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Balbogin Nandram*, Nathan B. Cruze�, Andreea L. Erciulescu�, Lu Chen§

Abstract

We present a novel methodology to benchmark county-level estimates of crop area totals to a preset
state total subject to inequality constraints and random variances in the Fay-Herriot model. For
planted area of the United States Department of Agriculture, it is necessary to incorporate the
constraint that the estimated totals, derived from survey and other auxiliary data, are no smaller
than administrative planted area totals prerecorded by other agencies. These administrative totals
are treated as fixed and known, and this additional coherence requirement adds to the complexity of
benchmarking the county-level estimates. A fully Bayesian analysis of the Fay-Herriot model offers
an appealing way to incorporate the inequality and benchmarking constraints, and to quantify the
resulting uncertainties, but sampling from the posterior densities involves difficult integration, and
reasonable approximations must be made. First, we describe a single-shrinkage model, shrinking
the means while the variances are assumed known. Second, we extend this model to accommodate
double shrinkage, borrowing strength across means and variances. This extended model has two
sources of extra variation, but because we are shrinking both means and variances, it is expected
that this second model should perform better in terms of precision and goodness of fit. Both models
are applied to simulated data sets with properties resembling the Illinois corn crop.

KEY WORDS: Devroye method; Fay-Herriot model; Grid method; Hierarchical Bayesian model;
Metropolis sampler.
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1 INTRODUCTION

For many problems in official statistics, it is necessary to incorporate constraints in model-based

inference. For example, in small area estimation, there may be constraints on the model estimates,

which are to be benchmarked to a target. These may be known lower (or upper) bounds for county

estimates, which should “add up” to the state estimate, obtained earlier. One practical example is

the estimation of planted acres for counties within states, with a state estimate obtained earlier,

when there are survey data and administrative data that can provide lower bounds to the county

estimates, which are required to add up to the state estimate. While we focus on an application

in agriculture, we develop a methodology to solve the problem in which small area estimates are

needed to satisfy certain lower bounds and these estimates are further benchmarked to an estimate

at a higher level via the top down approach.

In the United States, official county-level estimates of crop yield, total production, and to-

tal acreage published by United States Department of Agriculture (USDA) National Agricultural

Statistics Service (NASS) are important. These official estimates may determine the amount of pay-

ments to be made to farmers and ranchers enrolled in several programs administered by other USDA

agencies including the Farm Service Agency (FSA) and the Risk Management Agency (RMA). Ac-

cordingly, NASS strives to improve the accuracy, reliability, and coverage of its official crop county

estimates. As described in a report titled Improving Crop County Estimates by Integrating Multiple

Data Sources (National Academies of Sciences, Engineering, and Medicine 2017), one way to do

so is to use defensible models that include multiple sources of variability and other auxiliary data.

The report highlighted many of the challenges faced by NASS and emphasized the role model-

based inference can play in the publication of official county estimates. The findings of the report

were further discussed in Cruze et al. (2019), and the authors identified coherence of crop area

estimates with known, same-year administrative acreage totals as a significant need for the NASS

crops county estimates program.

Constraints on estimates may enter in the form of order or shape restrictions (e.g., Nandram,

Sedransk and Smith 1997; Silvapulle and Sen 2005; Chen and Nandram 2022) or in the form

of inequality constraints (Sen and Silvapulle 2002). The latter type of restriction is of particular

interest as it relates to the coherence of tabulated crop estimates in the presence of available
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administrative data curated by USDA. Benchmarking estimates for smaller geographic domains

to those of larger geographic areas is one common form of equality constraint encountered in

official statistics. For example, several past NASS studies have achieved this by ratio adjustment

(raking) made after model output analysis (e.g., Erciulescu, Cruze, and Nandram 2018, 2019,

2020); see also Steorts, Schmid and Tzavidis (2020) and the references therein for an informative

review on benchmarking. While the emphasis of the present work is methodological, we note that

a recent NASS-authored case study and companion paper (Chen, Cruze, and Nandram 2022) on

the constrained planted area problem, single shrinkage model, will appear in a forthcoming issue

in the Journal of Official Statistics, adding to the growing literature on statistical inference under

inequality constraints. Also, we note that our main contributions are on the inequality constraints.

Non-probability data are not devoid of errors. First, it is understood that while participation in

agricultural support programs is popular in the United States, the voluntary enrollment in FSA and

RMA programs contributes to potential under-coverage (a downward bias) in these administrative

acreage totals. Moreover, rates of participation in these support programs may differ each year, by

commodity crop, by state, or even more locally within state. Other nonsampling errors, however,

are believed to be minimized through FSA and RMA quality controls. For example, farmers certify

their enrolled acreages with FSA agents on geolocated field boundaries, and farmers are subject

to penalties for falsifying their reports. With these properties in mind, the available administrative

totals are viewed by NASS and USDA as informative lower bounds and publication of coherent

tabular data on planted area requires: 1) that county acreage totals sum to the state acreage totals

that are published prior to the release of county estimates, and 2) that official county-level planted

area estimates honor the lower bound constraint in each county.

Additionally, we consider possible gains from double shrinkage by borrowing strength from

means and variances simultaneously. Both frequentist and Bayesian model-based estimation tech-

niques for the sampling variances have been considered in the literature for the area-level models.

For example, see Wang and Fuller (2003); You and Chapman (2006); Gonzalez-Manteiga et al.

(2010), Erciulescu and Berg (2014); Maiti, Ren and Sinha (2014); and Dass et al. (2012). Recently,

Erciulescu, Cruze and Nandram (2019) incorporated double shrinkage in estimates of unconstrained

harvested area totals.

Let θ̂i, i = 1, . . . , `, denote the observed direct estimates of total acreage for ` counties, and
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σ̂2i , i = 1, . . . , `, denote the corresponding observed variances for the ` counties; to avoid hat no-

tations when fractions are written, sometimes we prefer to use S2
i instead of σ̂2i . The Fay-Herriot

(area-level) model (Fay and Herriot 1979; see also, Rao and Molina 2015) is a standard model in

small area estimation for the θ̂i where:

θ̂i | θi
ind∼ Normal(θi, σ̂

2
i ), i = 1, . . . , `, (1)

and at the second stage,

θi | β
˜
, δ2

ind∼ Normal(x
˜

′
iβ
˜
, δ2), i = 1, . . . , `, (2)

where x
˜
i is a p-vector of covariates with an intercept and β

˜
is a p-vector of regression coefficients.

In a full Bayesian analysis of this model, prior distributions of model parameters are assumed; a

priori we take π(β
˜
, δ2) = π(β

˜
)π(δ2), where π(δ2) is proper but π(β

˜
) = 1 is improper.

Procedurally, NASS state estimates of planted area (denote these state targets by the scalar

a) are determined and published prior to the publication of county-level estimates. Nandram, Er-

ciulescu and Cruze (2019) developed a full Bayesian Fay-Herriot model incorporating the bench-

marking constraint
∑`

i=1 θi = a directly into the model. This was achieved by deleting the last area

to accommodate the benchmarking constraint. They empirically showed that, in practice, it does

not really matter much which area is deleted in order to incorporate the benchmarking constraint.

We now want to refine this model to accommodate benchmarking and inequality constraints on

the θi. In addition to the benchmarking constraint, we need to add the county-specific inequality

constraints

θi ≥ ci, i = 1, . . . , `, (3)

where the ci are fixed, known quantities that represent administrative values provided by FSA

or RMA. (In practice, when both data sources are present, the larger of the two is used to es-

tablish the lower bound, ci.) In NASS planted acres data, some of the direct estimates of planted

area totals may be more than one or two standard errors below their corresponding ci, thereby

creating some difficulties for the model estimates to be larger than the ci. It is worth noting that
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a =
∑`

i=1 θi ≥
∑`

i=1 ci ≡ c. That is, the estimation processes that generate state targets also respect

the available administrative totals at state level, however, the benchmarking constraint can create

additional difficulties when the target is only slightly larger than c, i.e., as c
a → 1 from below. We

need to add the inequality constraints to the Fay-Herriot model specified in (1), (2) and the priors to

get the joint posterior density of θi, i = 1, . . . , `. In order to incorporate the inequality constraints

into the Bayesian Fay-Herriot model, we propose the following simplification. In departure from

Nandram, Erciulescu and Cruze (2019), we incorporate the inequality constraints directly while

only partially incorporating the benchmarking constraint into the Bayesian Fay-Herriot model.

That is, we will incorporate the constraints, ci ≤ θi, i = 1, . . . , `, together with the restriction that∑`
i=1 θi < a into the model. When the latter inequality is enforced, a raking of model estimates to

the state total a in an output analysis will still satisfy all individual county inequality constraints.

Incorporating double shrinkage into the inequality-constrained model entails additional computa-

tional considerations. Therefore, our key contributions are to provide small area estimates, which

are subjected to inequality constraints, benchmarked to a target, and we describe a single shrinkage

model (sample variances fixed) and two double shrinkage models (sample variances random).

In this paper, we discuss a novel methodology to solve these dual problems by modifying the

Bayesian Fay-Herriot model described in Nandram, Erciulescu, and Cruze (2019) to accommodate

both benchmarking and inequality constraints into the Bayesian area-level models of Equations

(1) and (2). Additionally, we extend the model to accommodate double shrinkage of means and

variances. In Section 2, we introduce the methodology for single-shrinkage model in the presence of

inequality constrained totals. In Section 3, we describe the methodology for the double-shrinkage

model, gamma regression, and the log-linear model is discussed in Appendix B; again double-

shrinkage models incorporate inequality constrained totals. Special emphasis is given to the com-

putation that facilitates these approaches. In Section 4, as confidentiality of USDA survey and

administrative data is a concern, simulated data sets with properties resembling those of the Illi-

nois corn crop are generated and used to fit and assess these models. We offer concluding remarks in

Section 5, noting that constrained acreage methodologies were successfully incorporated in NASS

official statistics beginning with the 2020 crop year.
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2 METHODOLOGYUNDER THE SINGLE SHRINKAGEMODEL

In this section, we develop the methodologies and computational strategies to incorporate in-

equality constraints and benchmarking procedures into the Bayesian area-level models of Equations

(1) and (2). This provides the single shrinkage model in which the sampling variances are assumed

fixed and known.

Our strategy is to use the composition rule (i.e., multiplication rule of probability) to draw

samples from the posterior density π(β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) and then to draw samples from π(θ
˜
| β

˜
, δ2, θ̂

˜
, σ̂
˜

2).

Both of these problems are difficult. In this section, we have used the shrinkage prior for δ2 (i.e.,

π(δ2) = 1/(1 + δ2)2, δ2 > 0) to avoid impropriety of the posterior density. Letting φ = 1/(1 + δ2)2,

then φ ∼ Beta(1, 1) (i.e., uniform) and this is similar to the half Cauchy prior π(δ2) = 1

π
√
δ2(1+δ2)

,

which translates to φ ∼ Beta(.5, .5). In addition, both densities are in the Snedecor f form, where

the first density is a f(2, 2) and the Cauchy version is a f(1, 1); the f(2, 2) is mathematically a bit

more convenient when we transform to (0, 1).

Let V = {θ
˜

: θi ≥ ci, i = 1, . . . , `,
∑`

i=1 θi < a}. Here, this conditional posterior density,

π(θ
˜
| β

˜
, δ2, θ̂

˜
, σ̂
˜

2), is subject to the inequality constraint and the constraint
∑`

i=1 θi < a, where a is

the benchmarking target. Note that the inequality is strict because with the equality, one of the θi

becomes redundant. This redundancy has to be taken into consideration when the model is fit (a

much more difficult problem), but with the inequality constraint we do not need to do so (a much

easier problem). That is, we need to draw θ1, . . . , θ` subject to the constraints θi ≥ ci, i = 1, . . . , `

and
∑`

i=1 θi < a. Note again that the benchmarking constraint is only partially included in the

Fay-Herriot model. We will use a Gibbs sampler to carry out this sampling procedure, and the

benchmarking constraint will be fully incorporated in an output analysis from the Gibbs sampler

using a raking procedure.

The joint prior density is

π(θ
˜
, β
˜
, δ2) = π(β

˜
, δ2)

∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}/δ∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}/δ dθ
˜

, θ
˜
∈ V, (4)

where φ(·) is the standard normal density. Indeed, this is a very awkward joint prior density with

the normalization constant a function of (β
˜
, δ2). Then, using Bayes’ theorem, the joint posterior

6



density is

π(θ
˜
, β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) ∝ π(β
˜
, δ2)

∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

[
∏̀
i=1

φ{(θi − θ̂i)/σ̂i}], θ
˜
∈ V. (5)

It is difficult to use Markov chain Monte Carlo methods to efficiently draw samples from π(θ
˜
, β
˜
, δ2 |

θ̂
˜
, σ̂
˜

2) in (5).

We now show how to draw samples from π(θ
˜
, β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) using numerical integration, the Gibbs

sampler and the Metropolis sampler. [Note that in the discussion below, apart from
∑`

i=1 θi < a, it

does not matter whether we use “less than or equal” symbols because the θi are continuous random

variables.]

We first show how to draw the θi using the Gibbs sampler. For the constraints, we have ci ≤

θi, i = 1, . . . , `, and
∑`

i=1 θi < a. This means that
∑`

i=1 ci <
∑`

i=1 θi < a, and so max(ci,
∑̀
j=1

cj −

∑̀
j=1,j 6=i

θj) < θi < a −
∑̀

j=1,j 6=i
θj , i = 1, . . . , `. Therefore, the support of the conditional posterior

density of θi given θ
˜
(i) = (θ1, . . . , θi−1, θi+1, . . . , θ`)

′, is

max(ci,
∑̀
j=1

cj −
∑̀

j=1,j 6=i
θj) < θi < a−

∑̀
j=1,j 6=i

θj , i = 1, . . . , `.

It is easy to show that the conditional posterior density is

θi | θ
˜
(i), β

˜
, δ2, θ̂

˜
, σ̂2

˜
∼ Normal{λiθ̂i + (1− λi)x

˜

′
iβ
˜
, (1− λi)δ2}, λi = δ2/(δ2 + σ̂2i ),

ui = max(ci,
∑̀
j=1

cj −
∑̀

j=1,j 6=i
θj) < θi < a−

∑̀
j=1,j 6=i

θj = vi, i = 1, . . . , `. (6)

Now, we want to draw θi subject to the constraint, ui ≤ θi ≤ vi. To sampleX ∼ Normal(µ, σ2), a ≤

X ≤ b, we have the following result (see Devroye 1986),

X = µ+ σΦ−1
{

(1− U)Φ(
a− µ
σ

) + UΦ(
b− µ
σ

)

}
,
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where U ∼ Uniform(0, 1) and Φ(·) and Φ−1(·) are respectively the cdf and the inverse cdf of the

standard normal density. We use the Gibbs sampler to draw a sample θ
˜

in (6). This is obtained by

drawing ui ≤ θi ≤ vi, i = 1, . . . , n, each in turn.

The final step is to rake up θ1, . . . , θ` to the target a for each iterate. So that the final iterates

are

θ̃i =
a∑`
j=1 θj

θi, i = 1, . . . , `,

and posterior inference can be made about θ1, . . . , θ` using these raked vectors of iterates. It is now

clear why
∑`

i=1 < a. Note again that this is a straight forward output analysis from the Gibbs

sampler.

We next show how to draw samples from π(β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) using numerical integration and the

Metropolis sampler. The joint posterior density of (β
˜
, δ2) is

π(β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) ∝ π(β
˜
, δ2)

∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}φ{(θi − θ̂i)/σ̂i} dθ
˜∫

θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

,

which, by completing the squares, can be simplified to

π(β
˜
, δ2 | θ̂

˜
, σ̂
˜

2) ∝ π(β
˜
, δ2)[

∏̀
i=1

φ{(θ̂i − x
˜

′
iβ
˜

)/
√
δ2/λi}]R(β

˜
, δ2), (7)

with

R(β
˜
, δ2) =

∫
θ
˜
∈V

∏̀
i=1

φ{(θi − µi)/τi} dθ
˜∫

θ
˜
∈V

∏̀
i=1

φ{(θi − x
˜

′
iβ
˜

)/δ} dθ
˜

,

where µi = λiθ̂i + (1− λi)x
˜

′
iβ
˜

and τ2i = (1− λi)δ2, i = 1, . . . , `. We will use the Metropolis sampler

to fit (7). There are two key issues, which are to construct an efficient proposal density and to

compute the ratio, R(β
˜
, δ2), of the two integrals in (7).

First, we consider how to construct a proposal density. We have samples of (β
˜
, δ2) from the

Fay-Herriot model. We can now transform δ2 to βp+1 = log(δ2) and add it as the last component

to get a new vector β
˜

with p+1 components. Now fit a multivariate normal density to the samples,

β
˜
∼ Normal(β̂

˜
, σ2Σ̂), where β̂

˜
and Σ̂ are the posterior mean and covariance matrix of the samples
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from the Fay-Herriot model, and η/σ2 ∼ Gamma(η/2, 1/2) to complete the (p+1)-variate Student’s

t density on η degrees of freedom, where η is a tuning constant.

Second, we describe how to estimate the ratio of the integrals in (7). Let Ṽ = {θ
˜

: ci < θi <

∞, i = 1, . . . , `}; we have actually selected an upper bound for each θi. Note that V ⊂ Ṽ , and

perhaps Ṽ is not much bigger than V . Let I(θ
˜
∈ V ) = 1 if θ

˜
∈ V and I(θ

˜
∈ V ) = 0 otherwise.

Then,

R(β
˜
, δ2) =

∫
θ
˜
∈Ṽ

I(θ
˜
∈ V )

∏̀
i=1

φ{(θi − µi)/τi} dθ
˜∫

θ
˜
∈Ṽ

I(θ
˜
∈ V )

∏̀
i=1

φ{(θi − x
˜

′
iβ
˜

)/δ} dθ
˜

.

Now, R(β
˜
, δ2) can be calculated using Monte Carlo methods. As an importance function, we use

the conditional posterior densities of the θi, i = 1, . . . , `, constrained on Ṽ . That is,

θi | β
˜
, δ2

ind∼ Normal(µi, τ
2
i ), ci < θi <∞, i = 1, . . . , `. (8)

It is now easy to draw samples θ
˜

(h), h = 1, . . . ,M , in (8), where M ≈ 1000 or so; see Devroye

(1986). Then, a Monte Carlo estimator of R(β
˜
, δ2) is

R̂(β
˜
, δ2) =

M∑
h=1

I(θ
˜

(h) ∈ V )

M∑
h=1

I(θ
˜

(h) ∈ V )

[∏̀
i=1

φ{(θ(h)i − x
˜

′
iβ
˜

)/δ}
φ{(θ(h)i − µi)/τi}

] .

Note that for each h, once θ
(h)
i , i = 1, . . . , `, are drawn from the proposal density, we simply need

to check that
∑`

i=1 θ
(h)
i < a. However, it is possible that this Monte Carlo estimator does not exist,

and this clearly occurs when θ
˜

(h) 6∈ V, h = 1, . . . ,M (all M), and in this case we use the modified

estimator,

̂Rm(β
˜
, δ2) =

[
1

M

M∑
h=1

∏̀
i=1

φ{(θ(h)i − x
˜

′
iβ
˜

)/δ}
φ{(θ(h)i − µi)/τi}

]−1
.

That is, we simply replace V by Ṽ to form an approximation in the case that the Monte Carlo

estimator might not exist. In either case, we have drawn the θi as in (8), where θi | β
˜
, δ2

ind∼

Normal(µi, τ
2
i ), ci < θi <∞, i = 1, . . . , `. It is possible for some of the θ

˜

(h) to be in V , and in this

9



case if the number of θ
˜

(h) ∈ V is at least M/2, we use the former estimator.

Our procedure gives us 1, 000 samples from the posterior density of (β
˜
, δ2) using the Metropolis

sampler. Then the more important samples of θ1, . . . , θ` are obtained using the Gibbs sampler. For

each of the 1, 000 iterates of (β
˜
, δ2) from the Metropolis sampler, we run the Gibbs sampler to say,

100 iterations or so, and pick the last set of θ1, . . . , θ`. This is not too expensive and it is reasonably

efficient. In this method, it is not really necessary to monitor the Gibbs sampler for convergence

because we need only one value but a “burn-in” is required.

3 METHODOLOGYUNDER THE DOUBLE SHRINKAGEMODEL

Two double shrinkage models are introduced, where we model both the sample variances and the

means. The inequality constraints are also included. Here borrowing of strength occurs via both the

means and the variances. For the specification of variances, the first uses a gamma regression model

and the second uses a log-linear model. In Section 3, we model the sample variances using gamma

regression; Section 3.1 describes the method and Section 3.2 describes the computation; further

computations are shown in Appendix A. In Appendix B, we describe the second double shrinkage

model for the sample variances using the log-linear model. Even a full Bayesian treatment of the log-

linear model offers remarkable computational advantages relative to the gamma regression model.

3.1 Gamma Regression Model

For ` areas, we have the survey estimates θ̂i, their standard errors Si, and the sample sizes

ni ≥ 2 (sample sizes must be at least 2). We start with a convenient model that builds upon our

work on the Fay-Herriot model. We assume that

θ̂i | θi, σ2i
ind∼ Normal(θi, σ

2
i ), i = 1, . . . , `,

(ni − 1)S2
i

σ2i
| σ2i

ind∼ Gamma(
ni − 1

2
,
1

2
), i = 1, . . . , `,

where X ∼ Gamma(a, b) means that f(x) = baxa−1e−bx/Γ(a), x ≥ 0. Note that we are assuming θ̂i

and S2
i are independent. Under the first assumption, the θi and σ2i are not estimable, but the first
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and second assumptions together make θi and σ2i estimable. A priori, we assume that

θi | β
˜
, δ2

ind∼ Normal(x
˜

′
iβ
˜
, δ2), i = 1, . . . , `,

σ−2i | α, γ
˜

ind∼ Gamma(
α

2
,
αe−x

˜
′
iγ
˜

2
), i = 1, . . . , `.

These assumptions on θi and σ2i provide double shrinkage (shrinking both means and variances).

Here, we have assumed that the two sets of covariates are the same, but they can, of course, be

different. It is worth noting that the prior for σ2i is conjugate providing some simplicity in the

computations; see Nandram and Erhardt (2004) for similar specifications for the corresponding

binomial and Poisson models. Our prior for the hyperparameters is

π(β
˜
, δ2, γ

˜
, α) ∝ 1

(1 + δ2)2
1

(1 + α)2
, δ2, α ≥ 0.

That is, flat priors are assumed for β
˜

and γ
˜
, shrinkage priors (proper) are assumed on δ2 and α,

and all parameters are independent. Note that δ2 and α are nonnegative, and so we prefer to use

a shrinkage prior. At this point, there are virtually no mathematical, computational or scientific

benefits using other noninformative priors for α.

In our model, we include the inequality constraint, θi > ci, i = 1, . . . , `,
∑`

i=1 θi < a, where a is

the target. Note again that we only partially include the benchmarking constraint. It is convenient

that this is the same region as for single shrinkage model, V = {θ
˜

: θi ≥ ci, i = 1, . . . , `,
∑`

i=1 θi < a}.

Therefore, the prior densities for the θi remain the same,

π(θ
˜
, β
˜
, δ2) = π(β

˜
, δ2)

∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

, θ
˜
∈ V,

where φ(·) is the standard normal density. It is convenient to define Ω = (β
˜
, δ2, γ

˜
, α). Then, the

joint prior density is

π(θ
˜̃
, σ
˜

2,Ω) = π(Ω)

∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ}∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

11



×
∏̀
i=1

{
(αe−x

˜
′
iγ
˜
/2)α/2(1/σ2i )

α/2+1e−(αe
−x

˜
′
iγ
˜
/2σ2

i )/Γ(α/2)

}
, θ

˜
∈ V. (9)

By independence, the joint density of (θ̂
˜
, S
˜

2), is

f(θ̂
˜
, S
˜

2 | θ
˜
, σ
˜

2,Ω) =
∏̀
i=1

{
1

σi
φ{ θ̂i − θi

σi
}

×
∏̀
i=1

{
{[(ni − 1)/2σ2i ]

(ni−1)/2(s2i )
(ni−1)/2−1e−(ni−1)s2i /2σ2

i }/Γ{(ni − 1)/2}
}
. (10)

Finally, using Bayes’ theorem, the joint posterior density is proportional to the product of (9)

and (10) and it can be shown to be

π(θ
˜
, σ
˜

2,Ω | θ̂
˜
, S
˜

2) ∝ π(β
˜
, δ2, γ

˜
, α)

1∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

×
∏̀
i=1

{
(αe−x

˜
′
iγ
˜
/2)α/2(1/σ2i )

α/2+1e−(αe
−x

˜
′
iγ
˜
/2σ2

i )/Γ(α/2)

}

×
∏̀
i=1

{
1√

(1− λi)δ2
φ

(
θi − (λiθ̂i + (1− λi)x

˜

′
iβ
˜

)√
(1− λi)δ2

)
1√
δ2/λi

φ(
θ̂i − x

˜

′
iβ
˜√

δ2/λi
)

}

×
∏̀
i=1

{
[(ni − 1)/2σ2i ]

(ni−1)/2e−(ni−1)s2i /2σ2
i

}
, θ

˜
∈ V, (11)

where λi = δ2/(δ2 + σ2i ), i = 1, . . . , `.

It now follows from (11) that the conditional posterior densities of the θi are

θi | σ
˜

2,Ω, θ̂
˜
, S
˜

2 ind∼ Normal{λiθ̂i + (1− λi)x
˜

′
iβ
˜
, (1− λi)δ2}, i = 1, . . . , `, θ

˜
∈ V. (12)
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Now, one can integrate out the θi from (11) to get the joint conditional posterior density of σ
˜

2,

π(σ
˜

2 | Ω, θ̂
˜
, S
˜

2) ∝
∫
θ
˜
∈V

∏̀
i=1

φ{θi − (λiθ̂i + (1− λi)x
˜

′
iβ
˜

)√
(1− λi)δ2

}/
√

(1− λi)δ2 dθ
˜

×
∏̀
i=1

{√
λiφ(

θ̂i − x
˜

′
iβ
˜√

δ2/λi
)

}∏̀
i=1

{
(1/σ2i )

(ni+α−1)/2+1e−{(ni−1)S2
i +αe

−x
˜
′
iγ
˜
}/2σ2

i

}
. (13)

Note that the term,
∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜
, is not a function of the σ2i and has been elimi-

nated together with other such terms.

Now, one can integrate out the σ2i from (11) to get the joint posterior density of Ω,

π(Ω | θ̂
˜
, S
˜

2) ∝ π(β
˜
, δ2, γ

˜
, α)

∏̀
i=1

{
Γ(α/2)

(αe−x
˜
′
iγ
˜
/2)α/2

Γ(ni + α− 1)/2)

{((ni − 1)S2
i + αe−x

˜
′
iγ
˜

)/2}(ni+α−1)/2

}

× 1∫
θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜

)/δ} dθ
˜

∫
σ
˜

2

[∫
θ
˜
∈V

∏̀
i=1

φ{θi − (λiθ̂i + (1− λi)x
˜

′
iβ
˜

)√
(1− λi)δ2

}/
√

(1− λi)δ2 dθ
˜

×
∏̀
i=1

{
1√
δ2/λi

φ(
θ̂i − x

˜

′
iβ
˜√

δ2/λi
)IGσ2

i
(ai, bi)

}]
dσ

˜

2, (14)

where ai = (ni + α − 1)/2 and bi = {(ni − 1)S2
i + αe−x

˜
′
iγ
˜
}/2 and IGc(a, b) is the inverse gamma

density, which is given by f(c) = ba(1c )
a+1e−b/c/Γ(a), c > 0.

3.2 Computation for the Gamma Regression Model

Our strategy is to draw samples from the joint posterior density of Ω in (14). This is a difficult

task, but once this is accomplished, we can use the multiplication rule to draw samples of the σ2i

from (13) and then the θi from (12). This strategy is useful if there are a large number of counties;

the state of Texas has 254 counties. We draw the θi in the same manner as described in Section 2.

It is more difficult to draw samples of σ2i . We describe how to draw samples from Ω in (14). The

basic strategy has two key steps.
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First, we fit the double shrinkage model without the inequality constraints and the benchmark-

ing. This gives an approximate sample of size M = 1000 iterates from the posterior density of Ω

that we obtained using a Metropolis sampler. The details of this first step are given in Appendix A.

Second, we convert this approximate sample to a sample from the posterior density with the

inequality constraint and the benchmarking. We use the M iterates from the first step to construct

a multivariate Student’s t density for (β
˜
, log(δ2), γ

˜
, log(α)). At each of the iterate obtained from

the first step, we run a Metropolis sampler with the multivariate Student’s t density 100 times and

picked the last one. In this divide-and-conquer manner, we minimize the chance of the Metropolis

sampler getting stuck. We want the Metropolis sampler to move from the starting value at least

once; no other monitoring is necessary; if it does not move at least once, we discard this run. It

is good that this procedure gives a sample of M independent iterates of Ω. However, this step is

time-consuming and for the current simulated data it took roughly sixteen hours.

Now, we describe how to use the accept-reject algorithm to draw samples of σ2i . We can rewrite

(13) as

π(σ
˜

2 | Ω, θ̂
˜
, S
˜

2) ∝
∫
θ
˜
∈Ṽ

∏̀
i=1

φ{θi − (λiθ̂i + (1− λi)x
˜

′
iβ
˜

)√
(1− λi)δ2

}/
√

(1− λi)δ2dθ
˜

×
∏̀
i=1

{√
λiφ(

θ̂i − x
˜

′
iβ
˜√

δ2/λi
)

}∫
θ
˜
∈Ṽ

I(θ
˜
∈ V )

∏`
i=1 φ{

θi−(λiθ̂i+(1−λi)x
˜
′
iβ
˜
)√

(1−λi)δ2
}/
√

(1− λi)δ2∫
θ
˜
∈Ṽ
∏`
i=1 φ{

θi−(λiθ̂i+(1−λi)x
˜
′
iβ
˜√

(1−λi)δ2
)}/
√

(1− λi)δ2dθ
˜

dθ
˜

×
∏̀
i=1

{
(1/σ2i )

(ni+α−1)/2+1e−{(ni−1)S2
i +αe

−x
˜
′
iγ
˜
}/2σ2

i

}
, (15)

where Ṽ ⊇ V and Ṽ is a larger rectangular set.

Note that the first and third terms in (15) are probabilities. It is also true that the second

term in (15) is a probability because
∏`
i=1

{√
λiφ(

θ̂i−x
˜
′
iβ
˜√

δ2/λi
)

}
≤ { 1√

2π
}`. Therefore, we can use an

accept-reject sampler to draw the σ2i .

Note that, by construction, the first term in (15) is a product over i = 1, . . . , `. This is also true

for the second term. So if we ignore the third term, we can independently draw σ2i
ind∼ IG(ai, bi), i =
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1, . . . , ` (unrestricted distributions) and take it with probability,

∫
θ
˜
∈Ṽ

φ{θi − (λiθ̂i + (1− λi)x
˜

′
iβ
˜

)√
(1− λi)δ2

}/
√

(1− λi)δ2dθ
˜
×

{√
λiφ(

θ̂i − x
˜

′
iβ
˜√

δ2/λi
)

}

to complete the accept-reject algorithm. It is possible that there are several rejections before an

acceptance, but this rarely happens. If there are 25 rejections, we simply draw the σ2i from their

unrestricted distributions, σ2i
ind∼ IG(ai, bi), i = 1, . . . , `.

The remaining question then is how to calculate

C =

∫
θ
˜
∈Ṽ

I(θ
˜
∈ V )

∏`
i=1 φ{

θi−(λiθ̂i+(1−λi)x
˜
′
iβ
˜
)√

(1−λi)δ2
}/
√

(1− λi)δ2∫
θ
˜
∈Ṽ
∏`
i=1 φ{

θi−(λiθ̂i+(1−λi)x
˜
′
iβ
˜
)√

(1−λi)δ2
}/
√

(1− λi)δ2dθ
˜

dθ
˜
.

A Monte Carlo estimator of C is

Ĉ =
1

M

M∑
h=1

I(θ
˜

(h) ∈ V ),

where θ
(h)
i

ind∼ Normal{λiθ̂i + (1 − λi)x
˜

′
iβ
˜
, (1 − λi)δ2}, ci < θ

(h)
i < ∞, h = 1, . . . ,M = 1000, i =

1, . . . , `.

However, the term, 1
M

∑M
h=1 I(θ

˜

(h) ∈ V ), is difficult to incorporate into the accept-reject sam-

pler. We have overcome the difficulty in the following manner. We have computed Ĉ and found

that more than 60% of the Ĉ leads to acceptance of all the σ2i , i = 1, . . . , `. When the σ2i are not

accepted, we draw samples from their unrestricted distributions, σ2i
ind∼ IG(ai, bi), i = 1, . . . , `.

4 SIMULATION STUDY

Both NASS survey data and USDA administrative acreage data are subject to confidentiality

protections, therefore, we describe a means of simulating data with similarity to Illinois corn crop

data that have been used extensively in recent NASS studies on crop county estimates and use it

to show the key features of our benchmarking procedure with inequality constraints. As a practical

matter, participation in farm support programs can vary by crop and by state. Some of the survey

estimates may already satisfy the lower bound constraint, i.e., some θ̂i > ci, so that the lower bound
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constraints imposed on model estimates for these areas may be loose or non-binding restrictions in

those counties. However, in states with high rates of enrollment in farm support programs, like the

corn crop in Illinois, administrative totals may capture large parts of the population, so that direct

estimates, subject to sampling error, fall below to the administrative totals in many counties. The

model estimates of the counties must be constrained by the lower bounds and the benchmarking

target as well.

In Section 4.1, we describe the simulation plan, where we describe several simulated data sets.

In Section 4.2, we present results under the single shrinkage model with the inequality constraints.

In Section 4.3, we present results under the double shrinkage model for the gamma regression model

and the log-linear model, again with the inequality constraints. At the same time, we have compared

these models with the direct estimates (DE), the estimates from the Bayesian Fay-Herriot model

(ME), without benchmarking or inequality constraints, and the Bayesian Fay-Herriot model with

random benchmarking (MERB) at both the county level and at the level of agricultural statistic

districts (discussed below).

4.1 Description of the Simulated Data Sets

Nandram, Erciulescu, and Cruze (2019) simulated a data set similar to the one in Battese,

Harter and Fuller (1988); see also Toto and Nandram (2010) and Nandram, Toto and Choi (2011).

These data are on planted acres of corn and soybeans for 37 segments with 12 counties in the

state of Iowa and there are two covariates. (Like Illinois, Iowa is a large corn producing state in

the United States.) By simulating from these data, we can create a data set with as many areas

we please. In particular Illinois has ` = 102 counties grouped in 9 smaller-than-state regions called

Agricultural Statistics Districts (ASDs). The data are processed to obtain the survey estimates and

standard errors. In our simulated data, based on the actual sizes of the ASDs, we have taken the

first set of counties to be in the first ASD, the second set to be in the second ASD and so on

so that the first 12 counties correspond to the first ASD, the next 11 correspond to the second,

and the remaining ASDs have 9, 11, 7, 13, 15, 12, 12 counties, respectively. In the process of

simulating acreage data, we also added a random effect for each ASD. The sample sizes within the

counties are chosen uniformly in (2, 74), a realistic range of sample sizes across the state comparable

to actual Illinois corn data reported during the 2014 crop year (Erciulescu, Cruze, and Nandram
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2018, 2019). Additionally, county-level coefficients of variation CVi will be simulated uniformly

from within the range of (.08, .93); these extremes are comparable to values reported in Erciulescu,

Cruze, and Nandram (2020) in reference to the 2015 crop year. Given simulated survey estimates

and coefficients of variation, computed standard errors are obtained σ̂i = CVi × θ̂i. Thus, we have

a data set with the survey estimates, θ̂i, survey standard error, σ̂i and sample sizes, ni for the ith

county, i = 1, . . . , `.

The last piece to be simulated is the data corresponding to the administrative acreage values,

i.e., lower bounds, ci. For simplicity, we call these the FSA values throughout the simulation. In

order to reflect the relationship between the FSA values and the survey estimates for Illinois, we

assume the following equation holds,

ci = θ̂i + Ui × θ̂i, i = 1, . . . , `,

where Ui
iid∼ Uniform(−s, s) and s is taken to be a suitable value (e.g., s = .10). However, the

key problem is how to set the benchmarking target. In the real problem, we will know the target,

but the target has to be larger than the sum of the lower bounds. Therefore, it is sensible to take

the target to be a = c/d, where c ≡
∑`

i=1 ci and specify 0 < d < 1. The completeness of the

administrative data relative to the state total can vary by state and crop, but in Illinois, this value

will often be close to 1.

4.2 Results under the Single Shrinkage Model

In applying the methodology for an inequality-constrained model with fixed variances developed

in Section 2, we specify a plausible value of d = .99 indicating the simulated administrative data

embody 99% of the state-level planted area total for corn in Illinois. In this first instance, we restrict

the range of coefficients of variation to (0.05, 0.25). Figure 1 shows the simulated survey estimates

of θ̂i versus the FSA values ci (top panel) and the posterior mean of θi versus the FSA values ci

under the Bayesian Fay-Herriot model with inequality constraint and benchmarking, not including

double shrinkage (call this model MFSA-NDS). In the top panel, we can see many points are above

or below the 45o straight line through the origin. (This resembles a realistic pattern shown in Figure

4 of Erciulescu, Cruze, and Nandram (2020), as applied to the 2015 Illinois corn crop.) Where the

17



survey estimates for many counties are below their corresponding FSA values, all points in the

bottom are immediately above the 45o straight line through the origin, indicating that all MFSA-

NDS estimates are no smaller than their corresponding FSA values. Moreover, the sum of the 102

MFSA is equal to the state total, satisfying the benchmarking requirement by raking to the state

target.

In Table 1, we present results for Illinois simulated data. We compare the results with our new

model that incorporates the inequality constraints (FSA values are lower bounds of the model

estimates). Specifically, we compare estimates from DE, ME and MERB and the single shrinkage

Bayesian Fay-Herriot model with inequality constraint and benchmarking (MFSA-NDS).

The minimum, median and maximum posterior coefficients of variation (expressed as percents,

%) are smaller than the other two models (ME, MERB), even more so for the direct estimates

(DE). Of course, as expected, the coefficients of variation for the ASDs are smaller than those for

the counties; there is one exception (5.13 versus 5.31 in Table 1). We note that, as expected, the

coefficients of variation are in decreasing order (DE, ME, MERB, MFSA), and modeling appears

beneficial, but more importantly we can accommodate the FSA values in our model (MFSA) and

provide much smaller coefficients of variation.

Table 1: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, fixed variances

Level Statistic DE ME MERB MFSA-NDS

min 5.13 4.76 4.79 0.57
County median 15.57 10.67 10.58 0.97

max 24.93 15.80 15.34 5.22

min 5.31 2.54 2.39 0.24
ASD median 10.60 3.25 3.01 0.30

max 14.81 3.92 3.51 0.39

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates, CV (.05− .25) and d = .99.

4.3 Results under the Double Shrinkage Model

Fitting the double shrinkage model with the inequality constraints of Section 3 and denoting

these estimates as MFSA-DS, we fit the model to the data already generated for Section 4.2. That
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Figure 1: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-
NDS for θ versus FSA values for Illinois and the simulated data, not double shrinkage, CV (.05−.25)
and d = .99.
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is, data for which the simulated CVi ∈ (0.05, 0.25) and d = .99. Summaries of the coefficients in

variation for the MFSA-DS are given in Table 2, with the first four columns duplicated from Table

1. We notice a small difference between the double shrinkage model and the single shrinkage model.

Over counties the maximum CV under the double shrinkage model is a bit smaller than the one

under the MFSA-NDS models, 3.58% versus 5.22% for the fixed-variances case, but over ASDs

(aggregates of counties within) there are smaller differences between the two approaches.

The top panel in Figure 2 once again plots the survey estimates versus FSA values (identical

to top panel, Figure 1), and the lower panel is a plot of the posterior means versus the FSA values

under the double shrinkage model with benchmarking and inequality constraints. The lower panel

of Figure 2 is only slightly different from that of Figure 1, in part because the value d = 0.99 implies

that there is little slack between the state target and the total of administrative data summed over

all counties in the state.

Table 2: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, double shrinkage, gamma model

Level Statistic DE ME MERB MFSA-NDS MFSA-DS

min 5.13 4.76 4.79 0.57 0.55
County median 15.57 10.57 10.58 0.97 1.01

max 24.93 15.80 15.34 5.22 3.58

min 5.31 2.54 2.39 0.24 0.26
ASD median 10.60 3.25 3.01 0.30 0.34

max 14.81 3.92 3.51 0.42 0.41

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates. MFSA-DS refers to the double shrinkage model with benchmarking and inequality
constraint, CV (.05− .25) and d = .99.
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Figure 2: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-
DS for θ versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression,
cv (.05− .25) and d = .99.
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For the purposes of demonstrating the log-linear model, a second data set with slightly different

features has been generated. Namely, we specify lower coverage of the FSA values (d = 0.95) and

allow a higher range of values of survey coefficients of variation, (0.08, 0.93), comparable to the

actual survey coefficients of variation observed during the 2015 crop year. We present summaries

of the CVs in Table 3. Again we notice a small difference between the log-linear double shrinkage

model and the single shrinkage model at the ASD level. Differences in coefficients of variation at the

county level are minimal for the lower half of all counties, but the maximum county CV obtained

from the double shrinkage model (23.94%) is substantially smaller than the maximum CV obtained

under the single shrinkage model (fixed-variances case) (44.92%).

In its upper panel, Figure 3 depicts the new simulated survey estimates versus their corre-

sponding FSA values, while the lower panel shows the posterior means of the log-linear MFSA-DS

model versus the corresponding FSA values. In contrast to the d = .99 data set of the previous

sections, the present d = .95 data set represents a looser lower-bound constraint. Accordingly, the

resulting county acreage estimates, which also sum to the state total, are all visibly above the 45o

line. For comparison, the MFSA-DS estimates obtained under gamma regression are plotted in the

lower panel of Figure 4. The two approaches to double shrinkage yield similar (not identical) point

estimates given the same state target and administrative lower bound constraints.

In contrast to the computationally expensive gamma regression which required in excess of

16 hours of run time, results of the log-linear model were obtained in a matter of minutes, and

additional opportunities to speed up the process may be possible through approximate Bayesian

computation described in Appendix B. It is worth noting that all samplers were coded in Fortran

90 on a server with Intel Xeon E5-2690 2.90GHz processor with eight cores.

5 CONCLUSIONS

Beginning with the 2020 crop year, NASS successfully converted its county-estimates data prod-

uct into a system model-based estimates of planted area, harvested area, total production, and yield

per harvested acre. The official estimates for 13 different commodity crops grown nationwide now

include a benchmarking of county estimates to predetermined state targets, and lower bound con-

straints on planted area. Motivated by the needs of the NASS crop estimation program to produce
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Figure 3: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA
for θ versus FSA values for Illinois and the simulated data, double shrinkage, log-linear model;
CV (.08− .93) and d = .95
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Figure 4: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS
for θ versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression,
CV (.08− .93) and d = .95
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Table 3: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, double shrinkage, log-linear model

Level Statistic DE ME MERB MFSA-NDS MFSA-DS

min 8.57 7.73 7.90 2.57 2.54
County median 52.90 17.83 17.16 4.56 4.92

max 92.70 24.25 24.82 44.92 23.94

min 18.90 5.11 3.78 1.17 1.11
ASD median 37.70 6.15 4.71 1.83 1.43

max 52.10 7.19 5.81 2.65 1.63

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates. MFSA-DS refers to the double shrinkage model with benchmarking and inequality
constraint, CV (.08− .93) and d = .95.

coherent published tables across all parameters and with respect available administrative data, we

have shown how to incorporate the area-specific inequality constraints and benchmarking into the

Fay-Herriot model. Single shrinkage model and double shrinkage models are available. Because there

are difficulties in performing full Metropolis samplers, we overcame these computational difficulties

by making additional reasonable approximations in the double shrinkage model.

It is possible to extend the hierarchical Bayesian model so that all the constraints are actually

included in it. That is, θ
˜

is in V = {θ
˜

: ci ≤ θi
∑n

i=1 θi = a}, where a is the benchmarking target and

c1, . . . , cn are the FSA values. So that the hierarchical Bayesian model (i.e., extended version of the

Bayesian Fay-Herriot model) has θ
˜
∈ V . We have attempted to do so for the simplest model, the

Bayesian Fay-Herriot model, but the problem is extremely difficult. It requires the computation of

orthant probabilities (e.g., Ridgway 2016, Geweke 1991, Genz 1992) at each step of a Markov chain

Monte Carlo sampler. There are no such problems mentioned in Rao and Molina (2015), although

they have used the raking procedure for benchmarking only, not the inequality constraints, where

the θi > ci, the FSA problem.

Nevertheless, incorporating the total constraint into the hierarchical Bayesian model will be

beneficial because it will help protect against model failure so prominent in small area estimation,

and one needs to be careful with this. Toto and Nandram (2010), Nandram and Sayit (2011) and

Nandram, Toto and Choi (2010), Nandram, Erciulescu and Cruze (2019) and Janicki and Vesper

(2017) were able to incorporate a much simpler constraint (i.e.,
∑n

i=1 θi = a) in a complete Bayesian
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analysis. But as is evident, it is much more difficult to incorporate the constraint θ
˜
∈ V , and it

is a problem we would like to solve in the future. We can add random effects on both means

and variances to accommodate sub-areas (counties within ASDs). However, the computations are

difficult and approximations beyond those based on Markov chain Monte Carlo methods need to

be considered. Currently, we are doing research in this area.

In Appendix C, we have comments on generalizion. It is possible to avoid the inequality con-

straint using a logarithmic transformation, but this method looses generality or it makes unnec-

essary approximation. Our solution remains strong for both the single shrinkage model and the

double shrinkage model.

APPENDIX A Double-Shrinkage Model Fitting–Gamma Regres-

sion

Dropping the inequality constraint of the double shrinkage model (see 11), the joint posterior

density is

π(θ
˜
, σ
˜

2,Ω | θ̂
˜
, S
˜

2) ∝ π(β
˜
, δ2, γ

˜
, α)

∏̀
i=1

{
(αe−x

˜
′
iγ
˜
/2)α/2(1/σ2i )

α/2+1e−(αe
−x

˜
′
iγ
˜
/2σ2

i )/Γ(α/2)

}

×
∏̀
i=1

{
1√

(1− λi)δ2
φ

(
θi − (λiθ̂i + (1− λi)x

˜

′
iβ
˜

)√
(1− λi)δ2

)
1√
δ2/λi

φ(
θ̂i − x

˜

′
iβ
˜√

δ2/λi
)

}

×
∏̀
i=1

{
[(ni − 1)/2σ2i ]

(ni−1)s2i /2e−(ni−1)/2σ2
i

}
, (A.1)

where λi = δ2/(δ2+σ2i ), i = 1, . . . , `. Conditional on Ω, θ̂
˜
, S
˜

2, it is clear that (θi, σ
2
i ) are independent

over i = 1, . . . , `. This is the key difference between the double-shrinkage model with and without

the inequality constraints.

Our strategy is to first sample the posterior density π(Ω | θ̂
˜
, S
˜

2). Once this is done, we draw

samples from the joint conditional posterior density of π(σ
˜

2 | Ω, θ̂
˜
, S
˜

2). Then, finally we obtain

the required samples from π(θ
˜
| σ

˜

2,Ω, θ̂
˜
, S
˜

2). Thus, after draws are obtained for Ω, we use the
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multiplication rule to get the σ2i and θi (i.e., Ω, the σ2i and θi are drawn simultaneously).

It follows from (A.1) that the conditional on σ
˜

2,Ω, θ̂
˜
, S
˜

2, the θi are independent and

θi | σ
˜

2,Ω, θ̂
˜
, S
˜

2 ind∼ Normal{λiθ̂i + (1− λi)x
˜

′
iβ
˜
, (1− λi)δ2}, i = 1, . . . , `. (A.2)

Conditional on Ω, θ̂
˜
, S
˜

2, the σ2i are independent. Therefore, integrating out the θi from (A.1),

we have the conditional posterior density of σ2i is

π(σ2i | Ω, θ̂
˜
, S
˜

2) ∝
√
λiφ(

θ̂i − x
˜

′
iβ
˜√

δ2/λi
)[(1/σ2i )

(ni+α−1)/2+1e−{(ni−1)S2
i +αe

−x
˜
′
iγ
˜
}/2σ2

i ], (A.3)

i = 1, . . . , `. Note unnecessary constants are dropped (e.g., parameters conditioned on).

Now, one can integrate out the θi and σ2i from (A.1) to get the joint posterior density of Ω,

π(Ω | θ̂
˜
, S
˜

2) ∝ π(β
˜
, δ2, γ

˜
, α)

∏̀
i=1

{
Γ(α/2)

(αe−x
˜
′
iγ
˜
/2)α/2

Γ(ni + α− 1)/2)

{((ni − 1)S2
i + αe−x

˜
′
iγ
˜

)/2}(ni+α−1)/2

}

×
∏̀
i=1

{∫ ∞
0

1√
δ2/λi

φ(
θ̂i − x

˜

′
iβ
˜√

δ2/λi
)IGσ2

i
(ai, bi)dσ

2
i

}
, (A.4)

where ai = (ni +α− 1)/2 and bi = {(ni− 1)S2
i +αe−x

˜
′
iγ
˜
}/2. Here, IGx(a, b) is the inverse gamma

density and is given by f(x) = ba( 1x)a+1e−b/x/Γ(a), x > 0.

It is easy to sample the σ2i in (A.3) using the accept-reject sampler; simply draw σ2i | Ω, θ̂
˜
, S
˜

2 ∼

IG(ai, bi) and take it with probability
√
λiφ(

θ̂i−x
˜
′
iβ
˜√

δ2/λi
). Then, clearly the θi are easy to draw from

(A.2). The main problem now is how to sample the joint posterior density of Ω in (A.4). We will

use the Metropolis sampler to do so.

Once we obtain a sample from (A.4), we convert it to a sample from (14), our main objective.

This is accommodated by another Metropolis sampler that we execute in a novel manner. We prefer

to use proposal densities that will provide independent chains. This is obtained by taking draws

from a multivariate Student’s t density (to be constructed). We will not use a long run because with

a Metropolis sampler, the chain tends to get stuck a long time, introducing long-range dependence

to the sample, thereby giving poor mixing that is inefficient. Instead we run several chains, say
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M = 1000 chains. Each chain is run with a random start from an approximate density for 100

iterates, and the last one is taken. Only minor monitoring is needed to ensure reasonable jumping

rates. If the chain does not move from the initial random start, it is not used in the final sample.

In the end, we get a random sample of M iterates from the required density in (A.4).

We describe how to obtain samples from the posterior density of Ω = (β
˜
, δ2, γ

˜
, α). There are

three steps. The first step obtains a sample of M starting values, the second step is to obtain a

proposal density for Metropolis sampler at each of the starting values, and the third step is to make

a short run of 100 iterates of each of the Metropolis samplers in second step.

First, we integrate out the θi and we replace the σ2i by S2
i , i = 1, . . . , `. Given θ̂

˜
, S
˜

2, then (β
˜
, δ2)

and (γ
˜
, α) are independent; so they can be sampled separately to get M = 1000 independent starts.

We have obtained these M starts using simple approximations.

Second, at each start, we run a Gibbs sampler to get σ2i , i = 1, . . . , `, and Ω. This is done by

drawing the σ2i from their exact conditional posterior densities using rejection sampling. Then, given

σ
˜

2, S
˜

2, (β
˜
, δ2) and (γ

˜
, α) are again independent, and draws from their respective joint posterior

densities are taken in a similar manner. It is worth noting that given δ2, the distribution of β
˜

is

multivariate normal and β
˜

can be integrated out to get the conditional posterior density of δ2 that

can be sampled using a grid. However, this is not the case for (γ
˜
, α) because the conditional posterior

density of γ
˜

given α is nonstandard (i.e., not multivariate normal). Thus, we approximate the

posterior density of γ
˜

using a multivariate normal density, and with this approximation, sampling

of (γ
˜
, α) takes place in the same manner as for (β

˜
, δ2).

Third, we run the second step 1100 times with a “burn-in” of 100 runs and we use the M = 1000

samples to construct a multivariate Student’s t density for Ωa = (β
˜
, log(δ2), γ

˜
, log(α)), which we

use as a proposal density in a Metropolis sampler to sample the exact posterior density. This is

performed 100 times and the last iterate is selected. Each random start contributes to the sample of

M = 1000 iterates of Ωa or Ω from the posterior density under the double shrinkage model without

the inequality constraint and the benchmarking.

To complete the entire procedure, for each Ωa, we sample σ2i from their conditional posterior

densities using rejection sampling to access the posterior densities more efficiently. Then, more

importantly, the θi are drawn from their conditional posterior densities (normal is this case). The

entire procedure took roughly four hours, and the jumping rates are mostly larger than 5%.
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APPENDIX B Doubel Shrinkage Model Fitting–Log-Linear Model

We describe the double shrinkage log-linear model and show how to fit. The main purpose

is to show that there are additional gains in computational speed using approximate Bayesian

computation.

Our model is similar to the one in Section 3, where assuming that θ̂i and S2
i are pairwise

independent,

θ̂i | θi, σ2i
ind∼ Normal(θi, σ

2
i ), i = 1, . . . , `,

(ni − 1)S2
i

σ2i
| σ2i

ind∼ Gamma(
ni − 1

2
,
1

2
), i = 1, . . . , `.

However, a priori, we assume that

θi | β
˜
1, δ

2
1
ind∼ Normal(x

˜

′
iβ
˜
1, δ

2
1), i = 1, . . . , `, θ

˜
∈ V,

with the log-linear model on the σ2i ,

ln(σ2i ) | β
˜
2, δ

2
2
ind∼ Normal(x

˜

′
iβ
˜
2, δ

2
2), i = 1, . . . , `,

where we also assume that θi and σ2i are pairwise independent. Note that we also have the restriction

θ
˜
∈ V . Because we will use an approximate Gibbs sampler to fit the model, we assume that

π(β
˜
1, β

˜
2, δ

2
1 , δ

2
2) ∝ 1

δ21

1
δ22

(i.e., posterior propriety is not an issue provided that the design matrix is

full rank).

Then, letting D = (θ̂
˜
, s2

˜
), the joint posterior density of θ

˜
, σ2

˜
, β
˜
1, δ

2
1 , β

˜
2, δ

2
2 is given by

π(θ
˜
, σ2

˜
, β
˜
1, δ

2
1 , β

˜
2, δ

2
2 | D) ∝

∏̀
i=1

 1√
2πσ2i

e−(θ̂i−θi)
2/2σ2

i


∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}∫

θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}dθ

˜

× 1

δ21

1

δ22

∏̀
i=1

{
(
ni − 1

σ2i
)(ni−1)/2e−(ni−1)s2i /2σ2

i
1√
2πδ22

e−(ln(σ
2
i )−x

˜
′
iβ
˜

2)2/2δ22

}
, θ
˜
∈ V.

Our strategy in the computation is to sample the exact conditional posterior density of θi, i =

1, . . . , `, and σ2i , i = 1, . . . , `. However, we want to replace the conditional posterior densities of

β
˜
1, δ

2
1 and β

˜
2, δ

2
2 by approximate posterior densities. The main issue now is how to do this latter
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task.

We consider the two simpler models for θ̂i and s2i , i = 1, . . . , `. These are

θ̂i | β
˜
1, δ

2
1
ind∼ Normal(x

˜

′
iβ
˜
1, δ

2
1), i = 1, . . . , `, π(β

˜
1, δ

2
1) ∝ 1/δ21 ,

and

ln(s2i ) | β
˜
2, δ

2
2
ind∼ Normal(x

˜

′
iβ
˜
2, δ

2
2), i = 1, . . . , `, π(β

˜
2, δ

2
2) ∝ 1/δ22 .

Note that in the full model, we simply replace the θi by θ̂i and σ2i by s2i . Here, the posterior densities

of (β
˜
1, δ

2
1) and β

˜
2, δ

2
2), which are independent, have simple forms. Letting X denote the n×p design

matrix, then

β
˜
1 | θ̂

˜
, δ21 ∼ Normal{β̂1, (X ′X)−1δ21}, δ21 | θ̂

˜
∼ IG

{
n− p

2
,

∑n
i=1(θ̂i − x

˜

′
iβ̂1)

2

2

}
,

where β̂1 = (X ′X)−1X ′θ̂
˜
. Therefore, the posterior density of β

˜
1 is a multivariate Student’s t density,

and, in this case, it is easy to draw samples of β
˜
1 and δ21 . In addition, letting zi = ln(s2i ), i = 1, . . . , `,

then

β
˜
2 | z

˜
, δ22 ∼ Normal{β̂2, (X ′X)−1δ22}, δ22 | z

˜
∼ IG

{
n− p

2
,

∑n
i=1(zi − x

˜

′
iβ̂2)

2

2

}
,

where β̂2 = (X ′X)−1X ′z
˜
. Again, the posterior density of β

˜
2 is a multivariate Student’s t density,

and it is easy to draw samples of β
˜
2 and δ22 . Our approximate Gibbs sampler runs by taking these

posterior densities as the conditional posterior densities. We need to do so because the computation

is difficult and time-consuming.

The joint density of (θi, σ
2
i ), i = 1, . . . , `, is

π(θ
˜
, σ2

˜
| β

˜
1, δ

2
1 , β

˜
2, δ

2
2 , D) ∝

∏̀
i=1

 1√
2πσ2i

e−(θ̂i−θi)
2/2σ2

i


∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}∫

θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}dθ

˜

×
∏̀
i=1

{
(
ni − 1

σ2i
)(ni−1)/2e−(ni−1)s2i /2σ2

i
1√
2πδ22

e−(ln(σ
2
i )−x

˜
′
iβ
˜

2)2/2δ22

}
, θ
˜
∈ V.

Additional difficulties in the computation reside in this joint conditional posterior density. Observe

that because θ
˜
∈ V , the θi are not independent, the σ2i are not independent and θi and σ2i are

30



not pairwise independent. However, note that the σ2i are independent in their joint conditional

posterior density, but the θi are not independent in their joint conditional posterior density. The σ2i

are drawn using the grid method with range ( 1
10S

2
i , 10S2

i ), fairly wide, and the θi are drawn using

Devroye’s method.

For the Gibbs sampler, we used 2, 500 iterates as a burn-in and took every third iterate to get

a random sample of 1, 000 iterates. We found that the Geweke tests for all the θi and the σ2i are

not significant and the effective sample sizes are all near the actual sample size of 1, 000 (mostly all

of them are 1, 000). Therefore, we have an efficient Gibbs sampler and amazingly the computation

took less than 20 seconds.

Next, we describe a slightly different computational method from the one described above.

However, we just need to say how to draw samples from the conditional posterior densities of

(β
˜
1, δ

2
1) and (β

˜
2, δ

2
2).

The conditional posterior density of (β
˜
2, δ

2
2) is straight forward (i.e., we simply need to replace

S2
i by σ2i ). So that, letting zi = ln(σ2i ),

β
˜
2 | z

˜
, δ22 ∼ Normal{β̂2, (X ′X)−1δ22}, δ22 | z

˜
∼ IG

{
n− p

2
,

∑n
i=1(zi − x

˜

′
iβ̂2)

2

2

}
.

It is more difficult to sample the conditional posterior density of (β
˜
1, δ

2
1),

π(β
˜
1, δ

2
1 | θ

˜
, σ2

˜
β
˜
2, δ

2
2 , | D) ∝ 1

δ21

∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}∫

θ
˜
∈V
∏`
i=1 φ{(θi − x

˜

′
iβ
˜
1)/δ1}dθ

˜

.

We started by using the Metropolis sampler. After we have used two different proposal densities,

we found long-range dependence with low jumping rates, so we abandoned the Metropolis sampler.

We decided to use grid samplers as follows. We fit the simpler model, where letting X denote the

n× p design matrix,

β
˜
1 | θ̂

˜
, δ21 ∼ Normal{β̂1, (X ′X)−1δ21}, δ21 | θ̂

˜
∼ IG

{
n− p

2
,

∑n
i=1(θ̂i − x

˜

′
iβ̂1)

2

2

}
,

with β̂1 = (X ′X)−1X ′θ̂
˜
. Therefore, we can now sample β

˜
1 and δ21 using the multiplication rule.

Then, we find the posterior means (PM) and standard deviations (PSD) of each component of
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β
˜
1 and δ21 ; we choose their supports to be PM ± 6 ∗ PSD with the lower bound for δ21 being

max(0., PM − 6 ∗ PSD). [Almost the entire support of a unimodal density is within this range;

actually we have found the procedure to be nonsensitive to the choice of 6 to inference about the

θ1]. We now run the grid method within the Gibbs sampler to draw β
˜
1 and δ21 with the supports

mentioned above for β
˜

and δ21 .

For the Gibbs sampler, we used 3, 500 iterates as a burn-in and took every fourth iterate to get

a random sample of 1, 000 iterates. We found that the Geweke tests for all the θi and the σ2i are

not significant and the effective sample sizes are all near the actual sample size of 1, 000 (mostly all

of them are 1, 000). Therefore, we have an efficient Gibbs sampler and amazingly the computation

took less than 40 seconds. This is double the time (still fast) for the approximate Gibbs sampler

above.

APPENDIX C Discussions on Generalization

We show that the problem is more ubiquitous than we have stated in this paper. Then, we discuss

issues with standard solutions using the logarithmic transformation. Recall that our problem is to

provide estimates subjected to the lower bound inequality constraints and an equality benchmarking

constraint. We discuss mainly the inequality constraint.

The Fay-Herriot model is

θ̂i | θi
ind∼ Normal(θi, σ̂

2
i ),

θi | β
˜
, δ2

ind∼ Normal(x
˜

′
iβ
˜
, δ2), i = 1, . . . , `,

with prior π(β
˜
, δ2). This is subjected to the inequality constraint, θi ≥ ci, i = 1, . . . , `, and the

benchmarking constraint,
∑`

i=1 θi = a, where a is the target. Letting φ̂i = θ̂i − ci, i = 1, . . . , `, and

c =
∑`

i=1 ci. Then,

φ̂i | φi
ind∼ Normal(φi, σ̂

2
i ), (C.1)

φi | β
˜
, δ2

ind∼ Normal(x
˜

′
iβ
˜
, δ2), φi ≥ 0, i = 1, . . . , `, (C.2)
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with
∑`

i=1 φi = a−c; note that there is a change in the regression coefficients. Therefore, we have a

general problem with positivity constraints and a benchmarking constraint, and the problem is not

specific to agriculture. The solution of problem remains the same as we have done in this paper,

but we can use the logarithmic transformation to avoid the positivity constraint.

There are two ways to proceed without the positivity constraints.

a. Transform the φ̂i, replacing φ̂i by log(φ̂i) in (C.1). Note that some of the φ̂i can be negative,

thereby loosing some generality. For the case when they are positive, we can approximate

the means and the variances of the normal distribution in (C.1) using a first-order Taylor’s

series approximation. That is, log(φ̂i) | φi
ind∼ Normal(log(φi),

σ̂2
i

φ̂2i
). One can proceed in (C.2)

with either a log-normal regression or another distribution for positive size data (e.g., gamma

regression).

b. Transform the φi, replacing φi by eφi in (C.1). This introduces non-conjugacy with (C.2),

thereby creating difficulties in computation.

Note again that benchmarking is done in an output analysis as we have done in this paper, and

both single shrinkage models and double shrinkage models can be done. When the logarithmic

transformation is used, back transformation to the original φi is problematic (e.g., Manandhar and

Nandram, 2021). However, the methodology in this paper provides our front line solution.
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