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Abstract 

The USDA National Agricultural Statistics Service’s (NASS’s) official statistics at the 

county level are composites of survey and non-survey data that are manually benchmarked 

to state and national official estimates. NASS is currently developing Bayesian hierarchical 

models as an alternative to produce county official statistics using survey summaries and 

auxiliary data as covariates. The modeled county estimates are linear combinations of 

survey summaries and auxiliary data, with coefficients depending on the standard errors of 

direct survey estimates. With this approach, the auxiliary data are not used to produce the 

final model estimate when the standard error of the direct survey estimate is zero.  In this 

paper, it is shown how to mitigate estimated standard errors of zero. The relationship 

between the direct survey estimates and their standard errors is modeled, if a relationship 

between the two is present. Exploratory data analysis is conducted and a data driven 

distribution-based technique using bootstrapping is proposed for cases where the 

relationship between estimates and their standard errors cannot be modeled well. An 

illustration of the method using NASS’s County Agricultural Production Survey data is 

presented. 

 

Key Words: Agricultural Survey, Bootstrap, Official Estimates, Small Area Estimation, 

Zero Variances 

 

 

 

1. Introduction 

 

The USDA’s National Agricultural Statistics Service (NASS) conducts the County 

Agricultural Production Survey (CAPS) to produce end-of-year estimates of planted 

acreage (P), harvested acreage (H), production (G), and yield (Y), where yield is defined 

as the ratio of G to H, for dozens of small grains and row crops, at the county and district 

domains. NASS’s current county official statistics are constructed by consensus of the 

Agricultural Statistics Board (ASB) from direct expansions of totals and ratio estimators. 
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They are manually benchmarked composite of CAPS and other non-survey sources of 

information. Sampling variances for totals are estimated using a delete-a-group Jackknife 

and sampling variances for yield are estimated using a second order Taylor series 

approximation for the ratio (Kott, 1990). NASS is currently testing Bayesian hierarchical 

models as an alternative for the production of county official statistics, using survey 

summaries and auxiliary data as covariates. Findings of an external review recommend 

NASS transition to a system of model-based official statistics (National Academies, 2017). 

 

Modeling approaches to survey estimates were introduced decades ago; however, there is 

an increased interest in the recent years especially through small area research. The 

literature suggests that estimates produced from modeling of small area population totals 

are somewhat more accurate when compared to symptomatic accounting techniques 

(Ericksen, 1974 b; O’Hare, 1976; Purcell and Kish, 1979). However, models are used to 

improve the precision of direct estimation even when data are available for every domain 

(Tzavidis et al., 2018). A combined synthetic-regression method considers the synthetic 

estimate as a covariate for the regression model, allowing a suitable combination of a 

biased, low variance synthetic estimate and high variance direct estimate (Nicholls, 1977).  

 

The choice and accuracy of the existing techniques for small domain estimation are dictated 

by the level and quality of the available data, both response and covariates (Purcell and 

Kish, 1979). When the synthetic estimate is not available for a sample of small areas, a 

modeling approach becomes problematic. 

 

NASS county estimates are linear combinations of direct survey summaries and auxiliary 

data, with coefficients depending on the standard errors (SEs) of direct estimates (DEs) 

from the survey. With this approach, counties with zero survey estimated variance (SE2) 

are not included in the set of modeled counties; i.e., the auxiliary data is not used to produce 

the final model estimate. A hierarchical lognormal model for the survey variances on the 

survey estimates for corn harvested acreage is developed in Erciulescu et al. (2018) to 

mitigate variances strongly related to direct estimates. The parameters of the model are 

estimated using the subset of sampled data with estimates available (positive) for both 

quantities. A similar approach may be used to mitigate zero variances. The lognormal 

model assumption holds for production, but not for yield. Furthermore, exploratory data 

analyses indicate that there is no easier modeled relationship present between direct 

estimates of yield, i.e., yield estimate and its variance/standard error. 

 

In this paper, it is shown how to mitigate zero estimated SE of DE of yield at the county 

level through exploring alternatives other than modeling. All approaches are illustrated 

using NASS survey data from CAPS. Sample data consist of states that differ by 

commodity. Concentrating on corn commodity, there were 37 states sampled for corn in 

2016. All methods approximate (and replace where applicable) survey variances less than 

1 bu/acre. The threshold may differ for other commodities. Throughout the paper, the terms 

survey variances and (squared) standard errors are used interchangeably. The paper is 

structured as follows. The problem is set up in Section 2, where a brief description of the 

subarea level model applied to CAPS summary at NASS is given. The relationship between 

the DE for total planted area, total harvested area, production and yield for corn and their 

estimated survey variances is investigated in Section 3. The relationship between the DEs 

and their SEs is modeled, whenever a “good” relationship between the two is present. A 

Taylor series approximation and a data driven technique for approximating the distribution 

of SE of yield is presented in Section 4. Data suggest that the SE of yield for the sampled 

counties follows a chi-square distribution.  The auxiliary variables used as covariates in the 
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subarea model are further explored to identify the ones that are related to SE of yield. The 

existing association structure between these variables within the data space is used when 

estimating the assumed chi-square distribution of the SE of yield. The method of moments 

and a bootstrap sampling approach are used to estimate the degrees of freedom of the chi-

square distribution. Then, all SEs less than 1 bu/acre are replaced with values drawn from 

the upper-tail of the distribution, i.e., 75th percentile. The final model based county 

estimates are compared and results are also presented in Section 4. Concluding remarks are 

given in Section 5. 

 

2. Problem Setup 

 

2.1 County Agricultural Production Survey 

The 2016 CAPS sample consists of 37 states comprised of 2881 counties for corn. From 

these counties, 2467 have positive planted acreage, 2361 counties have positive harvested 

acreage and 2329 counties have positive yield/production for corn. The subarea level model 

currently being tested at NASS using CAPS summary considers the DE as the response 

and assumes that the variance of the DE is available and positive in order to produce the 

final modeled county estimate. However, due to item level nonresponse, there is a 

sparseness in the reported data, and CAPS survey summaries could not be produced for 

every county. This affects yield more than total planted and harvested acreage, and 

production. 

 

In this paper, the relationships of survey summaries from CAPS for planted and harvested 

acreage, production, and yield for corn are investigated. In what follows, the CAPS subarea 

level model applied to at NASS and the issues arising with CAPS summaries when trying 

to model all counties in the sample are discussed. Finally, alternative solutions to overcome 

these issues are presented and compared. 

 

First, for county j of district i, denote the DE and SE of total harvested acreage by ������ , �	���
, of total planted acreage by ������ , �	���
, of total production by ������ , �	���
, 

and the DE and SE of yield by �����
, �	��

. Harvested acreage and yield are considered 

since production could be estimated from these. Data analysis of the CAPS responses for 

year 2016 resulted in 6 counties with valid DEs for total planted acreage (����� > 0) and 

corresponding SEs equal to zero (�	��� = 0), 6 counties with valid DEs for total harvested 

acreage (����� > 0) and corresponding SEs equal to zero (�	��� = 0), and 5 counties with 

valid estimates DEs for total production (����� > 0) and corresponding SEs equal to zero 

(�	��� = 0). Direct estimates from data analysis of the CAPS responses for corn yield in 

2016 include 104 counties with valid estimates ����
 > 0  and SEs (of the estimates) equal 

to zero (�	��
 = 0), and 137 counties with both direct estimates positive and SEs below 1 

(�	��
 < 1). In total, 241 counties have survey estimated SEs of yield that are smaller than 

1, which is nearly 10 percent of all counties. Furthermore, NASS only publishes yield to 

the nearest 10th of a bushel per acre, and 215 counties have SEs estimated from CAPS 

smaller than 0.01 bushel per acre. Final model estimates are not produced for the counties 

with valid (positive) survey estimates and zero/below threshold SEs. The question of 

interest is: How to mitigate zero/below threshold standard errors? This paper addresses this 

question through different approaches.  
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2.2 Subarea Level Model 

The subarea level model considered in this paper was first developed by Fuller and 

Goyeneche (1998) and later studied in a frequentist framework by Torabi and Rao (2014). 

Erciulescu et al. (2018) study the model in a Bayesian framework, assuming normal 

distributions in both, the sampling and the linkage models. The authors add a hierarchical 

level to the Fay and Herriot (1979) area level model by adopting non-informative, proper, 

independent prior distributions for parameters �′, ���, ��� . For completeness, the model 

from Erciulescu et al. (2018) is described. 

 

The linking model for the true subarea parameters of interest (mean, total, ratio), ���, is a 

linear mixed model:  

 ��� = ���� � + �� + ���                                                                 (2.1) 

 

The sampling model, for the sample subarea parameters, ���� is:  

 ���� = ��� +	 ��.                                                                         (2.2) 

 

Then, the subarea model for the sample subarea parameters, ����, is a combination of (2.1) 

and (2.2): 

 ���� = ���� � + �� + ��� +  ��,                                                       (2.3) 

 

where ! = 1,… ,#, $ = 1,… , %&�.  The following assumptions are made: 

 

1. ����|����, ����
	~	)����, �	���
, $ = 1,… , %&� 
 

2. ��|���	~	)*0, ���), ! = 1,… ,# 

 

3. ���|���	~	)*0, ���),  $ = 1,… , %&�, ! = 1,… ,# 

 

In our case study, ��� is the county level parameter of interest.  There are # districts (areas) 

within a state and %&�  counties (subareas) within each district ! , ∑ %&�,�-. = %& . Data 

consist of survey summaries �����, �	���
 and auxiliary data /��  for county $ of districts !; ��� = �0, /�� 	
. This hierarchical Bayesian subarea model is applied to any state for a given 

year and commodity, and allows for an agreement between the respective estimates at the 

county level and the district level. Erciulescu et al. (2018) specify priors on the parameters ���, ��� and �, and discuss different scenarios of data availability. The joint likelihood and 

the posterior model are derived under the assumption that both survey and auxiliary data 

are available. The resulting posterior mean, �1��23, when the direct estimates (�����	���) and 

the auxiliary information ��� are both available at the county level is then computed:   

 

�1��23 = 	45������ + �1 − 45��
7���� �1 + 45�	*���8 	 − ���8�1)9                                   (2.4) 

 

where 45�� = �5�� ��5�� + �	���
: ,  45�. = ∑ 45��<=>�-. ,  45�= 
?@AB?@ABC?@D	B 8@>.EF,  ���

8 = 45�.G.∑ *45������), 	<=>�-.  

/�8 = 45�.G.∑ *45��/��),<=>�-.  and ���� = *1, /��). 
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The final modeled county estimates in (2.4) are linear combinations of the DEs and 

auxiliary data, with coefficients depending on the variances (or SEs) of the DEs. With this 

approach, counties with valid DEs (���� > 0) and missing or zero SEs are not modeled. 

Hence, even though auxiliary data are present, they would not be used and the direct 

estimate would be reported as the final estimate without a measure of uncertainty. In the 

rest of the paper, different approaches of mitigating SEs estimated as zero from CAPS are 

presented. In section 3, the relationship between direct survey estimates for corn in 2016 

and their standard errors for all sampled US counties is explored. In the following sections, 

emphasis is on the SE of the DE of yield. 

 

3. Exploring Relationships between Direct Estimates of Totals 

 

The exploratory data analysis of CAPS survey summaries for corn for sampled US counties 

revealed a strong relationship (on a log scale) between DEs and their SEs (SEs2) for total 

planted acreage, total harvested acreage and production (Figure 1). However, the plot of 

SEs of yield against the direct estimates of yield for sampled US counties, shown in Figure 

1, does not suggest any relationship that could be modeled using classical regression 

approach. 

 

 

 

 
 

Figure 1: Direct estimates of total planted, harvested, production and yield for sampled 

US counties in log scale 

 

 

 

As an illustration, model (3.1) explains the relationship between the transformed DE of 

harvested acreage for corn, ����� and its transformed variance (�	����  ) over all sampled US 
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counties for year 2016. The multiple R-squared is 0.9666, and the adjusted R-squared is 

0.9666. 

 HIJ��	���� 
 = 1.581039HIJ������
 + 1.532810                                            (3.1) 

 

Model (3.1) was used to approximate (and replace where applicable) survey variances less 

than the threshold of 1 bu/acre, given that the DEs were positive. A similar relationship 

was observed between the direct survey estimates for total planted acreage, total harvested 

acreage and production, and their standard errors. A hierarchical lognormal model for the 

survey variances on the survey estimates for harvested acreage, corn production and 

planted area are developed in Erciulescu et al. (2018) to mitigate zero variances. The 

coefficients are estimated using the subset of sampled data with estimates available 

(positive) for both quantities. The lognormal model assumption does not hold for yield. 

 

The focus of this paper is on mitigating zero/below threshold SEs (SEs2) using alternative 

approaches other than modeling.  Plots of several transformations of SEs of the DEs of 

corn yield did not indicate any relationship that could be modeled well. The distribution of 

SE of yield has a heavy right tail (Figure 2(a)), so the square root transformation made data 

more symmetric (Figure 2(b)); however, it did not improve the relationship between SEs 

and the DEs. The square root transformed SEs of yield are plotted against their 

corresponding DEs of yield over all sampled US counties in Figure 3. Solid dots represent 

counties with just 1 or 2 positive reports of yield, and the solid horizontal line denotes 1 

bu/acre. Hence, our intervention focused on counties with a small number of reports and/or 

a small yield. Alternative approaches of mitigating zero estimated SE of yield when the 

DE is valid (positive) are explored in the next section. 

 

 

 

(a)                                                                          (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: SE (a) and square root transformed SE (b) of yield plotted against 

their corresponding DE of yield.  
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Figure 3: Square root transformed SE of yield plotted against their corresponding DE of 

yield. Solid line indicates 1 bu/acre and solid dots correspond to counties with just 1 or 2 

reports of yield. 

 

 

 

4. Alternative Approaches to Standard Errors of Yield 

 

As part of the CAPS summary, variances for DEs of yield based on CAPS are produced 

using a second order Taylor series approximation, which due to various reasons (e.g., 

sparseness in data) could result in zero or small estimated variances for several counties. 

Taylor’s approximation is further used with slight modification as an alternative approach 

to replace the zero/below the threshold variances estimated from CAPS. Other approaches 

include data driven techniques for estimating the distribution of SEs of yield, using a subset 

of counties that contain similar information (with respect to the range of covariates already 

included in the model) as the set of counties with positive DE and SE less than the 

threshold. We called this an ‘enriched’ sample data. Illustrated with CAPS data, all 

approaches are used to approximate (or replace where applicable) survey variances (SE2) 

less than 1 bu/acre.  

 

4.1 Taylor’s Approximation 

A modification of Taylor’s approximation is the first alternative approach to replacing the 

zero/below the threshold variances estimated from CAPS considered. The approximation 

(4.1) uses the 'imputed' variances for harvested acreage and production based on the 

lognormal model (3.1) and the correlation between the DEs for harvested acreage and 

production at the county level approximated by 0.9943, the median of the correlations for 

all the sampled counties, 

 

KLM�����

 N OP�QR>ST
P�QR>SU
V
� WXYZ�QR>ST


[P�QR>ST
\B − �&]��QR>ST,QR>SU

[P�QR>ST
\[P�QR>SU
\�

XYZ�QR>SU

[P�QR>SU
\B^.                (4.1) 

 

Counties with just 1 or 
2 reports of yield 

1 bushel per acre 
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For most counties, the _I������� , �����
 was computed using the Jackknife method, as part 

of the survey summary.  For the counties where Jackknife method did not produce valid 

(positive) SEs, _I������� , �����
 = 0.9943 ∗ dKLM������
dKLM������
 , where KLM������
 
and KLM������
 are estimated from (3.1).  

 

Estimated variances based on Taylor’s approximation have high variability throughout the 

sample due to the variability of the 'imputed' variances for harvested acreage and 

production from model (3.1) and the approximated correlation between the DEs for 

harvested acreage and production, propagated through formula (4.1). 

 

4.2 Estimating the Distribution of Standard Errors of Yield 

The distribution of SEs of yield is estimated from the ‘enriched’ sample data. The pool of 

symptomatic auxiliary variables, already considered as covariates in model (2.3), is chosen 

by exploring their relationship with the SE of yield. A variable is included in the pool if 1) 

its correlation coefficient with SE exceeds 0.4 or/and 2) there is a distinct concentration 

(cluster), in its scatterplot vs SE, of points corresponding to the below threshold standard 

errors. This pool includes yield DE, production DE, standard error of production and 

administrative planted acreage values available from the Farm Service Agency (FSA 

planted acreage) and is used to subset the sample data through two steps as follows: 

 

Step 1: Compute the range of each chosen auxiliary variable, i.e., yield, production, 

standard error of production and FSA planted acreage corresponding to SEs of yield below 

1 bu/acre threshold (illustrated by arrows from A to B in Figure 4). 

 

Step 2: Identify records/units consisting of positive SEs of yield and with values of 

covariates chosen within the ranges that were computed in step 1 (illustrated by arrows 

from B to C in Figure 4). This ‘enriched’ subset of data is used to estimate the distribution 

of the SEs. 

 

Exploring these data further, it was concluded that the distribution of SEs of yield for in 

sample US counties can be approximated by a chi-square distribution (e*Y�� ). Under this 

assumption, the degrees of freedom (L) are estimated using the method of moments. 

Further, bootstrap sampling combined with a numerical approach are used as another 

alternative to estimate the degrees of freedom (L ), resulting in several densities for 

approximating the distribution of SEs. 

 

4.2.1 Estimating the parameter of chi-square using method of moments 

For the assumed chi-square distribution, using method of moments led to e*f)�  as an 

approximate for the density of SEs of yield (Figure 5). The overlapping densities and the 

quantile - quantile plot of the original SE of yield and the theoretical e*f)�  (Figure 5) show 

that e*f)�  is a good approximation for the SEs of yield for corn estimated from CAPS. 
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Figure 4: The ‘enriched’ sample data is defined by zero standard errors of yield and the 

symptomatic covariates, i.e., yield, production, standard error of production and FSA 

planted acreage. 

 
 

 

4.2.2 Estimating the parameter of chi-square using bootstrap sampling 

In this approach, the parameter a is computed numerically based on B bootstrap samples 

of SEs of yield (from set C in Figure 4). Taking the ratio of the 95% and 5% quantiles of e*Y)�  and setting it equal to the ratio of the 95% and 5% empirical quantiles estimated from 

a bootstrap sample of SEs, an implicit equation on a that can be solved numerically is 

obtained. Repeating the procedure on B bootstrap samples of standard errors, resulted in a 

sample of size B for a, which is thought of as a realization from the empirical distribution 

of a.  Then, the 75th percentile (a_75) and the max (a_max) of the bootstrap distribution of 

a are chosen to construct two chi-square distributions, e*Y_hi)�  and e*Y_,Yj)� .  

 

The approximated distributions of SE based on each approach are plotted in Figure 6. A 

drawing from any approximated distribution of SE based on each approach could be used 

to replace a below threshold SE of yield estimated from CAPS. The 75th percentile would 

provide conservatively large SEs as a measure of uncertainty.  Also, the empirical 50th and 

75th percentiles of SEs within the ‘enriched’ subset (set C on Figure 4) were used as another 

empirical approach to approximate the below threshold SE of yield. 

 

In these approaches, a constant (i.e., quantile) from the approximated distribution is used 

to impute the same value for all counties in the sample, with SEs of yield below the 

threshold, resulting in a shift in the “pick” of the distribution from zero to around 6 – 10 

(Figure 6). 
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Figure 5: Distribution of positive standard errors in the subspace corn yield  

in 2016 for the sampled US counties and the density of chi-square(6) 

 
 

 

4.3. Comparison of Approaches 

Taylor’s approximation, drawing of standard errors within an ‘enriched’ sample data (set 

C on Figure 4), chi-square approximation of the distribution of SEs, and semi-parametric 

bootstrap sampling approach provided improvement on the lower tail of the distribution of 

SE derived from CAPS survey data for corn (Figure 6). All approaches approximate (and 

replace where applicable) survey variances (SE2) less than 1 bu/acre, hence providing 

positive measures of uncertainty for CAPS positive DE. Threshold may differ for other 

commodities and other years. 

 

The performance of each approach is assessed by measuring the relative “bias” of final 

model estimates produced using model (2.3), with new imputed variances under each 

approach described in section 4.2. The difference of final model estimates from the 

estimates produced by the ASB for selected counties are plotted in Figure 7 with error 

margins, assuming estimates produced by the ASB as baseline. 

 

Tayler series approximation and the chi-square distribution approach using bootstrap 

sampling produced final estimates and error margins similar to the ASB estimates for 

counties with more than one report. For counties with one report and below the threshold 

positive SE, Tayler series approximation produced higher SEs when compared to the 

bootstrap approach. 
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Figure 6: Distribution of standard errors of yield based on different approaches 

 

 

 

 

 

 
 

Figure 7: Model predictions of corn yield based on different approaches 

for counties in selected states 
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5. Discussion 

 

This paper introduced alternative approaches of mitigating survey variances of yield 

produced as zeros. NASS’s CAPS 2016 data were used to illustrate each approach. The 

final model estimates for the year 2016 were computed using variances produced from 

each approach. 

 

The high variability of imputed variances based on Taylor’s approximation could be due 

to the variability associated with this approach using 1) the 'imputed' variances for 

harvested acreage and production based on a lognormal model (3.1), and 2) the 

approximated correlation between the DEs for harvested acreage and production (at the 

county level) i.e., the median of the correlations for all sampled counties. A chi-square with 

6 degrees of freedom (e*f)� ) was a good empirical approximation for the SE of yield for 

corn. This approach is ad hoc and may be survey specific. The distribution of SE needs to 

be explored and new distribution assumptions need to be made. 

 

In the bootstrap sampling approach, the degrees of freedom (L) of the assumed chi-square 

distribution (of SE) were estimated empirically, allowing for some variability on the 

parameter L. Applying the semi-parametric bootstrap sampling approach to a selected set 

of counties was as effective as the Taylor’s approximation (counties 8, 26, 77 and 107 in 

Figure 7), and in one case better (counties 55, Figure 7). It would be of interest to explore 

a fully non-parametric bootstrap approach to estimate the distribution of SE of yield 

empirically and free of any distribution assumption. 

 

For all approaches, except Taylor’s approximation, survey variances less than 1 bu/acre 

were imputed with a constant, e.g., square of the 75th percentile drawn from the 

approximated distribution of the SE.  Each approach, provided measures of uncertainty for 

all US counties in the sample with valid (positive) DE of yield. This resulted in an increase 

by approximately 10% in the number of final model based county estimates with a potential 

to translate into an increase on the number of counties that NASS publishes official 

statistics that include measures of uncertainty. 
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Appendix 1 

 

Estimating the parameter of chi-square using bootstrap sampling 

The parameter a of e*Y)�  is estimated numerically based on B bootstrap samples of standard 

errors. The 95% and 5% empirical quantiles estimated from each bootstrap sample are set 

equal to the ratio of the 95% and 5% theoretical quantiles of the e*Y)�  distribution. 

 

 
k*l,.mn)B
k*l,.on)B = function*L) = j	.mnwxj	.onwxy ,                                                            (1) 

 

where /	.zi{|  and /	.}i{|  are estimated from the bootstrap sample of SE. Using a normal 

approximation to e*Y)� , e*Y)� N )*L, 2L), the following expression gives an idea about the 

range of the possible values of L: 

 

   L = 	 �O−√2*�.zi) �1 + /	.zi{| /	.}i{|� �V �1 − /	.zi{| /	.}i{|� �� ��. 

Solving equation (1) for L numerically for each bootstrap sample of standard errors (of size 

m) results in a sample of length B that could be thought of as drawn from the empirical 

distribution of a, 

 

L = functionG. �/	.zi{|/	.}i{|y � 

 

 

 

 

Disclaimer 

 

The findings and conclusions in this preliminary publication have not been formally 

disseminated by the U. S. Department of Agriculture and should not be construed to 

represent any agency determination or policy. 
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