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Abstract
The National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agriculture every
five years. In 2012, NASS began using a capture-recapture approach to adjust the Census estimates
for under-coverage, non-response, and misclassification. This requires two independent samples.
NASS has kept its Census Mailing List (CML) independent from its area frame, which is used for the
June Area Survey (JAS) every June. NASS is exploring the use of web-scraping to develop a third
list-frame (TL) that would be independent of the CML and the area frame. In this paper, a Triple-
System Estimation (TSE) methodology based on regularized multinomial regression is proposed to
investigate for possible dependence between the CML and the TF. A simulation study is performed
to compare the performance of the estimator based on the proposed methodology, which can take
into account the frame dependence with others already presented in the literature.
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1. Introduction

Every five years, the National Agricultural Statistics Service (NASS) conducts the United
States (US) Census of Agriculture. A capture-recapture approach has been used since 2012
to adjust the Census estimates for under-coverage, non-response, and misclassification.
Capture-recapture methodology also known as Dual-System Estimation (DSE) uses two
independent surveys to estimate the unknown size of the finite population. The US Census
of Agriculture uses the Census Mailing List (CML), a list of all known agricultural oper-
ations with the potential of at least $1,000 in sales of agriculture products (O’Donoghue
et al., 2009). The June Area survey (JAS), which is based on the NASS area frame, is used
as a second survey for the capture-recapture methodology.

NASS is exploring the use of web-scraping technology to develop a third independent
list-frame (TL). This concept has the potential to become a standard operating procedure
in the future (National Academies of Sciences, Engineering, and Medicine, 2017). Its use
requires a more sophisticated methodology than the DSE currently in use.

The advantage of a Triple-System Estimation (TSE) is twofold. This method will be
used to provide more accurate estimates of the number of non-captured farms, and it allows
for testing the assumption of list-dependence. The resulting “correlation bias” is usually as-
sociated with list-dependence and heterogeneity among farms (Chao and Tsay, 1998). The
method proposed in this paper can adjust the estimates by modeling both the heterogeneity
and possible dependencies.

The problem of census under-count due to under-coverage, non-response and misclassi-
fication is not new in the literature. Several solutions are already well-established, and most
of them refer to capture-recapture methodology based on two lists. However, only a few
articles consider the problem from a different perspective. Darroch et al. (1993) extended
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the DSE methodology and introduced a TSE approach that accounts for varying capture
probabilities of each sample unit. Multiple-System Estimation was presented by Zaslavsky
(1989), and Chao and Tsay (1998) proposed an estimator for the size of a finite population
that takes into account both list-dependence and heterogeneity. Griffin (2014) provided a
brief investigation of several TSE estimators for potential applications with administrative
records.

The proposed new method provides a unified methodology accounting for misclassifi-
cation, under-coverage, and non-response of the sample units. The estimation of the popu-
lation totals is performed concurrently with variable selection via regularized multinomial
regression.

In section 2, a population partitioning method is introduced. After the population is
partitioned, standard multiple-system estimation techniques can be applied to sub-groups
of interest. A TSE methodology that takes into account possible dependencies between
two surveys is introduced in section 3. A simulation study is performed to assess the
performances of the proposed estimator, and its results are discussed in section 4. Final
conclusion and remarks are given in section 5.

2. Identifying sub-populations via penalized EM algorithm

NASS collects the data for its Census and other surveys by targeting farms; however, data
from other agricultural operations that do not satisfy the definition of farm are also col-
lected. Units belonging to the group of non-farms are removed from the samples before
performing any further analysis in order to produce more consistent estimates. The chal-
lenge is to correctly separate farms from non-farms.

Several methods have been considered to identify the farms based on the reported data.
The most effective consists in classifying the agricultural operations based on the thresh-
old given by the farm definition, however this cannot be done when the data related to the
production are reported as revenue intervals/categories instead of a point number. Discrim-
inant analysis is applied in particular to determine the farm status of the small agricultural
operations. This involves the estimation of a predictive model that provides an objective
framework to select the sample units with the highest probability of being a farm.

Since farm status is unknown, its estimation is also affected by uncertainty. If the farm
status is considered as a binary latent variable U , a more sophisticated formulation than a
logistic regression model is needed. In addition, when the data of a farm are collected by
multiple surveys, there are some inconsistencies in classification. Farm indicator variables
are essential for the estimation of the probability of observing a farm. An evaluation of
the farm status can be achieved by Expectation-Maximization (EM) algorithm (Dempster
et al., 1977).

This algorithm estimates the probability of being a farm given the observed realization
of a binomial random variable F |U . The algorithm starts by assigning random binary
values to the latent variable Ui with probabilities fi/mi, where mi > 0 represents the total
number of surveys capturing the i-th sampled agricultural operation, and fi is the observed
outcome of

Fi|Ui ∼ Bin
[
mi,

{
1 + exp(−x>

i ξUi
)
}−1

]
,

where the vector xi is a set of covariates for the i-th sample unit, and ξUi
denotes the

vectors ξ0 and ξ1 of p parameters to estimate.
The EM algorithm successively iterates the following steps until convergence:

M-step: Fits the parameters of the logistic models for the two sub-populations. The esti-
mation of the parameters is performed via regularized logistic regression (Friedman
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et al., 2010), with model selection achieved through a Least Absolute Shrinkage and
Selection Operator (LASSO) penalty added to the negative log-likelihood (Tibshi-
rani, 1996). That is:

Q(ξ0, ξ1|U1, . . . , Un) =
n∑

i=1

[
mi log

{
1 + exp

(
x>
i ξUi

)}
− fix

>
i ξUi

]
+

p∑
i=1

(
λ0|ξ0,i|+λ1|ξ1,i|

)
,

where n corresponds to the number of unique sampled operations, ξ0,i and ξ1,i re-
spectively represent the i-th component of the vectors ξ0 and ξ1, and the scalars λ0

and λ1 control the tradeoff of the LASSO penalties.

E-step: Calculates the binary values of Ui, for all i = 1, . . . , n, such that

Ui =


0, if x>

i (ξ̂1 − ξ̂0) < 0,

ui, if x>
i (ξ̂1 − ξ̂0) = 0,

1, otherwise,

where ui is drawn from a Bernoulli(0.5). This result provides an optimal solution
that minimizes the function

Q(U1, . . . , Un|ξ̂0, ξ̂1) =
n∑

i=1

[
mi log

{
1 + exp

(
x>
i ξ̂Ui

)}
− fix

>
i ξ̂Ui

]
with respect to U1, . . . , Un.

For simplicity, the sub-population identified via the EM algorithm is momentarily as-
sumed to be homogeneous, i.e. when each observation has the same probability of being
collected in a survey. This assumption will be later removed to extend the result. In ad-
dition, the probability of belonging to a specific sub-population group is assumed to be
independent on the surveys.

NASS is currently using all data in the CML to produce estimate of the total number
of farms. The technique adopted adjusts the survey weights by a misclassification fac-
tor computed as the probability of having a farm given that the unit i-th is in the CML.
This probability can be replaced with Pr(Ui|Fi), and the weights will be approximated as
w∗
i = Pr(Ui|Fi) Pr(Ci, Ri|Ui = 1)−1, where Ci represents the coverage of the Census, Ri

denotes the response to the questionnaire, and Ui the farm status of the observation i.

3. Models for heterogeneous catchability

Another alternative to the standard approach adopted by NASS to deal with the misclassi-
fication consists in estimating the total number of units belonging to a sub-population only.
To model heterogeneous probabilities of capturing a farm in the CML, the units identi-
fied as farms by the discriminant analysis are kept while those identified as non-farms are
excluded from the estimation process.

When the non-farms are excluded, the design weights are computed as

w∗
i = Pr(Ci, Ri|Ui = 1)−1.

NASS separately estimates for each farm a set of probabilities to compute the design
weights as w∗

i = Pr(Ci, Ri|Ui = 1)−1 = Pr(Ri|Ci, Ui = 1)−1 Pr(Ci|Ui = 1)−1. The
proposed approach differs by estimating simultaneously all the parameters of a multinomial
regression model. This technique associates a capture probability to each farm such that
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the heterogeneity among the sample units is taken into account through variations in the
covariates. By assuming homogeneous non-response, all the farms selected by either the
CML, the JAS, or the TL can respond to the surveys without loss of generality with constant
probability. In this paper, it is assumed that all farms are responding to the questionnaires,
therefore the probability Pr(Ci, Ri|Ui = 1) = Pr(Ci|Ri, Ui = 1) is modeled to produce
the estimates of the total number of farms.

Let the variables c (for the CML), j (for the JAS), and t (for the TL) indicate which
survey captured the farm i. Any farm can be sampled by the CML only with probability
η100, by the JAS only with probability η010, by the TL only with probability η001, or by
the CML and JAS with probability η110, by the CML and TL with probability η101, by
the JAS and TL with probability η011, or all three lists with probability η111. The sum of
these probabilities is used to compute the capture probability of the three lists. It is also
possible that a farm is not capture by any of three lists with probability η000 (see Table 1
for a summary of the probabilities ηcjt).

Table 1: Capture probabilities.

ti = 0 ti = 1

ci = 0 ci = 1 ci = 0 ci = 1

ji = 0 η000 η100 η001 η101
ji = 1 η010 η110 η011 η111

By matching the observations from the three surveys, it is possible to estimate the
probability that a farm is captured by a survey given that the same farm has been cap-
tured. Therefore, the probabilities θ100,i, θ010,i, θ001,i, θ110,i, θ101,i, θ011,i, and θ111,i can be
generically formulated from the capture probabilities exposed in Table 1 as

θcjt,i = ηcjt,i(1− η000,i)
−1, for any ci, ji, ti ∈ {0, 1},

such that ci, ji, and ti are not all simultaneously zero.
When these seven probabilities are unknown, a link function is assumed to formulate a

multinomial regression model, such that

θcjt,i ∝ exp(−x>
i ζcjt),

where ζcjt is a vector of parameters. Once these are estimated by maximizing the regu-
larized likelihood, they are used to estimate the probabilities exposed in Table 1 under the
assumption of dependence between two of the three lists. This means that the covariance
between two indicator variables is not zero, i.e. COV[ci, ji] 6= 0, or COV[ci, ti] 6= 0, or
COV[ji, ti] 6= 0.

For simplicity, let the model for the CML and the JAS allow for dependence and let the
TL be independent on the other two. Any other permutation of the three lists produces an
estimates for η000 which can be used to study the independence of the three lists. Under
these assumptions, the following equality is satisfied:

ρ··|0,i = ρ··|1,i, (1)

where ρ··|b,i is the conditional correlation between ci and ji given that ti = b, with b ∈
{0, 1}. These conditional correlations are computed as

ρ··|1,i = (θ001,iθ111,i − θ101,iθ011,i)[(θ101,i + θ111,i)(θ001,i + θ011,i)(θ001,i + θ101,i)(θ011,i + θ111,i)]
−1/2

ρ··|0,i = (νiθ110,i − θ100,iθ010,i)[(θ100,i + θ110,i)(νi + θ010,i)(νi + θ100,i)(θ010,i + θ110,i)]
−1/2
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where νi is an expansion factor such that

η000,i = (1 + νi)
−1νi, if ci, ji, ti ∈ {0}, and

ηcjt,i = (1 + νi)
−1θcjt,i, otherwise.

After some algebra, it is possible to obtain the following equation from (1),

ρ··|1,i

√
aiν2i + biνi + ci = diνi − ei,

where

ai = (θ100,i + θ110,i)(θ010,i + θ110,i), bi = (θ100,i + θ110,i)(θ010,i + θ110,i)(θ010,i + θ100,i),

ci = (θ100,i + θ110,i)(θ010,i + θ110,i)θ010,iθ100,i, di = θ110,i, and

ei = θ010,iθ100,i.

The solution calculated for νi is given as

νi = −
ρ2··|1,ibi + 2eidi + sign(ρ··|1,i)

√
(ρ2··|1,ibi + 2eidi)2 − 4(ρ2··|1,ici − e2i )(ρ

2
··|1,iai − d2i )

2(ρ2··|1,iai − d2i )
,

but this formulation can produce negative values which will be truncated to zero to have
only non-negative values as output. Since νi = η000,i(1− η000,i)

−1, the non-capture prob-
ability can be estimated as

η̂000,i = ν̂i (1 + ν̂i)
−1 ,

therefore the total number of farms can be computed as

N̂ =
∑
i∈C

1

1− η̂000,i
=
∑
i∈C

(1 + ν̂i),

where C denotes the set of indexes i for the farms captured at least once, i.e. when the
inequality ci + ji + ti > 0 is satisfied.

4. Simulation study

Simulations are performed under two scenarios to study the performance of the proposed
method in the estimation of farm numbers. While farm status of operations is assumed to
be known under the first set of simulations, farm status is unknown for the second set of
simulations.

A total of 8 simulation studies with population sizes ranging from 2000 to 16000 units
are performed under the two scenarios. All the units in the population are assumed to
be farms in the first scenario. Under the second scenario, the units of the population are
partitioned into farms and non-farms. Each farm in the population has 20 independent and
identically distributed covariates x simulated as N(0, 1). The capture history for the CML
and JAS is built by simulating four binary values from a multinomial distribution with
probabilities

Pr (ci = 1 ∩ ji = 0) ∝ exp

(
20∑
k=1

xikβk,1

)
,

Pr(ci = 0 ∩ ji = 1) ∝ exp

(
20∑
k=1

xikβk,2

)
,

Pr(ci = 1 ∩ ji = 1) ∝ exp

(
20∑
k=1

xikβk,3

)
,

Pr(ci = 0 ∩ ji = 0) ∝ 1,
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where βk,j = 0.3ZNZB, for any j = 1, . . . , 3 and k = 1, . . . , 20, where the value ZN

is drawn from a N(0, 1) and ZB from a Bernoulli(0.7). The sample units of the TL are
randomly selected with probability

Pr(ti = 1) =

{
1 + exp

(
−

20∑
k=1

xikγk

)}−1

,

where γk = 0.6ZNZB, for any k = 1, . . . , 20.

Simulation of independent lists

Correlation computed with sampling probabilities
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Simulation of dependent lists
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Figure 1: Distribution of correlation between CML and TL (on the left). Distribution of
correlation between CML and JAS (on the right).

In each simulation setting, the sample selections of the three surveys are replicated 100
times with a fixed simulated population. The sampling scheme described above allows
for list-dependence between the CML and JAS, and maintains TL independent from CML
and JAS. In fact, the joint probability Pr (ci ∩ ji) cannot be obtained as the product of the
marginals, while this is possible for both Pr (ci ∩ ti) and Pr (ji ∩ ti) since TL is indepen-
dent by design. Figure 1 shows the empirical distribution of COR(ci, ti) on the left and the
distribution of COR(ci, ji) on the right. These correlations are obtained with the final prob-
abilities used for the simulations of a population with size N = 2000. E.g. the correlation
between ci and ti is computed as

COR(ci, ti) =
η00t,iη11t,i − η10t,iη01t,i√

(η10t,i + η11t,i)(η00t,i + η01t,i)(η00t,i + η10t,i)(η01t,i + η11t,i)
,

for any i = 1, . . . , 2000 and ti ∈ {0, 1}.
Table 2 and 3 show the true number of farms, the average of the model estimated

number of farms, the standard errors, the relative bias for the entire estimation process.
The relative bias is chosen as a criterion to evaluate the accuracy of the proposed estimator.
Through the analysis of the estimates obtained via simulations, it is possible to compute the
relative bias by computing an optimal adjusting factor ϕ, which is obtained by minimizing
the mean square error with respect to the true value, i.e.

ϕ̂ = argmin
ϕ

100∑
k=1

(
N̂kϕ−N

)2
= N

100∑
k=1

N̂k

(
100∑
k=1

N̂2
k

)−1

.
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Table 2: Results from simulation with known farm status
Proposed estimator Estimator for independent lists

Farms Average Std. Err. Rel. Bias Average Std. Err. Rel. Bias
2000 2102 102 0.051 2100 30 0.048
4000 4153 203 0.039 4196 48 0.047
6000 6179 113 0.029 6323 53 0.051
8000 8179 109 0.022 8419 64 0.050

10000 10204 170 0.020 10508 76 0.048
12000 12204 137 0.017 12609 92 0.048
14000 14254 131 0.018 14744 89 0.050
16000 16243 142 0.015 16815 93 0.048

Table 3: Results from simulation with unknown farm status
Proposed estimator Estimator for independent lists

Farms Average Std. Err. Rel. Bias Average Std. Err. Rel. Bias
1240 1363 110 0.096 1326 28 0.066
2454 2627 103 0.067 2648 38 0.073
3738 3917 248 0.050 3968 54 0.058
4870 5076 110 0.041 5193 53 0.062
6224 6527 192 0.047 6680 64 0.068
7357 7612 188 0.034 7846 63 0.062
8550 8932 117 0.043 9205 71 0.071
9876 10182 121 0.030 10531 82 0.062

The relative biases reported in Table 2 and 3 are computed as R̃ = 1− ϕ̂.
As can be seen from Table 2, all the estimates are biased upwards. The averages of the

estimated farm numbers that are obtained with the proposed estimator are close to the true
values. This happens for all the considered population sizes when the status of farms is
assumed to be known. The averages are within 2 standard deviations from the true value,
and the relative bias decreases as the population size increases.

The estimator

ν̂i =
1

3

(
θ̂001,iθ̂010,i

θ̂011,i
+

θ̂100,iθ̂010,i

θ̂110,i
+

θ̂001,iθ̂100,i

θ̂101,i

)

proposed by Chao and Tsay (1998) can be used for a comparison. It provides consistent
results when the three lists are considered to be independent. In this case, this estimator
does not perform as well due to list-dependence. In fact, the average of the estimates is not
within 2 standard deviations from the true value, and the relative bias does not improve as
the population size increases.

When the population has two groups and the farm status is assumed to be unknown, the
two estimators mostly behave as in the previous scenario (see Table 3). Even if similar fea-
tures are evident, the effect of the farm status uncertainty is consistent with the increments
on the relative biases. The standard errors are also relatively larger than the first scenario.

5. Conclusion

Estimating the total number of farms plays a central role in NASS. Several challenges in
producing more precise estimates lead to innovative solutions to integrate several source
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of information. This information can be used to develop more accurate DSE weights. The
study of any spurious dependence between two surveys is allowed by the introduction of a
third survey. Under certain assumptions, it is possible to estimate the degree of dependence
between two surveys. The developed model allows for heterogeneity so that each farm
has its own sampling distribution (which allows for many forms of dependence). Two
simulation scenarios are performed to study the bias of the proposed estimator. A general
tendency to over-estimate the population totals was observed, and the standard error of the
estimates are more stable when the true farm status is known. The proposed estimator is
also able to better handle dependent lists. The current proposal can be further improved in
the future by exploring the performances with other forms of dependence, introducing non-
response adjustments, developing bias reduction techniques, and studying the robustness to
model misspecification.
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