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Abstract
The publication of official statistics at different levels of aggregation requires a benchmarking step.
Difficulties arise when a benchmarking method needs to be applied to a triplet of related estimates,
at multiple stages of aggregation. For ratios of totals, external benchmarking constraints for the
triplet (numerator, denominator, ratio) are that the weighted sum of denominator/numerator/ratio
estimates equals to a constant. The benchmarking weight applied to the ratio estimates is a function
of the denominator estimates. For example, the United States Department of Agriculture’s National
Agricultural Statistics Service’s county-level, end-of-season acreage, production and yield estimates
need to aggregate to the corresponding agricultural statistics district-level estimates, that also need
to aggregate to the corresponding prepublished, state-level values. Moreover, the definition of yield,
as the ratio of production to harvested acreage, needs to hold at the county level, at the agricultural
statistics district level and at the state level. We discuss different approaches of applying bench-
marking constraints to a triplet (numerator, denominator, ratio), at multiple stages of aggregation,
where estimators are constructed for two of the three quantities, the third being derived as a result.
County-level and agricultural statistics district-level, end-of-season acreage, production and yield
estimates are constructed and compared using the different methods. Results are illustrated for a
subset of the sampled commodities and states, in the year 2014.

Key Words: Auxiliary Information, Bayes Estimates, Crop Estimates, End-of Season Yield, Mul-
tiple Stage Benchmarking, Official Statistics.

1. Introduction

Statistical agencies and policy makers require that the official statistics for nested lev-
els are consistent. For the case where estimates for a large area, containing small areas,
are published before the estimates for the small areas are constructed, it is desirable that
the estimates for the small areas aggregate to the prepublished values. The process of
adjusting the estimates, to satisfy external upper-level constraints, is known as external,
top-down, benchmarking. The agreement between lower-level and upper-level estimates
provides confidence for policy makers when utilizing official estimates. Also, the verified
benchmarking constraint provides protection against an imperfect model, when the final
estimates are produced using model-based methods; see Pfeffermann and Barnard (1991).

Estimation and benchmarking methods produce reliable and reproducible official esti-
mates at nested levels. Benchmarking methods were developed for estimates of a single
quantity of interest, at one level of aggregation, by a number of authors, see for exam-
ple Pfeffermann and Barnard (1991), Wang, Fuller and Qu (2008), Nandram and Sayit
(2014), Rao and Molina (2016). Ghosh and Steorts (2013) propose a two-stage bench-
marking methodology, with extensions to multiple, unrelated, parameters of interest. In
this paper, we consider estimation for the triplet (numerator, denominator, ratio), at two
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levels of aggregation. This is a difficult problem because the final triplet estimates need
to satisfy identity constraints (ratio of numerator to denominator) as well as benchmarking
constraints at multiple levels. We assume that Markov chain Monte Carlo (MCMC) iterates
are available for the denominator total and for the ratio of two totals, as a result of indepen-
dent model fitting. Estimates are produced using the MCMC iterates of the two quantities,
the third (the numerator total) being produced as a result. Our goal is to discuss the appli-
cation of the benchmarking adjustment to the triplet of estimates and its consequences to
maintaining the ratio identity at different aggregation levels.

The motivation for this research is county-level and agricultural statistics district-level
yield estimation at United States Department of Agriculture’s (USDA’s) National Agri-
cultural Statistics Service (NASS), where yield is defined as the ratio of production to
harvested acreage. NASS produces county-level and agricultural statistics district-level
estimates (groups of neighboring counties within a state, hereafter denoted by ASDs) of
acreage, production and yield that may contribute to the magnitude of payout in some
agricultural programs; see Cruze et al. (2016). Currently, NASS publishes end-of-season
county-level estimates produced using a top-down approach, for a unique year-state-com-
modity combination. National and state end-of-season crop estimates are produced using
NASS’s quarterly crops Acreage, Production and Stocks (APS) surveys, and published
prior to county-level estimates. Agricultural statistics district-level estimates are then pro-
duced such that they aggregate to the state-level values. End-of-season crop estimates at
the county level are produced using the APS surveys, and their supplement County Agri-
cultural Production Survey (CAPS). The county-level estimates need to aggregate to the
prepublished state-level values, while the intermediate agreements with the ASDs need to
hold.

Because the current NASS estimation method uses expert opinion to combine multiple
sources of data to produce final official estimates, uncertainty measures for the official es-
timates are not available for publication. Erciulescu et al. (2016) proposed a model-based
estimation approach that incorporates multiple sources of information to produce county-
level and ASD-level acreage estimates and associated measures of uncertainty. The authors
investigated different benchmarking methods for acreage totals and Nandram et al. (2016)
proposed a robust Bayesian benchmarking method for model-based estimates. Although
the model-based methods in Erciulescu et al. (2016) and Nandram et al. (2016) could also
be applied to yield, it is important to evaluate the effects of the different benchmarking
adjustments for yield, as the ratio of production and acreage.

To introduce the problem setting and notation, let θT1ij , θ
T2
ij and θRij denote the true

(unknown) parameters of interest for the jth subarea, in the ith area (a group of subareas),
corresponding to two totals and their ratio, respectively. Let aT1, aT2 and aR ∶=

aT1

aT2
denote

the fixed targets for the totals and for the ratio, respectively. Then, the benchmarking
constraints to be satisfied are

∑
nci
j=1w

ζ
ij θ̂

ζ,B
ij = θ̂ζ,Bi ,

∑
m
i=1w

ζ
i θ̂
ζ,B
i = aζ ,

(1)

where θ̂ζ,Bij and θ̂ζ,Bi denote the final estimates for the subareas and for the areas, respec-
tively, for ζ ∈ {T1, T2,R} , j = 1, ..., nci and i = 1, ...,m.
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Without loss of generality, the methodology is illustrated for the subarea-to-target con-
straints, using subscript j to denote the subarea,

nc

∑
j=1

wζj θ̂
ζ,B
j = aζ , (2)

where nc = ∑mi=1 nci is the total number of subareas. Area-level estimates are constructed
using the information for all j = 1, ..., nci in area i. Different scenarios of estimating and
benchmarking the triplet (θT1j , θT2j , θRj ), using MCMC, are considered. It is shown that
under some scenarios, the estimates may fail the benchmarking constraints at all the aggre-
gation levels, while under other scenarios, the estimates may lead to an inconsistent ratio

definition, θ̂R,Bj =
θ̂T1,B
j

θ̂T2,B
j

, for all j = 1, ..., nc. Variance estimation is discussed for each

scenario.

Model-based ratio estimates may be constructed using survey ratio estimates and auxil-
iary data. For this approach, an external benchmarking constraint is that the weighted sum
of the estimates equals a constant, as defined in (2), and the benchmarking weight, wRj ,
applied to the ratio estimate is a function of the denominator estimate, θ̂T2,Bj .

Two cases are considered. The first case is inspired by Nandram et al. (2014) and Berg
et al. (2014), where model-based estimates for a ratio (in their applications, yield or cash
rental rate) are benchmarked conditioning on the denominator estimates. Alternatively, we
introduce the second case, when the benchmarking weights for the ratios are functions of
the MCMC iterates for the denominator estimates. In the first case, the authors construct
estimates for the ratio only, not for the triplet, and the benchmarking weights for the ratios
are functions of the denominator estimates, treated as fixed and known, and estimates for
the numerator are constructed as a result. The numerator estimates are the product of the ra-
tio estimates and the denominator estimates, θ̂T1,Bj = θ̂R,Bj θ̂T2,Bj , with estimated variances
conditional on the denominator estimates. In the second case, the numerator estimates are
constructed using the product of the MCMC iterates for the ratio and for the denominator.
The variance estimation for the numerator estimates is improved since conditioning on the
denominator estimates is not necessary.

This paper is structured in two main sections. In Section 2, we introduce the meth-
ods of applying the benchmarking constraints to the triplet (numerator, denominator, ratio)
estimates and discuss the advantages and disadvantages for each method. Estimates for
subarea-level and for area-level are constructed for the two cases described above. In Sec-
tion 3, we illustrate the methods described in Section 2, to produce end-of-season, model-
based, county-level and ASD-level acreage, production and yield estimates, for 2014 corn
and soybeans, in selected states. A discussion is provided in Section 4.

2. Benchmarking a Ratio using Markov chain Monte Carlo Methods

We model the denominator total T2 and the ratioR independently, and derive the numerator
total T1 as a result. Estimating two quantities and deriving the third is a method consis-
tent with the data collection, as a survey respondent may provide acreage and production
or yield on the survey questionnaire. Although the methods apply to any benchmarking
adjustments, in the following sections, we provide illustrations for the ratio benchmarking
(see Rao and Molina 2015, Section 6.4.6).
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Assume that the Bayes estimates, which satisfy the benchmarking constraints in (2),
are constructed using MCMC methods and denoted by θ̂T1,Bj , θ̂T2,Bj and θ̂R,Bj , for subarea
j = 1, ..., nc. Since the benchmarking weights for the ratio depend on the denominator,
Bayes estimates for the denominator need to be constructed first; the numerator will be
derived.

Two independent Bayesian models are fit to the denominator total and the ratio survey
estimates, respectively. Results are constructed using the chains of MCMC iterates for
the two quantities: T2 and R. Initial fitting of the models results in iterates that do not
satisfy (2): let θT2,noadjjk and θR,noadjjk denote the iterates of θT2j and θRj , respectively, where
k = 1, ...,K. For each of the two parameters ζ ∈ {T2,R}, at every subarea j = 1, ..., nc, an
MCMC sampler is executed to get:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

j/k 1 2 K

1 θζ,noadj11 θζ,noadj12 . . . θζ,noadj1K

2 θζ,noadj21 θζ,noadj22 . . . θζ,noadj2K

⋮ ⋮ ⋮ ⋮ ⋮

nc θζ,noadjnc1
θ
T1/T2/R,noadj
nc2

. . . θζ,noadjncK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↦ θ̂ζ,noadjj =K−1
∑
k

θζ,noadjjk , for fixed j,

↧

∑j w
ζ
jkθ

ζ,noadj
jk

?
= aζ , for fixed k,

where (j, k) denotes the kth iterate for subarea j, k = 1, ...,K. Hereafter, it is assumed
that the benchmarking weights for the denominator total, wT2j , are fixed and known (do not
depend on k). So wT2jk = wT2j , for all k = 1, ...,K.

Note that the duplet (θ̂T2,noadjj , θ̂R,noadjj ), j = 1, ..., nc, is a set of estimators for the
denominator and ratio, but the benchmarking constraints in (2) may not hold. Also, the
estimator for the numerator remains to be constructed. Moreover, the benchmarking con-
straints in (2) may not hold at the iteration level. Choices for the weights wRjk that ensure
the constraints in (2) and the identity between the ratio and the totals, at the iteration level,
after benchmarking adjustment, remain to be constructed.

Bayes estimators θ̂T2,Bj and θ̂R,Bj are constructed using the MCMC iterates from fitting
two models, for the denominator and for the ratio, independently. Final estimates for the
numerator total θ̂T1,Bj are derived as a result. The Monte Carlo estimates of the denom-
inator and the ratio, E(θT2j ∣data) and E(θRj ∣data), are constructed using the traditional
arithmetic mean of the iterates:

K−1
∑
K
k θ

T2,noadj
jk = θ̂T2,noadjj ,

K−1
∑
K
k θ

R,noadj
jk = θ̂R,noadjj ,

(3)

where θ̂T2,noadjj and θ̂R,noadjj are the Monte Carlo estimators of θT2j and θRj , respectively,
before the benchmarking adjustment.
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The benchmarking constraints given in (2) are used to adjust the Bayes estimates, com-
puted at the kth iteration of the MCMC. For example, for a fixed k and a ratio benchmark-
ing adjustment,

θT2jk = θT2,noadjjk

aT2

∑
nc
j=1w

T2
jk θ

T2,noadj
jk

,

θRjk = θR,noadjjk

aR

∑
nc
j=1w

R
jkθ

R,noadj
jk

.

(4)

Note that for each iteration k, the subarea-level iterates aggregate to the target values,

∑
nc
j=1w

T2
jk θ

T2
jk = ∑

nc
j=1w

T2
jk θ

T2,noadj
jk

aT2

∑
nc
j=1w

T2
jk θ

T2,noadj
jk

= aT2,

∑
nc
j=1w

R
jkθ

R
jk = ∑

nc
j=1w

R
jkθ

R,noadj
jk

aR

∑
nc
j=1w

R
jkθ

R,noadj
jk

= aR.

(5)

If θT2jk and θRjk are the adjusted iterates, using any benchmarking method, then the posterior
subarea means are estimated by

Ê(θT2j ∣data and constraint)] =K−1
∑
K
k θ

T2
jk ∶= θ̂

T2,B
j ,

Ê(θRj ∣data and constraint) =K−1
∑
K
k θ

R
jk ∶= θ̂

R,B
j ,

(6)

and the posterior subarea variances are estimated by

V̂ ar(θT2j ∣data and constraint) = (K − 1)−1∑Kk (θT2jk −K
−1
∑
K
k θ

T2
jk )

2
,

V̂ ar(θRj ∣data and constraint) = (K − 1)−1∑Kk (θRjk −K
−1
∑
K
k θ

R
jk)

2
.

(7)

Using the adjusted subarea-level iterates θT2jk and θRjk (for example, defined in (4)), for
all j = 1, ..., nci within area i, define the adjusted area-level iterates

θT2ik = ∑j∈di w
T2
jk θ

T2
jk ,

θRik = ∑j∈di w
R
jkθ

R
jk,

(8)

where di is the set of all subareas within area i. Then the posterior area means are estimated
by

Ê(θT2i ∣data and constraint) =K−1
∑
K
k θ

T2
ik ∶= θ̂

T2,B
i ,

Ê(θRi ∣data and constraint) =K−1
∑
K
k θ

R
ik ∶= θ̂

R,B
i ,

(9)

and the posterior area variances are estimated by

V̂ ar(θT2i ∣data and constraint) = (K − 1)−1∑Kk (θT2ik −K
−1
∑
K
k θ

T2
ik )

2
,

V̂ ar(θRi ∣data and constraint) = (K − 1)−1∑Kk (θRik −K
−1
∑
K
k θ

R
ik)

2
.

(10)

Since the benchmarking weights for the ratio are functions of the denominator total, we
consider two cases for the benchmarking adjustment at the (MCMC) iteration level. In the
first case, θ̂T2,Bj are treated as fixed and known, leading to fixed weights wRjk = w

R
j , for all

k = 1, ...,K. Two examples of benchmarking using fixed weights are Berg et al. (2014)
and Nandram et al. (2014). Alternatively, wRjk are constructed using the iterates of θT2j and
wRj = K−1

∑kw
R
jk. Both cases ensure the benchmarking constraints at the iteration level,

but only the first case at the subarea level. Similar choices of weights are investigated for
the area-level estimates.
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2.1 Fixed benchmarking weights (R11)

For this case, the denominator total subarea-level estimates θ̂T2,Bj and area-level estimates

θ̂T2,Bi are constructed as in (6, 9), and treated as fixed and known. Then, the subarea-level
bechmarking weights wRjk are set equal to the ratio of the subarea-level denominator to-

tal to the target denominator total wRj ∶=
θ̂T2,B
j

aT2
, for all k = 1, ...,K. The bechmarking

weights wRjk are applied to the iterates θR,noadjjk , for example as in (4), leading to the ad-

justed subarea-level ratio estimator θ̂R,Bj . Similarly, the area-level benchmarking weights

wRik are set equal to wRi ∶=
θ̂T2,B
i

aT2
, for all k = 1, ...,K, and applied to the iterates θR,noadjik ,

for example as in (8), leading to the adjusted area-level ratio estimator θ̂R,Bi .

Subarea-level iterates for the numerator are constructed as

θT1j,k ∶= θ̂
T2,B
j θRj,k, (11)

and the estimator θ̂T1,Bj is constructed as

Ê(θT1j ∣θ̂T2,Bj ,data and constraint) =K−1
∑
k

θ̂T2,Bj θRj,k = θ̂
T2,B
j θ̂R,Bj ∶= θ̂T1,Bj ,

automatically satisfying the benchmarking constraint (see Appendix A1), with

V̂ ar(θT1j ∣θ̂T2,Bj ,data and constraint) = (K − 1)−1∑k (θ̂
T2,B
j θRj,k −K

−1
∑k θ̂

T2,B
j θRj,k)

2

= (K − 1)−1 (θ̂T2,Bj )
2
∑k (θ

R
j,k −K

−1
∑k θ

R
j,k)

2

= (θ̂T2,Bj )
2
V̂ ar(θRj ∣data and constraint).

Area-level iterates for the numerator are constructed as

θT1i,k ∶= θ̂
T2,B
i θRi,k, (12)

and the estimator θ̂T1,Bi is constructed as

Ê(θT1i ∣θ̂T2,Bi ,data and constraint) =K−1
∑
k

θ̂T2,Bi θRi,k = θ̂
T2,B
i θ̂R,Bi ∶= θ̂T1,Bi ,

satisfying automatically the benchmarking constraint (see Appendix A1), with

V̂ ar(θT1i ∣θ̂T2,Bi ,data and constraint) = (K − 1)−1∑k (θ̂
T2,B
i θRi,k −K

−1
∑k θ̂

T2,B
i θRi,k)

2

= (K − 1)−1 (θ̂T2,Bi )
2
∑k (θ

R
i,k −K

−1
∑k θ

R
i,k)

2

= (θ̂T2,Bi )
2
V̂ ar(θRi ∣data and constraint).

Note that, while the benchmarking constraints are satisfied for all three parameters of
interest, the MCMC summaries for the numerator are conditional on the denominator esti-
mates; see (11).
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Remark. Since the estimates for the denominator are treated as fixed and known, the
method of producing these estimates has no effect on the final ratio estimates. However, for
the benchmarking constraints in (2) to hold, the set of estimates for the denominator needs
to satisfy the corresponding benchmarking constraint, too. For example, survey direct esti-
mates for the denominator may not satisfy the external benchmarking constraint in (2), and
using them to construct benchmarking weights for the ratio will lead to inconsistencies.

2.2 Random benchmarking weights (R12)

For this case, subarea-level benchmarking weights wRjk are set equal to the ratio of the

weighted denominator total iterates to the denominator total target
wT2

jk θ
T2
jk

aT2
=
wT2

j θT2
jk

aT2
. The

benchmarking weights wRjk are applied to the iterates θR,noadjjk , leading to the benchmarked

iterates θRjk and to the adjusted ratio estimator θ̂R,Bj . Iterates for the numerator total θT1jk are
constructed as the product of the iterates for the denominator total θT2jk and the iterated for
the ratio θRjk,

θT1jk ∶= θ
T2
jk θ

R
jk, (13)

and the estimator θ̂T1,Bj is constructed as

Ê(θT1j ∣data and constraint) =K−1 K

∑
k

θT1jk ∶= θ̂
T1,B
j ,

satisfying automatically the benchmarking constraint (see Appendix A2), with

V̂ ar(θT1j ∣data and constraint) = (K − 1)−1∑k (θT1jk −K
−1
∑k θ

T1
jk )

2

= (K − 1)−1∑k (θT2jk θ
R
jk −K

−1
∑k θ

T2
jk θ

R
jk)

2
.

Under the choice of random weights, the benchmarking constraints are satisfied, at
the iteration level, for the three parameters of interest and the MCMC summaries for the
numerator are not conditional on the denominator estimates; see (13). However, the bench-
marking constraints for the ratio are not (exactly) satisfied at the subarea and area levels,
and the equality between the subarea-level ratio estimator and the ratio of the subarea-level
estimators for the totals is not (exactly) satisfied; the differences in the subarea-level esti-
mates are illustrated in Appendix A2.

The area-level estimators for the numerator are derived in a similar way the subarea-

level estimators were derived. The area-level weights wRik are set equal to θT2
ik

aT2
and applied

to the iterates θR,noadjik , leading to the benchmarked iterates θRik and to the adjusted ratio
estimator θ̂R,Bi . Iterates θT1ik are constructed as the product of θT2ik and θRik,

θT1ik ∶= θ
T2
ik θ

R
ik, (14)

and the estimator θ̂T1,Bi is constructed as

Ê(θT1i ∣data) =K−1 K

∑
k

θT1ik ∶= θ̂
T1,B
i ,

satisfying automatically the benchmarking constraint (see Appendix A2), with

V̂ ar(θT1i ∣data and constraint) = (K − 1)−1∑k (θT1ik −K
−1
∑k θ

T1
ik )

2

= (K − 1)−1∑k (θT2ik θ
R
ik −K

−1
∑k θ

T2
ik θ

R
ik)

2
.
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3. Application to the End-of-Season Crop Estimates at NASS

Model-based estimates for 2014 end-of-season crop acreage, production and yield are con-
structed for corn and soybeans in selected states. Survey direct estimates are available
from the NASS’s quarterly crops Acreage, Production and Stocks (APS) surveys and its
supplement, the County Agricultural Production Survey (CAPS). The goal is to produce
county-level and ASD-level estimates for three parameters of interest: harvested acreage
total, production total and yield, where yield is defined as the ratio of production to har-
vested acreage, such that the benchmarking constraints between the three levels (county,
agricultural statistics district and state) hold. The state-level values are prepublished and
considered as fixed targets in the benchmarking. Estimation is conducted state by state and
commodity by commodity.

3.1 Direct Survey Estimates

Three states that are major producers of corn and soybeans are considered in this applica-
tion: Illinois, Indiana and Iowa. The number of counties in each state equals 102, 92 and
99, respectively. The number of ASDs is 9 in each of the three states. Official state-level
values of acreage, production and yield are obtained from NASS QuickStats, at USDA
NASS (2017). The CAPS summary provides the county-level direct survey estimates and
their corresponding sampling variances, for the three parameters of interest, the ratio defi-
nition being satisfied for the three sets of survey estimates; i.e., yield survey estimates equal
to the ratio of production survey estimates to harvested acreage survey estimates. However
the benchmarking constraints in (2) do not hold for the survey estimates. The number of
available survey estimates for each parameter differs across years, states and commodities.
For example, fewer county-level survey estimates are available for yield than for harvested
acreage. This is not the case for the 2014 corn and soybeans estimates in Illinois, Indiana
and Iowa, as survey estimates are available for the three parameters, for all the counties.

The county sample size is the number of records used to construct the county-level
survey estimates; it differs from state to state, commodity to commodity, and parameter
to parameter, taking values in the range 1 to 98 for corn in Illinois, Indiana and Iowa.
The production and yield sample sizes are equal and are less than or equal to the acreage
sample size. The estimated CVs for the survey estimates increase as the county sample
size decreases, and their ranges also differ from state to state, commodity to commodity,
and parameter to parameter. For harvested acreage (HV) survey estimates, the CVs range
from 8.1% to 92.3%, for production (PD) survey estimates, the CVs range from 8.6% to
100.0% and for yield (YD) survey estimates, the CVs range from 0.0% to 11.7%. Figure 1
shows the distribution of the coefficients of variation (CVs) of the county-level corn survey
estimates, relative to the county-level corn sample size. Similar CVs and sample sizes are
identified for soybeans.

3.2 Auxiliary Sources of Information

We select three sources of auxiliary information for covariates: the USDA Farm Ser-
vice Agency’s planted acreage administrative data (FSA.PL), the USDA Natural Resources
Conservation Service’s National Commodity Crop Productivity Index (NCCPI) and the Na-
tional Oceanic and Atmospheric Administration’s weather data. In particular, from the set
of weather variables, we select the March Precipitation (NOAA March PCPN). The county-
level covariates, FSA.PL and NCCPI, were selected from a larger pool of variables, using
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Figure 1: County-level Direct Survey Estimates, CVs versus Sample Sizes
2014 Corn in Illinois, Indiana and Iowa

The plots illustrate the relationship between the coefficients of variation (CVs) of the county-level
corn survey estimates and the county-level corn sample size, for harvested acreage (HV), production
(PD) and yield (YD). The CV ranges and the sample size ranges differ from state to state, from
parameter to parameter and from commodity to commodity.

correlation analysis and model comparison criteria. As expected, exploratory data analy-
sis shows that strong linear relationships exist between the survey acreage and production
estimates, and the acreage administrative data, and that strong linear relationships exist be-
tween the survey yield estimates and the NCCPI values. The ASD-level covariate, NOAA
March PCPN, was also selected based on correlation analysis and model comparison crite-
ria. It is also known that March precipitation may impact the corn planting practices (see
Erciulescu et al. (2016)) and March is the first month by which corn and soybeans planting
starts, or is completed, across the United States, see USDA NASS (2010).

3.3 A Hierarchical Bayesian Model

Following Erciulescu et al. (2016), the proposed model is a subarea-level model, where the
area represents the ASD and the subarea represents the county. Of interest is estimation
of the triplet (production, acreage and yield) at the county and ASD levels, such that the
county-level estimates, the ASD-level estimates and the state-level values agree.

Let i = 1, ...,m be an index for the m ASDs in the state, j = 1, ..., nci , be an index for
the nci counties in ASD i, and nij be the county sample size of the jth county in the ith

ASD. The total number of counties in the state is ∑mi=1 nci = nc and the state sample size is
∑
m
i=1∑

nci
j=1 nij = n. The county-level covariate values are xij and the ASD-level covariate

values are zi.

Let θ̃ij be the survey estimate in county i and ASD j, σ2ij be the sampling variance in
county i and ASD j, and cij be known constants (to be specified). Illustrated for one state,
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one commodity and one parameter, let the hierarchical Bayesian subarea-level model be

c−1ij θ̃ij ∣(β, uij , vi, σ
2
ij)

ind
∼ N((1, xij , zi)β + uij + vi, c

−2
ij σ

2
ij),

θij ∶= (1, xij , zi)β + uij + vi,

uij ∣σ
2
u

iid
∼ N(0, σ2u),

vi∣σ
2
v

iid
∼ N(0, σ2v).

(15)

Model (15) borrows information from all the counties in an ASD and from all the ASDs in
the state, while combining auxiliary information available at different levels of aggregation.
Note that model (15) with cij = 1, known σ2ij and σ2v = 0, reduces to the area-level model,
introduced by Fay and Herriot (1979).

It is important to note that the distribution of the county-level total acreage estimates is
skewed. To reduce skewness and improve the symmetry of the distribution of the survey
estimates, the model fit to acreage uses cij = nij . On the other hand, the distribution of
the county-level yield estimates is approximately symmetric, and the survey estimates are
modeled without scaling. That is, when the model is fit to yield, cij = 1.

In model (15), the sampling variances σ2ij are fixed. Often, estimates σ̃2ij are available,
or can be computed, from the survey. In order to reduce the variability of the sampling vari-
ances and the relationship with the survey estimates, we consider a model for the variance
of the acreage estimates that is not applicable to yield.

Let the model for the sampling variances be

(nij − 1)
σ̃2
ij

σ2
ij
∣σ2ij

ind
∼ χ2

(nij−1),

log(c−2ij σ
2
ij)∣(α, σ

2)
ind
∼ N((1, log(xij))α, σ

2).

(16)

Wang and Fuller (2003), You and Chapman (2006), Gonzalez-Manteiga, et al. (2010), Er-
ciulescu and Berg (2014) consider the case where the sampling variances are unknown and
modeled separately. Note that the logarithmic transformation can be applied to the auxil-
iary acreage estimates because they are strictly positive.

To complete the Bayesian model specification, we consider a priori independent pa-
rameters and adopt noninformative, proper priors for (α

′

,β
′

, σ2u, σ
2
v , σ

2). The prior dis-
tributions for the model parameters (β

′

,α
′

) are normal distributions with mean and vari-
ance denoted by the least squares estimates of (β

′

,α
′

). The least squares estimates of
β are obtained from fitting a simple linear model for the county-level survey estimates
against the county-level auxiliary information. The least squares estimates of α are ob-
tained from fitting a simple linear model for the county-level sampling variances against the
county-level auxiliary information, on the logarithmic scale. The prior distributions for the
model variance components σ2u, σ

2
v , and σ2 are Uniform(0,108), Uniform(0,108), and

Inverse−Gamma(103,103), respectively. We acknowledge that the Inverse−Gamma
distribution is generally a natural prior choice for a variance parameter because of its con-
jugacy. However, in a hierarchical model, the Uniform distribution performs better as a
prior for the random-effects variance component, see Browne and Draper (2005).

550



3.3.1 Model Fit and Estimation

For each state and for each commodity, model (15, 16) is fit, independently, to the CAPS
survey estimates of harvested acreage per unit, and model (15) is fit to the CAPS survey
estimates of yield. The harvested acreage total, the production total and the yield ratio
correspond to the T2, T1 totals and to the R ratio in Section 2, respectively. As a result
of variable selection, each model is fit using one county-level covariate and one ASD-level
covariate. The county-level covariate for acreage is the administrative acreage, scaled by
the county-level sample size. The county-level covariate for yield is the NCCPI. The ASD-
level covariate is the set of March precipitation values available from NOAA.

The models are fit using R JAGS, and the posterior distributions constructed using
MCMC simulation. We use 10,000 Monte Carlo samples and 1,000 burn-in samples, 3
chains, each thinned every 9 samples. The convergence is monitored using trace plots, the
multiple potential scale reduction factors (values less than 1.1) and the Geweke test of sta-
tionarity for each chain, see Gelman and Rubin (1992) and Geweke (1992). Also, once the
simulated chains have mixed, we construct the effective number of independent simulation
draws to monitor simulation accuracy.

Using the chains of iterates obtained from the model fit, we construct posterior sum-
maries from the posterior distributions of the county-level and ASD-level estimates, under
the different benchmarking scenarios presented in Section (2), treating the ij index as the j
index. The classic random benchmarking adjustment (see Rao and Molina 2015) is applied
to county-level estimates, under the constraint to the fixed, prepublished state-level values.
The benchmarking weights for yield are functions of the harvested acreage estimates. Let
θRj denote the yield parameter at the county-level, let θT2j denote the harvested acreage
parameter at the county-level and let θT1j denote the production parameter at the county-
level. Then the benchmarking weights for the acreage wT2jk are set equal to the county-level
sample sizes, for all k = 1, ...,K, because the models are fit to the scaled totals. Hence,
the benchmarking weights for production equal to the benchmarking weights for acreage
wT1j = wT2j = wT2jk , for all k = 1, ...,K. The model-based point estimates are compared to
the corresponding NASS official estimates (ASB), and the model-based standard errors of
the point estimates are compared to the NASS survey errors.

3.4 Results

We will present results for the model-based estimates for harvested acreage (HV), the
model-based estimates for yield (YD), and the derived estimates for production (PD), as
described in Section 2. The MCMC iterates for HV are used to construct benchmarking
weights for yield (YD) estimates.

The median relative differences between the HV model-based estimates, ratio adjusted
to satisfy benchmarking constraints, and the ASB estimates, are 3.54% for corn and 4.46%
for soybeans, which are approximately equal to 0.43 and 0.54 standard errors for corn and
soybeans, respectively. Moreover the estimated error in the model-based HV estimates is
lower than the estimated error in the survey HV estimates; the model-based estimates have
variances approximately 50% lower than the variances of the survey estimates for both corn
and soybeans. As a result, the estimated CVs for the derived county-level production (R12)
estimates are approximately 40 − 45% of the corresponding estimated CVs for the county-
level survey estimates. This is a result of the model’s strength of borrowing information

551



across counties and ASDs, and from auxiliary data.

We compare the production (PD) and yield (YD) model-based estimates, under the dif-
ferent ratio benchmarking applications presented in Section 2, to the survey estimates and
to the published estimates. To protect the confidentiality of the data, we present three met-
rics to quantify the relative differences between the model-based estimates (MERB) and the
ASB estimates, and the relative differences between the standard errors of the model-based
estimates (MERBSE) and of the survey estimates (CAPSSE). Results for the 2014 county-
level corn estimates in Illinois, Indiana and Iowa are presented in Table 1 and Figure 2.

Table 1: Median Absolute Relative Differences of County-Level Estimates
2014 Corn and Soybeans in Illinois, Indiana and Iowa

medianij ∣
MERBij −ASBij

ASBij
∣ medianij ∣

MERBij −ASBij

MERBSEij
∣ medianij ∣

MERBSEij −CAPSSEij

CAPSSEij
∣

State Estimator PD YD PD YD PD YD
Corn IL R11 2.17% 0.50% 1.14 0.30 88.52% 5.37%

R12 2.17% 0.50% 0.31 0.29 58.13% 5.32%
IN R11 4.49% 0.59% 2.12 0.27 88.11% 6.08%

R12 4.48% 0.59% 0.43 0.27 38.83% 5.95%
IA R11 4.58% 0.56% 2.61 0.34 88.39% 7.84%

R12 4.58% 0.56% 0.65 0.34 53.59% 7.78%
Soybeans IL R11 3.12% 0.55% 1.37 0.26 86.47% 3.69%

R12 3.13% 0.55% 0.37 0.26 49.63% 3.55%
IN R11 6.76% 0.82% 3.05 0.44 86.84% 3.47%

R12 6.76% 0.82% 0.61 0.44 38.31% 3.64%
IA R11 5.91% 0.97% 3.21 0.52 87.34% 6.16%

R12 5.91% 0.97% 0.83 0.52 54.22% 6.20%

The YD and PD point estimates are similar when benchmarked using fixed and random
weights because the variance of the random weights is negligible (in the range (10−6,10−7)).
Although, under random weights, the equality between the yield estimates and the ratio of
production estimates to harvested acreage estimates is not exactly satisfied, the percent-
age medians of relative differences, relative to the ASB estimates are equal for the two
cases (R11 and R12), up to two significant digits. Most of the YD county-level estimates
are within 0 − 1% from the corresponding ASB estimates, or within 0 − 0.52 standard er-
rors from the corresponding ASB estimates; 99.7% of the ASB estimates fall inside the
95% credible intervals of the corresponding model-based estimates. Also, most of the PD
county-level estimates are within 3 − 7% from the corresponding ASB estimates, or within
0 − 3.21 standard errors from the corresponding ASB estimates; 52% of the ASB esti-
mates fall inside the 95% credible intervals of the corresponding model-based estimates.
However, the variance estimates for PD (R11) are artificially decreased, as a result of con-
ditioning on the acreage estimates. Hence, there is a significant difference between the
model-based PD estimates and the ASB estimates.

Results for the 2014 ASD-level corn estimates in Illinois, Indiana and Iowa, are pre-
sented in Table 2 and Figure 3. The benchmarking applications presented in Section 2 per-
fom similar for the ASD-level estimates and for the county-level estimates. The absolute
relative differences between the model-based ASD-level estimates and the corresponding
official estimates are smaller than the absolute relative differences for the county-level;
this is expected because the survey direct estimates are also more reliable at the ASD-level
than at the county-level due to larger sample sizes at the ASD-level than at the county-level.
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Figure 2: County-level Model-based Estimates versus ASB Estimates
2014 Corn in Illinois, Indiana and Iowa
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The box plots illustrate the relationship between the county-level direct survey estimates, the model-
based estimates (R11, R12) and the ASB estimates, for production and yield. The model-based
estimates are ratio benchmarked using the methods described in Section 2. The three horizontal
sets of box plots correspond to the three states, denoted by their FIPS codes (17 for Illinois, 18
for Indiana and 19 for Iowa). One county with sample size equal to one was removed from the
visual representations because its (approximately zero) corresponding survey variance decreased
the visual precision. Results are similar for soybeans.

3.5 Other results

Following Berg et al. (2014), an alternative option would be to use the HV survey estimates
to construct the fixed benchmarking weights for yield (R11.S), but they do not satisfy the
acreage benchmarking constraint, see Remark for (R11). For this study, the official HV
estimates may also be used to construct the fixed benchmarking weights for yield (R11.O),
since the study year is 2014 and official estimates are already available. Empirical results
show that the yield point estimates are similar for the three cases when harvested acreage
estimates are treated as fixed, available from the model (R11), from the survey (R11.S) or
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Table 2: Median Absolute Relative Differences of Agricultural Statistics District-Level
Estimates

2014 Corn and Soybeans in Illinois, Indiana and Iowa

medianij ∣
MERBij −ASBij

ASBij
∣ medianij ∣

MERBij −ASBij

MERBSEij
∣ medianij ∣

MERBSEij −CAPSSEij

CAPSSEij
∣

State Estimator PD YD PD YD PD YD
Corn IL R11 1.40% 0.25% 2.48 0.31 89.18% 13.61%

R12 1.40% 0.25% 0.44 0.31 49.33% 12.77%
IN R11 2.66% 0.27% 3.77 0.32 88.60% 23.93%

R12 2.66% 0.27% 0.61 0.32 24.20% 21.31%
IA R11 3.54% 0.20% 6.97 0.33 87.60% 9.08%

R12 3.54% 0.20% 1.04 0.32 13.69% 7.68%
Soybeans IL R11 1.37% 0.31% 1.68 0.49 86.59% 13.60%

R12 1.37% 0.31% 0.48 0.48 33.86% 12.76%
IN R11 3.94% 0.44% 4.09 0.67 88.21% 28.98%

R12 3.94% 0.44% 0.64 0.64 26.19% 26.86%
IA R11 4.35% 0.29% 7.95 0.44 86.69% 20.42%

R12 4.35% 0.29% 1.27 0.43 13.88% 19.48%

from the published source (R11.O). However, the median relative differences between the
production estimates derived using R11.S and the official production estimates are approx-
imately four times larger than the corresponding median relative differences between the
production estimates derived using R11 and the official production estimates. Also, the me-
dian relative differences between production estimates derived using R11.O and the official
production values are approximately seven times smaller than the corresponding median
relative differences between the R11 production estimates and the official production val-
ues.

Alternatively, model-based estimates may be constructed for the totals, using survey
totals estimates and auxiliary data, and ratio estimates may be derived using a ratio esti-
mator. Hence, no additional benchmarking step is needed for the ratio estimates. Similar
to the model fit and estimation for acreage, presented in Section 3.3.1, we fit model (15,
16) with cij = nij to the subarea-level production survey estimates, and constructed pro-
ducton model-based estimates for the application study. For this approach, four cases are
compared. In the first application, iterates for the ratio are constructed using the MCMC
iterates for the numerator and for the denominator, in two different ways: in the first case
(R211), the iterates for the ratios are based on the denominator estimates, treated as fixed
and known, and in the second case (R212), the iterates for the ratios are based on the
MCMC iterates for the denominator. In the second application, ratio estimates are con-
structed using a Taylor series expansion, and two cases (R221, R222) of constructing co-
variance estimates between the numerator and the denominator are considered: using the
MCMC iterates for the two totals or using the value from the survey summary.

Compared to the derived R11 and R12, the differences between the model-based PD
estimates R211, R212, R221, R222 and corresponding ASB estimates are larger; however,
most are within one standard error. Under this alternative approach, the median estimated
error in the survey PD estimates is reduced 11 − 36%, as a result of the model’s strength of
borrowing information across counties and ASDs and from auxiliary data.

Compared to the model-based estimates R11 and R12, the differences between the de-
rived YD estimates R211, R212, R221, R222 and the corresponding ASB estimates are
larger; however, most are within 1.48 standard errors, likely a result of poor variance esti-
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Figure 3: Agricultural Statistics District-level Model-based Estimates versus ASB
Estimates

2014 Corn in Illinois, Indiana and Iowa
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The box plots illustrate the relationship between the ASD-level direct survey estimates, the model-
based estimates (R11, R12) and the ASB estimates, for production and yield. The model-based
estimates are ratio benchmarked using the methods described in Section 2. The three horizontal
sets of box plots correspond to the three states, denoted by their FIPS codes (17 for Illinois, 18 for
Indiana and 19 for Iowa). Results for soybeans are similar.

mation since R211, R212, R221 do not take into account the positive correlation between
the two totals and R222 uses a sample-based estimated correlation. The covariance estima-
tor using the MCMC (R221) is weak (a bivariate model may improve it), but overall it per-
forms comparable to R211 and R212. Fixing the correlation to its survey value improves
the Taylor variance approximation for the ratio, with greater improvement for soybeans
than for corn; the median difference between the R222 model-based standard error and the
survey standard error is less than one half for corn and less than one forth for soybeans,
compared to R211, R212 and R221. The Taylor variance approximation needs further at-
tention.
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The alternative constructions R211, R212, R221, R222 have the potential to increase
the number of county-level yield estimates, since, for some states and commodities, the
county-level sample size may be lower for yield, than for acreage and production. From the
set of six different constructions considered in this manuscript, R221 and R222 satisfy both
the benchmarking constraints and the relationship between the three parameters of interest.
The only challenge is in estimating the covariance between the numerator (production) and
the denominator (harvested acreage); in R222 we used the estimated correlation (treated
as fixed) available from the survey summary, and based on the common number of records
available for the three parameters. Bivariate small area modeling of acreage and production
survey estimates would provide reliable estimates for acreage and production, as well as es-
timated variance-covariance matrix. Yield estimates using R222 could then be constructed
using the MCMC iterates from the bivariate model; research left for future investigation.

4. Discussion

NASS’s interest in producing reliable end-of-season yield estimates and associated standard
errors, subject to constraints at multiple aggregation levels, has motivated the research pre-
sented in this paper. The problem of estimating and benchmarking three related quantities
of interest lead to the investigation of the effect of benchmarking constraints for ratios. We
presented different methods of constructing model-based estimates for two totals and their
ratio at lower-level areas that aggregate to fixed values at upper-levels. In this paper, we
introduce and compare methods of applying the benchmarking adjustments to model-based
estimates at multiple stages. We chose to illustrate the methods using the ratio benchmark-
ing adjustment, one of the two classic benchmarking adjustments: ratio and difference. The
reason we did not pick the difference adjustment is that it may lead to negative estimates
for the ratio of positive totals.

The (R11) application of benchmarking adjustment to ratio estimates, where the esti-
mates for the denominator are treated as fixed and known, is common practice at NASS
for projects where only one quantity is of interest (such as yield forecasting or cash rental
rate estimation). We showed that the (R11) estimates are conditional on the denominator
estimates, resulting in an underestimated variance for production estimates. As a solution
to produce reliable numerator estimates, we introduced method (R12). For the application
study, the construction (R12) provides a valuable set of estimates for the triplet, the in-
consistencies in the ratio identity may be avoided with a simple rounding. Moreover, the
estimated CVs for the county-level yield (R12) estimates are approximately 80 − 90% of
the corresponding estimated CVs for the county-level survey estimates and the estimated
CVs for the county-level production (R12) estimates are approximately 40 − 45% of the
corresponding estimated CVs for the county-level survey estimates.

We presented harvested acreage, production and yield estimates for 2014 end-of-season
corn and soybeans in three selected states. Posterior summaries are available for the county-
level estimates and ASD-level estimates, for the triplet that closely satisfies the benchmark-
ing constraints at both levels. Extensions of the methods, to produce posterior summaries
for any intermediate aggregation level between county-level and state-level, such as groups
of counties or groups of ASDs, is straightforward. In this paper, we presented posterior
means and posterior variances and compared the results to the survey estimates and to
the official estimates. We showed consistency between the modeled YD estimates (R11,
R12) with survey and official, but additional results show inconsistencies between the de-
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rived YD estimates (R211, R212, R221, R222) from modeled production and acreage. The
model-based estimates have smaller variances than the survey estimates for the three quan-
tities of interest.

Due to construction, the point estimates for the ratio derived under (R211), (R221) and
(R222) are the same, but the measures of uncertainty differ. Only the constructions of ratio
estimates given in (R11), (R211), (R221) and (R222) satisfy the benchmarking constraints
and the ratio definition exactly. In (R11) and (R211), the estimates for the ratio are con-
ditional on the estimates for the denominator. In (R221) and (R222), the estimate for the
variance of the ratio depends on the estimate for the covariance between the numerator and
the denominator. The most robust approach to construct estimates for the three parameters
would be to model T1 and T2 jointly, and then construct R as the ratio, with associated
variance derived using a Taylor series expansion for the ratio; an estimated covariance term
would be available from the estimation based on the joint model for T1 and T2. In an
operation environment, (R11) or (R12) may be used, with a caution that (R11) is condi-
tional on the denominator. If the user is concerned with production and yield estimation
only, assuming that good harvested acreage values are already available, then the (R11.O)
construction may be used. The (R211), (R212), (R221) and (R222) constructions may only
be used when the variance estimation is improved.

If the survey estimate for the ratio is not available for a subarea j, then the model-based
estimate for the ratio is not constructed for the subarea j. As a result, under (R11) and
(R12), the model-based numerator estimate for subarea j is not constructed, even if the
denominator estimate is available. On the other hand, when the survey estimates for the
numerator and denominator are available for a subarea j, model-based estimates for the
numerator and denominator are constructed and, under (R211), (R212), (R221), (R222),
ratio estimates are derived, even if the survey ratio estimate is not available. Hence, the
(R11) and (R12) constructions result in a smaller number of estimates for the ratio, than
the (R211), (R212), (R221), (R222) constructions do.

The emerging remote sensing estimation procedures provide good sources of yield es-
timates, available for selected commodities and for selected states. See, for example, Dave
Johnson (2014). However, the remote sensing estimates are subject to coverage errors
due to the environment, are not benchmarked to the state-level values, and measures of
uncertainty associated with the estimates are not available. Applying a benchmarking ad-
justment to such estimates may or may not fall under one of the methods illustrated in this
manuscript, and it is left for future investigation. Our preliminary results show that the
remote sensing estimates are closer to the derived yield estimates in (R211, R212, R221,
R222) than to the model-based estimates (R11, R12).
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Appendix A

A1. Model T1 and R. Fixed Benchmarking Weights.

For a ratio benchmarking adjustment, the proof is as follows

∑j θ̂
T1,B
j = ∑j θ̂

T2,B
j θ̂R,Bj ,

= ∑j θ̂
T2,B
j K−1

∑k θ
R
jk, by (6)

= ∑j θ̂
T2,B
j K−1

∑k θ
R,noadj
jk aR (∑j w

R
jkθ

R,noadj
jk )

−1
, by (4)

= aRK
−1
∑k∑j θ̂

T2,B
j θR,noadjjk (∑j w

R
jkθ

R,noadj
jk )

−1
, since aR is constant

= aRK
−1
∑k∑j θ̂

T2,B
j θR,noadjjk (∑j a

−1
T2θ̂

T2,B
j θR,noadjjk )

−1
, by definition of wRjk

= aRaT2K
−1
∑k(∑i θ̂

T2,B
j θR,noadjjk ) (∑j θ̂

T2,B
j θR,noadjjk )

−1
, since aT2 is constant

= aRaT2 = aT1.

Similarly, the proof for area-level equality constraints follows immediately,

∑i θ̂
T1,B
i = ∑i θ̂

T2,B
i θ̂R,Bi ,

= ∑iK
−1
∑k θ̂

T2,B
i θRik, by (6)

= ∑iK
−1
∑k aT2w

R
i θ

R
ik, by definition of wRik

= aT2aR = aT1.

The ratio estimator for the set of all subareas is the weighted sum of the subarea-level
ratio estimators,

∑j w
R
j θ̂

R,B
j = ∑j w

R
j K

−1
∑k θ

R
jk, by (6)

= K−1
∑k∑j w

R
j θ

R
jk, exchanging summations

= K−1
∑k∑j w

R
j θ

R,noadj
jk aR (∑j w

R
j θ

R,noadj
jk )

−1
, by (4)

= K−1
∑k aR, since aR is constant

= aR.
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A2. Model T1 and R. Random Benchmarking Weights.

Note that, from the derivation of production total estimates, the benchmarking weights
for the two totals are equal. Hence, wT1j = wT2j = wT2jk , for all k = 1, ...,K.

For a ratio benchmarking adjustment, the proof is as follows

∑j w
T1
j θ̂T1,Bj = ∑j w

T1
j K−1

∑k θ
T1
jk

= ∑j w
T1
j K−1

∑k θ
T2
jk θ

R
jk, by (13)

= ∑j w
T1
j K−1

∑k∑j θ
T2
jk θ

R,noadj
jk aR (∑j w

R
jkθ

R,noadj
jk )

−1
, by (4)

= aRK
−1
∑k∑j w

T1
j aT2w

R
jk(w

T2
jk )−1θR,noadjjk (∑j w

R
jkθ

R,noadj
jk )

−1
,

since aR is constant and by definition of wRjk

= aRaT2K
−1
∑k(∑j w

T1
j (wT2jk )−1wRjkθ

R,noadj
jk ) (∑j w

R
jkθ

R,noadj
jk )

−1
,

since aT2 is constant

= aRaT2K
−1
∑k(∑j w

R
jkθ

R,noadj
jk ) (∑j w

R
jkθ

R,noadj
jk )

−1
, since wT1j = wT2jk

, for all k = 1, ...,K

= aRaT2 = aT1.

The ratio estimator for the set of all subareas is the weighted sum of the subarea-level
ratio estimators,

∑j w
R
j θ̂

R,B
j = ∑j w

R
j K

−1
∑k θ

R
jk, by (8)

= ∑j(K
−1
∑k′ w

R
jk′

)(K−1
∑k θ

R
jk), since K−1

∑k′ w
R
jk′

=
θ̂T2,B
j

aT2
= wRj

≠ K−2
∑k∑k∑j w

R
jkθ

R
jk

= K−2
∑k∑k aR = aR.

The subarea-level numerator total estimator is

θ̂T1,Bj =K−1
∑k θ

T1
jk = K−1

∑k θ
T2
jk θ

R
jk, by (13)

≠ (K−1
∑k′ θ

T2
jk′

) (K−1
∑k θ

R
jk) .
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