returns Survey (FCRS/COPS) may have 18
strata, the Agriculture Survey may have 17 strata,
and the Labor Survey may have 8 strata. This
many strata over many surveys brings skepticism
to any use of Methods I or II. One would expect
many combinations of strata to contain but one
individual, even for three surveys. Methods I and
II could never reduce burden on such a sparsely
(one individual) populated combination of strata.
Fortunately, most stratum combinations are empty
while other combinations are well populated.

Indeed, not only are many substratum combinations
empty, many survey sampling combinations are
empty. In some initial testing over nine major
surveys, only 58 of the 29 = 512 possible survey
combinations occurred in Kansas and only 62 in
Arkansas based on 1991 data. This fortuitous
limitation on survey combinations gives some
optimism that many combinations of strata will be
well populated. A look at the number of population
units selected for multiple surveys provides further
optimism (see Table 1).

No burden exceeds five surveys. No sampling unit
was selected for more than five surveys, indicating
that the possible number of substrata with only one
unit is limited somewhat.

There is some optimal combination of surveys
to consider when reducing respondent burden by
either Methods I or II. More surveys result in too
few farmers being classified for any of the many
substrata combinations. Fewer surveys prevent



Table 1: Number of Survey Hits over Nine Surveys
in 1991

Arkansas Kansas
Hits Frequency Frequency
0 3491 21474
1 21125 40900
2 6136 8638
3 846 938
4 60 74
5 1 7

Methods I and II from reducing any large burdens
on some farmers; eg, when NASS surveys one farmer
for five different surveys.

In 1991, for the four major surveys – FCRS, Labor,
Quarterly AG, and Cattle/Sheep – NASS initially
sampled the following numbers of farmers.

Survey Arkansas Iowa Kansas
FCRS 666 1836 1356
Labor 576 728 440
Quarterly AG 4442 6477 5881
Cattle/Sheep 1727 5507 3204

Method II reduced burden by about 70 percent
over the three states Arkansas, Iowa and Kansas
in 1991 and 1992. Table 2 below summarizes these
reductions of burden. Since the NASS samples were
essentially random within strata, a huge reduction
can be made in burden with no cost (increase) in
variance.

Table 2: Reduction in Multiple Sample Selections
Using Method II for the FCRS, Labor, Quarterly
AG, and Cattle/Sheep Surveys

Number 1991

Selections Current Method II % Reduction

4 0 0 –

3 159 50 69

2 2620 782 70

Total 2779 832 70

Arkansas 733 205 72

Iowa 1105 252 77

Kansas 941 375 60

Number 1992

Selections Current Method II % Reduction

4 6 4 33

3 112 28 75

2 2371 749 68

Total 2489 781 69

Arkansas 735 124 83

Iowa 801 204 75

Kansas 953 453 52
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