
Modeling NML Using the Area Frame Survey

Theodore Chang ∗

University of Virginia
National Agricultural Statistical Service

tcc8v@virginia.edu

Phillip S. Kott
National Agricultural Statistical Service

Phil Kott@nass.usda.gov

August 27, 2004

Abstract

This report outlines the results of various experiments to model the probability of
an area-frame farm not being on the census mailing list (NML) using covariates such
as total sales, type of farm, acreage, various operator characteristics (gender, Hispanic
status, race, and whether the primaryl occupation of the principal operator is farming),
number (if any) of equine on the farm, and, optionally, Area-Frame-Survey stratum.

Three sets of experiments were conducted. The first used California data only. The
second used data from three states - Illinois, Indiana, and Iowa, while the third used
data from the entire 48 contiguous states (there is no Area Frame Survey in either
Alaska or Hawaii).

The statistical methodology employed was logistic regression with a modification of
stepwise regression for variable selection. Standard errors were estimated using design-
based linearization methods.

Conclusions are drawn about the nature of 2002 NML farms. Some are as expected
(farms with small total sales are more likely to be NML). Others are surprising (holding
all other factors constant, point farms are not sgnificantly more likely to be NML than
other farms with less than $2,500 in annual sales).

A number of methodological problems needing further research are suggested as a
result of this study.

∗The empirical investigations described in this report where conducted by Professor Chang while he was
an ASA research fellow at NASS from January to July of 2004. Although much was accomplished, there
are limitations in the analysis due to the compact time frame.
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1 Introduction and Summary

This study starts with a model stipulating that each farm has a probability p of not being on
the census mailing list (i.e., of being NML - not on the mail list), and that this probability
depends on various covariates X+1, · · · , X+P of the farm.1 In other words, we assume a
model of the form

p = f(X+1, · · · , X+P ).

The purpose of this study is to develop a procedure for choosing good covariates X+1, · · · , X+P

and an appropriate function f .
The data used for this study came from the June 2002 Area Frame Survey and its fall

supplement, the Agricultural Coverage Evaluation Survey (ACES). We will refer to this
tandem as the AFS in what follows.

In consultation with Herb Eldridge, candidate variables for the X+j were chosen. These
consisted of sales variables, farm-type variables, variables related to operator characteristics,
variables related to equine ownership, AFS stratum, and variables related to total acreage.

One might suppose that the optimal strategy would be to include all possible variables.
To see why this is not the case, consider the model fitted to the California data using only
sales covariates. That model is2

log
(

p̂

1− p̂

)
= 0.134 + 0.520 · sales1K− 0.831 · sales2.5K + 0.413 · sales10K

− 0.868 · sales5K− 0.459 · sales25K− 1.076 · sales50K (1.1)
+ 0.584 · sales100K− 0.741 · sales250K + 0.711 · sales500K
− 1.816 · sales1000K,

where, for example, sales10K = 1 when the sales, as indicated by MFARMDEF3, is at least
$10,000, and sales10K = 0 otherwise. For the model in equation (1.1), if a farm has sales
of $5,000, then

sales1K = sales2.5K = sales5K = 1,
sales10K = sales50K = · · · = sales1000K = 0,

and p̂ = (1 + exp[−(0.1337 + 0.5197− 0.8312− 0.8680)])−1 = 0.26,

whereas if a farm has sales of $10,000, then

sales1K = sales2.5K = sales5K = sales10K = 1,
sales50K = · · · = sales1000K = 0,

and p̂ = (1 + exp[−(0.1337 + 0.5197− 0.8312− 0.8680 + 0.4126)])−1 = 0.35.

Now, the probability of NML status should decrease with increasing sales. It follows that
the coefficients of all the sales variables should be negative. That is not the case in equation

1The notation we shall follow is that if we are referring to a specific farm i, then the probability is
written pi and the covariates Xi1, · · · , XiP . The generic probability is denoted p and the generic covariates
by X+1, · · · , X+P .

2In conformity with standard notation, we will use p for a hypothesized probability and bp for an estimate
of p. The variable p is unknown, whereas bp is calculated from a sample.

3We use the convention that if a variable name appears in all upper case letters, it represents a standard
NASS AFS variable name. Otherwise it represents a derived variable. In general, when a variable name
appears in the text, it will either contain two or more upper-case letters or be italicized.
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(1.1). Apparently, the model has overfit the data, resulting in the unsatisfactory behavior
for some of the signs in the equation.

By contrast, when only the terms sales5K, sales 50K, sales1000K are used (as in the
models of Section 2)

log
(

p̂

1− p̂

)
= 0.3487− 1.2665 · sales5K− 0.9263 · sales50K− 1.5842 · sales1000K, (1.2)

and all the estimated coefficients of equation (1.2) are negative as expected.
For this study, a modification of the stepwise selection algorithm for model selection was

chosen with modifications incorporating design-based variance estimation and the grouping
and types of variables in the NASS AFS questionnaire.

Three populations were considered: California only, the three states Illinois, Indiana,
and Iowa taken together, and the 48 contiguous states (there is no AFS in either Alaska or
Hawaii).

In general, sales was the most important predictor of NML status. Stratum, certain
operator characteristics, and certain farm types were likewise significant predictors. For
the 48-state data set, with its large size, acreage and state were also significant, but of
less importance. These three models are discussed in Sections 2, 3, and 4 respectively.
The results in Section 4, since they are the most broadly applicable, are given particular
attention. Section 5 discusses statistical methodology in greater depth, while Section 6
offers some concluding remarks.

1.1 The logistic regression model

Suppose the covariates for the i-th sample farm are Xi1, · · · , XiP . The logistic regression
model is that a farm with these covariates has a probability pi of being NML, where pi has
the form

log
(

pi

1− pi

)
= β0 + β1Xi1 + ... + βpXiP . (1.3)

The β0, β1, · · · , βP are unknown constants which are estimated when the model in equation
(1.3) is fit.

For example, the California ‘no strata’ model is

log
(

p̂i

1− p̂i

)
= 2.442− 1.035 · sales5K− 0.813 · sales50K− 1.788 · sales1000K

−1.251 · CHRS− 0.909 · CCENFRUT (1.4)
−2.618 · CCENCOTT + 0.966 · CCENSHEP + 2.104 · CCENAQUA
−0.0362 · age + 1.140 · hisp + 1.028 · asian− 0.571 · ocup,

where

CCENCHRS, CCENFRUT, CCENCOTT, CCENSHEP, CCENAQUA = 1
when the farm answered ‘YES’ to corresponding survey question (that the farm pro-
duces Christmas trees, fruit and nuts, cotton, sheep, and products of aquaculture,
respectively), and 0 otherwise.
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CHRS = CCENCHRS - ftypCHRS, where ftypCHRS=1 when the farm listed Christmas
trees as the primary source of sales, and 0 otherwise4.

age = age of principal operator rounded to a multiple of 10 years
(a recode of MDEMOAGE).

hisp = 1 when principal operator has Hispanic background, and 0 otherwise
(a recode of MDEMOHISP).

asian = 1 when the race of the principal operator was Asian, and 0 otherwise.

ocup = 1 when the principal occupation of the principal operator was farming or ranching,
and 0 otherwise (a recode of MDEMOCUP).

One advantage of the logistic regression model in equation (1.3) is the ready interpreta-
tion of the coefficients βj . Suppose we have two farms, indexed by i1 and i2, with identical
covariates for j = 2, · · · , P (that is Xi1j = Xi2j for j = 2, · · · , P ). Then, substituting into
equation (1.3),

(
pi1

1−pi1

)
(

pi2
1−pi2

) = exp(β1). (1.5)

In standard terminology pi

1−pi
is the odds of a farm being NML. We can say that in the

model in equation (1.4) the odds of being NML is estimated to decrease by 30.4% for each 10
years of operator age (since exp(−.0362 · 10) = .696 = 1− .304). Notice this this statement
is true no matter what the values of the other variables in equation (1.4) are, as long as
they are held constant. This easy interpretation of the coefficients would not apply if other
link functions are used (see Section 1.4) which explains, in part, the popularity of logistic
regression modeling.

A second advantage of regression-style modeling is that the effects of the various vari-
ables X+j can be separated from each other. For example, it is highly probable that
agricultural operations in which the primary occupation of the principal operator is farm-
ing have higher sales, on average, than farming operations in which farming is a secondary
occupation of the principal operator. For the California AFS, the weighted-sample pro-
portion of operations that were NML is φ̂1 = 0.1946 when the primary occupation of the
principal operator was farming and φ̂0 = 0.4545 otherwise. In this case, the odds ratio

( bφ1

1−bφ1

)
( bφ0

1−bφ0

) = 0.290, (1.6)

whereas (from the estimated coefficient of ocup in equation (1.4))

exp(−0.571) = 0.565. (1.7)

The difference between equations (1.6) and (1.7) is that the latter attempts to estimate
the effect of principal occupation of the principal operator after accounting for the effects

4Because CCENCHRS is based upon current planting and future sales and ftypCHRS on previous year
sales, it is possible for CCENCHRS=0, ftypCHRS=1, and CHRS=-1. Usually, however, CHRS=1 when the
farm produces Christmas trees, but Christmas trees are not the primary source of sales, and 0 otherwise.
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of the other variables, such as sales, in the model. Since a null hypothesis of no effect on
NML translates to an odds ratio of 1, equation (1.7) is saying that part of the dramatic
decrease in NML shown by equation (1.6) derives from farms with principal operators whose
principal occupation is farming being different, on average, from farms for which this is not
true. In essence, equation (1.7) tries to balance these two groups with respect to the other
variables before calculating the NML proportions.

As a second example, although the questions on equine ownership appear highly predic-
tive of NML, the gross sales are even more predictive, and the predictive power of equine
ownership in California becomes statistically insignificant as soon as sales are entered into
the model.

Finally, one might be tempted to cross tabulate the sample by the various factors in
the model and determine the proportion of each cell in the cross tabulation that is NML.
Unfortunately, there are 11 sales categories, 16 CCEN (“has a commodity”) type variables,
and six age categories. Thus a complete cross tabulation would have 11 · 216 · 6 · 23 =
34, 603, 008 cells. Since the California AFS has only 1,488 farms, such a comprehensive
cross tabulation would not yield meaningful results.

In fact, if a saturated model were used in equation (1.3), that is, one including all possible
interactions, the results would coincide with those of a complete cross tabulation. Thus,
depending upon the amount of data, models intermediate to complete cross tabulation can
be fit by including some interactions (see Section 4.2).

1.2 Possible uses for an NML model

Let qi = 1−pi be the probability that the i-th farm is on the list. Let zi be the characteristic
of interest of the i-th farm, measured for each i ∈ L, where L is the census mail list (CML)
population. Then

t̂z0 =
∑

i∈L

zi

qi
(1.8)

is an unbiased estimate of

tz =
∑

i∈U
zi (1.9)

the total of zi for all i ∈ U , where U is the population of interest, presumably the population
of all farms.

We are assuming here a model that the list frame L can be regarded as a Poisson sample
from U with probabilities qi (see Särndal et al. [6]). 5 Similar models have been employed in
Kott [3] and Garren and Chang [2]. In the latter paper, the Virginia telephone population
is modeled as a Poisson sample from the entire population.

5 Specifically, it is assumed that each i ∈ U has a probability qi > 0 of being on the list L and that the
Pr(i ∈ L and j ∈ L) = qi ·qj . Recognizing that L is not, in fact, a probability sample from U , this assumption
is a model for L. The assumption that each qi, for i ∈ U , is positive implies that no subpopulation of U is
systematically excluded from the list. It is permissible, for example, that purple polka dotted farmers have
a low probability of making the list, but we assume that each purple polka dotted farmer could potentially
be on the list. If a purple polka dotted farmer does make the list, he will receive a small value of qi and
hence a high undercoverage weight q−1

i in equation (1.8) to represent all the purple polka dotted farmers
that did not make the list.

5



A NML model, such as those developed here, produces estimates p̂i of pi, and hence
estimates q̂i = 1 − p̂i of qi. In particular if the β̂j are the fitted estimates from the NML
model of the coefficients βj in (1.3), then

log
(

p̂i

1− p̂i

)
= β̂0 + β̂1Xi1 + ... + β̂pXiP (1.10)

Hence redefining t̂z0 as

t̂z =
∑

i∈L

zi

q̂i
, (1.11)

we can use the NML model to correct the list population for undercoverage. NASS is
currently using calibration for this purpose, where this model is implicit (see Kott [3]).

Assuming that the Poisson model for L is reasonable, and ignoring the fact that the q̂i

are fitted probabilities, an estimate of the variance of t̂z is given by

V̂ar(t̂z) =
∑

i∈L
(q̂−2

i − q̂−1
i )z2

i . (1.12)

Equation (1.12) gives the variability of t̂z under possible alternative realizations of L con-
sistent with the Poisson model.

The perceptive reader will undoubtedly notice that since the NML model is developed
using the area-frame survey, correction of the census for undercoverage, would require the
Xij be known for all j ∈ L. In other words, variables used from the area frame survey for
the purpose of developing the NML model must also be measured in the census.

One disadvantage of this procedure is that equation (1.10) develops undercoverage-
corrected weights q̂i that can be unacceptably large. Section 1.4 discusses approaches to
remedy this problem.

Let Lc and Uc be the list and target populations of some particular subpopulation c (for
example, a specific county). Then equation (1.11) implies that

N̂c =
∑

i∈Lc

1
q̂i

estimates the total number of farms in the subpopulation. Thus if NLc is the number of
list farms in the subpopulation c,

N̂c −NLc =
∑

i∈Lc

(
1
q̂i
− 1

)
(1.13)

estimates the number of NML farms in c. This estimate is probably smoother, less subject
to sampling variation, than the design-based estimate of the number of NML farms in c
computed from the AFS. The new estimate has great potential for allocating future area-
frame surveys with the goal of “finding” more NML farms.

Alternatively if, for example, one is interested in improving the AFS estimate of the
total number of NML horses in Wyoming, one can let zi be the number of horses in the
i-th list farm. Substituting into equation (1.11)

∑

i∈Lc

zi

(
1
q̂i
− 1

)
(1.14)
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estimates the amount of NML horses in the subpopulation c.
Equations (1.13) and (1.14) use an NML model to estimate NML counts and totals from

census data. Since AFS stratum is a strong predictor of NML status but not available for
census records, developing an alternative estimate for NML counts and totals using AFS
rather than census data may prove fruitful. Again, letting c be a subpopulation (which can
be defined in terms of AFS stratum), let Sc be the subsample of the AFS sample which lies
in c. For k ∈ Sc, let wk be the sampling weight (expansion factor) and fk be the adjusted
tract-to-farm-acreage ratio. Then the estimators (1.13) and (1.11) can be replaced by

∑

k∈Sc

wkfkp̂k

∑

k∈Sc

wkfkzkp̂k

respectively6. Again we expect these estimates to have less variance than simply looking
at the NML farms in the AFS of c.

These formulae can be generalized to a list-based survey. Let L̃ be a list for a NASS
survey (which is genenally not identical to the full census mailing list), and suppose a
sample S̃ is taken from L̃ with sampling probabilities π̃i and expansion factors w̃i = π̃−1

i .
Suppose the members of L̃ can be identified for all elements of the AFS. Then, using the
techniques of this report, a model for p̃i, the probability that the i-th farm is not in L̃, can
be developed.

Then equation (1.8) is replaced by

t̂z0 =
∑

i∈S̃
w̃i

zi

q̃i
.

Estimating q̃i = 1− p̃i using the model, leads to the estimator

t̂z =
∑

i∈S̃
w̃i

zi

̂̃qi

which replaces equation (1.11) when sampling is done from L̃.

1.3 Experiments on coverage correction

As outlined in Section 1.2, one use of an NML model of the type developed here revolves
around the correction of a list-based survey for undercoverage of the list. It proposes to
make these corrections either on a large population (e.g. a state) for the direct purpose
of estimation or on a smaller unit (e.g. a county) for the purpose of designing future
area-frame surveys and supplements.

An experiment to assess the accuracy of such correction was performed as follows. The
tracts in the California AFS were taken as the population UA. Tracts associated with farms
on the mailing list were taken as the list population LA. The California model in equation
(1.4) was used to generate q̂k = 1− p̂k for each k ∈ UA.

6 There is a slight abuse of notation here. We will use i to index farms and k to index tracts. The AFS
sampling unit is a tract; however the characteristics z of interest are farm level characteristics. Thus we
will use zi for the characteristic of the i-th farm and zk for the characteristic of the farm which contains the
k-th tract. We trust the context will make the meaning clear.
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Table 1: “True” Population Values and List-based Coverage-corrected
Estimates

xi tz t̂z stan err t-ratio
1 68896. 68727. 2991. -0.056 number of farms

CCENGRAN * 5701.3 5882.3 371.8 0.487 farms which grow grains
CCENCHRS 299.20 190.17 198.18 -0.550 grow Christmas trees

CCENCATL * 14378. 14461. 1284. 0.065 raise cattle
ftypFRUT 29192. 29267. 974. 0.077 primary sales are fruit and nuts
ptfarm * 2164.0 2493.5 895.6 0.368 number of “point” farms

sales10K * 39564. 38371. 1087. -1.097 annual sales at least $10K
sales100K * 19912. 19576. 574. -0.585 annual sales at least $100K
sales1000K 5860.6 5884.8 106.8 0.226 annual sales at least $1,000K

hisp 8088.8 7844.0 1568.3 -0.156 operator is Hispanic
ocup 37002. 38343. 1405. 0.954 principal occupation of

operator is farming
LEQUIOWN * 87805. 78990. 10250. -0.860 number of horses owned
CLANDTOT * 22962. 23375. 794. 0.521 total land area

(in units of 1,000 acres)
strat11 * 17268. 19540. 1030. 2.207 number of farms

in stratum 11
Terms marked with an asterisk (*) do not appear in the model in equation (1.4)

For each k ∈ UA, let wk be the sampling weight and fk the adjusted tract-acreage-to-
farm-acreage ratio. For various xk as measured by the AFS (for example, CLANDTOT,
the total acreage on the farm), let zk = wkfkxk. Thus

tz =
∑

k∈UA

zk =
∑

k∈UA

wkfkxk

represents the AFS estimate of the CA total for the characteristic xk.
For the purposes of this experiment, we treated tz as the true population (that is UA)

total of the zk. We then pretended that the zk for k ∈ UA − LA and tz were unknown and
estimated tz using the estimator t̂z of equation (1.11).

Representative selected results, out of the 69 x-variables considered, are listed in Table
1. To facilitate comparison between t̂z and tz, the standard errors of t̂z under the Poisson
model (see footnote 5 and equation (1.12)), as well as the resulting t-ratio’s, are given.
Of the 69 variables considered, the worst result (as measured by the t-ratio) was for the
variable strat11, which is among the 14 shown on Table 1.

The conclusion of this experiment is that Poisson model for LA and the fitted proba-
bilities in equation (1.4) seem to fit. Moreover, equation (1.11) is a feasible correction for
undercoverage.
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1.4 Explorations of alternative link functions

Equation (1.3) implies the link function

pi = (1 + e−ηi)−1, (1.15)

where

ηi = β0 + β1Xi1 + ... + βpXiP . (1.16)

In standard generalized linear modeling terminology, η is called the linear link.
In this study, we considered three other popular link functions7

pi = Φ

(√
2π

4
ηi

)

pi = exp
(
−log(2)e−(2log(2))−1ηi

)
(1.17)

pi = 1− exp
(
−log(2)e(2log(2))−1ηi

)
.

These link functions are called the probit, the loglog, and the complementary loglog links
respectively. As Figure 1 makes clear, these link functions are monotonically increasing,
S-shaped, approaching 0 as η → −∞ and 1 as η → −∞. They differ primarily in the tails.
The logistic and probit links are symmetric, the loglog link dies much quicker for large
negative values of η than it does for large positive values and the complementary loglog
link dies quicker for large positive values of η than it does for large negative values.

The coverage experiments described in Section 1.3 were repeated for the link functions
of equation (1.17). Representative results are shown in Table 2. For each link function,
new coefficients were fit using the same variables used for the logistic-link fit in equation
(1.4). There does not appear to be substantial differences among the performance of the
four links. We suspect this is because few farms have probabilities in the extreme tails.
Since the interpretation of the coefficients βi in terms of the odds ratio, see equation (1.5),
only applies to the logistic link, and since the logistic link leads to a slightly simpler fitting
algorithm, the logistic link is the only link explored for the remainder of this paper.

We did not investigate the inverse-linear link function used implicitly by NASS for
calibration. It has the form:

pi = (1 + ηi)−1 (1.18)

When using calibration to correct for undercoverage, current NASS integerized the calibra-
tion weights limited them to a minimum of 1 and a maximum of 6.

Table 3 shows the effects, separately, of integerizing and truncating the implied under-
coverage weights (1 − p̂i)−1 based on the logistic link. We found that the truncation at 6
(truncation from below is unnecessary with a logistic link) does not have a sizeable effect
on the quality of the undercoverage correction, but that the integerization substantially
degrades it.

7For comparison purposes, the link functions have been normalized so that p = 0.5 and dp
dη

= 0.25 when
η = 0.
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Table 2: Alternative Link Functions
xi tz logistic probit loglog complementary loglog
1 68896. 68727. 68666. 68397. 68754.

CCENGRAN 5701.3 5882.3 5887.0 5951.6 5853.9
CCENCHRS 299.20 190.17 191.92 201.09 185.01
CCENCATL 14378. 14461. 14368. 14388. 14393.
ftypFRUT 29192. 29267. 29315. 29450. 29172.

ptfarm 2164.0 2493.5 2240.1 2369.4 2482.8
sales10K 39564. 38371. 38437. 38710. 38447.
sales100K 19912. 19576. 19624. 19803. 19559.
sales1000K 5860.6 5884.8 5918.9 5960.3 5869.1

hisp 8088.8 7844.0 7824.3 7537.6 7835.0
ocup 37002. 38343. 38449. 38908. 37697.

LEQUIOWN 87805. 78990. 78462. 77910. 78790.
CLANDTOT 22962. 23375. 23426. 23722. 23390.

strat11 17268. 19540. 19490. 19105. 20126.

Folsom and Singh [1] propose the link function8

pi = L + (U − L)(1 + exp(−ηi))−1. (1.19)

Since (1 − p)−1 < 6 is equivalent to p < 5/6, one can use L = 0 and U = 5/6 to limit the
undercoverage weights to 6. Table 3 shows the results from using this link. It appears to
provide no advantage over simply truncating the weights from the logistic link.

2 The California Data

The predictor variables were divided into 7 groups as follows:

sales (10 variables). This consists of the variables sales1K, sales2.5K, sales5K, sales10K,
sales25K, sales50K, sales100K, sales250K, sales500K, sales1000K, where, for example,
sales5K = 1 when annual sales is at least $5000 and 0 otherwise. This group is a
recode of MFARMDEF.

ptfarm (1 variable): ptfarm = 1 - sales1K. This variable is 1 when the farm is classified
as a farm using the point system and does not have $1,000 in sales. It is 0 otherwise.

ftype (48 variables). The AFS has 16 categories of farm products: GRAN (grains), TOBA
(tobacco), COTT (cotton), VEGM (vegetables), FRUT (fruit and nuts), NURS (nurs-
ery), CHRS (Christmas trees), OTHC (other crops and hay), HOGS, MILK, CATL
(cattle), SHEP (sheep), EQUI (horses), POUL (poultry), AQUA (aquaculture), and
OTHA (other animal products). For each of these 16 groups, for example GRAN,
three variables were created:

8When an intercept is included in the model, equation (1.19) is algebraicly equivalent to weight function
given in Folsom and Singh [1].
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Table 3: Truncating and Integerizing Weights
xi tz logistic link logistic link logistic link truncated

truncated integerized logistic link
weights weights

1 68896. 68727. 68338. 65084. 68005.
CCENGRAN 5701.3 5882.3 5882.3 5577.1 5931.9
CCENCHRS 299.20 190.17 190.17 241.53 197.63
CCENCATL 14378. 14461. 14461. 14087. 14533.
ftypFRUT 29192. 29267. 29267. 26715. 29283.

ptfarm 2164.0 2493.5 2493.5 2429.1 2484.7
sales10K 39564. 38371. 38371. 35014. 38441.
sales100K 19912. 19576. 19576. 18300. 19637.
sales1000K 5860.6 5884.8 5884.8 5731.8 5882.8

hisp 8088.8 7844.0 7730.0 7574.8 7390.2
ocup 37002. 38343. 38229. 36441. 38364.

LEQUIOWN 87805. 78990. 78876. 77627. 78468.
CLANDTOT 22962. 23375. 23368. 21420. 23489.

strat11 17268. 19540. 19265. 18558. 19109.

CCENGRAN = 1 when the farm had this type of income, 0 otherwise;
ftypGRAN =1 when the primary source of income was from this category, 0 otherwise
(recode of MFARMTYP); and
GRAN = CCENGRAN - ftypGRAN.

There were no tobacco farms in the CA AFS.

oper (eight variables). These variables describe characteristics of the prinicpal operator.

• age: the age of principal operator to the nearest multiple of 10 years. The
possible values of age are 20, 30, 40, 50, 60, 70 (recode of MDEMOAGE).

• gender : 1 when male, 0 when female (recode of MDEMOSEX)

• hisp: 1 when Spanish, Hispanic, or Latino origin, 0 otherwise (recode of MDEMHISP).

• black, indian, hawaii, asian: 1 when reported given race, 0 otherwise (recode of
MDEMRACE).

• ocup: 1 when the principal occupation of the principal operator is farming or
ranching, and 0 otherwise (recode of MDEMOCUP).

There were no reported Native Hawaiians in the California AFS.

horse (seven variables). These variables refer to equine ownership.

• LEQUIOWN: the number of horses and ponies owned.

• LEQUOTOW: the number of mules, donkeys, or burros owned.
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• leqoper1, leqoper2, leqoper3, leqoper4, leqoper5 (recodes of LEQUOPER). These
indicator variables are 1 when, respectively, the operation is a farm or ranch (1),
a boarding, training or riding facility (2), a breeding service place (3), a place
to keep equine for personal use (4), or some other type of operation with equine
(5).

Due to low counts, in analyzing the California data set, leqoper2 and leqoper3 were
combined, and leqoper5 was deleted.

land (three variables). These variables refer to land acreage.

• CLANDTOT: total acres operated.

• CROPLAND: total acres of cropland.

• CLANDCRP: total acreage in the Conservation or Wetland Reserve Programs.

stratum (nine variables). The AFS in California has 10 strata, numbered 11, 17, 19, 21, 27,
31, 32, 41, 45, and 50. The variables - strat11, strat17, strat19, strat21, strat27, strat31,
strat32, strat41, and strat45 - was set to 1 when the farm was in the indicated stratum
and to 0 otherwise. Although a sample of segments was taken from Stratum 50, none
of those segments included a tract from a farm. In the Illinois/Indiana/Iowa AFS, the
strata are defined differently and indicator variables were created accordingly. The
strata variables for the 48-state sample were constructed differently as described in
Section 4.

In the data sets we analyzed, there were no missing values among these variables for
the tracts identified as parts of farms.

Tracts were weighted using a product of a sampling weight (MCOMBADJ) and a tract-
acreage-to-farm-acreage ratio (coded “weight” in Herb Eldridge’s extraction routine, Sec-
tion 8.1), modified slightly to account for the space occupied by a potential house.

A modified stepwise regression procedure was used for variable selection. This procedure
is described in greater detail in Section 5.2. Starting with a base model with an intercept
only, each group of variables was separately tested to see whether the addition of the group
represented a significant improvement over the base model. The most significant group
was selected and a stepwise regression procedure used to decide which variables within the
group were needed. The resulting model became the new base model, and the procedure
was iterated. All significance tests were performed using design-based linearization variance
estimates for logistic regressions in sample surveys.

Based upon significance, the groups that were entered into the model for Califonia were
sales, ftype, and oper, in that order.

The stratum variables were handled differently. Because AFS stratum is not an available
variable for Census records, a model using AFS stratum can not be employed to correct the
Census for undercoverage. In order to determine how much NML can be predicted using
variables not related to AFS stratum, the stratum group was not entered into the model
until no other group not already entered into the model was significant.

Table 4 presents two models, one with variables from the stratum group and one, dis-
played in equation (1.4), without.
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Table 4: California NML Model With and Without Strata
effect without stratum model with stratum model

coefficient (stan. err.) coefficient (stan. err.)
1 2.4417 (0.5534) 2.6810 (0.5876)

sales5K -1.0351 (0.2130) -0.9776 (0.2166)
sales50K -0.8126 (0.2590) -0.8327 (0.2638)

sales1000K -1.7876 (0.8203) -1.7313 (0.8197)
CHRS -1.2506 (0.3115) -1.7968 (0.3344)

CCENFRUT -0.9089 (0.2100) -0.9604 (0.2132)
CCENCOTT -2.6183 (1.0192) -2.1375 (0.9821)
CCENSHEP 0.9662 (0.4163) 0.8404 (0.4302)
CCENAQUA 2.1035 (0.8686) 2.1269 (0.8127)

age -0.03621 (0.00960) -0.03850 (0.0100)
hisp 1.1397 (0.3032) 1.0183 (0.3011)
asian 1.0276 (0.3305) 1.0177 (0.3159)
ocup -0.5709 (0.2700) -0.5763 (0.2789)

strat32 5.8508 (1.0917)
strat45 1.0244 (0.2880)
strat11 -0.6283 (0.2559)

2.1 The nursery in Stratum 32 and its implications

The California AFS has one farm in Stratum 32 (“dense urban: over 100 homes per square
mile”): a nursery with sales between $500,000 and $1,000,000 operated by a 40-year-old
Hispanic. This nursery happens not to be on the list. Using the coefficients in Table 4 for
the model with stratum effects, the fitted probability that this farm is not on the list is

(1 + exp[−(2.6810− 0.9776− 0.8327− 0.03850 ∗ 40 + 1.0183 + 5.8508)])−1 = 0.998.

Notice that in the absence of the term for Stratum 32, the fitted probability would have
been

(1 + exp[−(2.6810− 0.9776− 0.8327− 0.03850 ∗ 40 + 1.0183)])−1 = 0.586.

The highly significant coefficient of 5.8508 (standard error 1.0917) improves the fit for
the solitary nursery in Stratum 32 without degrading the fit for any other farm in the sample
(since there are no other farms in Stratum 32). The design-based linearization standard
error estimates are based upon an asymptotic large sample approximation. Although the
total sample size for the CA sample is 1,488, this particular coefficient is due to only a
single farm. One needs to interpret the coefficient with extreme caution.

Consider the nine stratum zero-one variables strat11, strat17, strat19, strat21, strat27,
strat31, strat32, strat41, strat45. Since each farm is in exactly one stratum

1 = strat11 + strat17 + strat19 + strat21 + strat27 (2.20)
+ strat31 + strat32 + strat41 + strat45.

Suppose a model were developed with a complete set of stratum variables. Due to equation
(2.20), only eight of the stratum variables would be needed to completely specify the model.
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If the variable strat32 were not used, then

strat11 + strat17 + strat19 + strat21 + strat27 + strat31 + strat41 + strat45

would be a highly significant linear combination of variables whose significance, in fact,
would only be due to a single data point.

In other words, it is possible that the analysis has a highly significant hidden linear
combination of variables which, in fact, is due to only a small number of data points. De-
veloping methods for detecting the presence this phenomenon is a pressing methodological
problem in need of further research.

3 The Illinois/Indiana/Iowa Data

Herb Eldridge has provided, in the same format as the California data set, the AFS for
Illinois, Indiana, and Iowa. The same variables were used except that there is now an
additional group of indicator variables for state. In addition, the AFS stratum group has
ten variables. There is a total of 5,841 farms in this data set, almost four times as many as
in the California data set. Thus, one would expect that more variables would be significant
than in the California model.

As in the California data set, the most important group was sales, followed by farm
type and operator characteristics. These are the same groups uncovered for the California
data set, but the order of farm type and operator characterics are reversed. The fourth
group to enter was the land (land-acreage) group. Stratum was also significant, but by fiat
for the reasons outlined earlier, it was used last. Interestingly, the state group of variables
was not significant.

Table 5 has the fitted models, with and without the stratum variables.
Examining Tables 4 and 5, besides the importance of sales, one sees that age and

occupation of the principal operator are significant predictors. The sign of asian changes
dramatically between the two models. This is likely because there is only one Asian in the
Ilinois/Indiana/Iowa AFS, another apparent version of the solitary-nursery problem noted
in Section 2.1.

The authors have no explanation for the apparent change is sign of the coefficient of
hisp. Perhaps the population of Hispanic farmers is different in California from that in Illi-
nois/Indiana/Iowa in ways not captured by the other variables in the model(s). Christmas
trees remain important in both models. So do aquaculture and fruits and nuts, both of
which have coefficients that change sign. One should be aware that there are only three
aquaculture farms in the Illinois/Indiana/Iowa data set and that the coefficient of fruit and
nuts, in fact, ceases to be significant when strat33 (“resort: over 20 homes per square mile”)
enters the model.
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Table 5: Illinois/Indiana/Iowa NML Model With and Without Strata
effect without stratum model with stratum model

coefficient (stan. err.) coefficient (stan. err.)
1 0.5078 (0.3658) 0.5389 (0.3660)

sales2.5K -1.0820 (0.2231) -1.1358 (0.2154)
sales10K -0.5833 (0.2266) -0.5625 (0.2257)
sales100K -0.5906 (0.2832) -0.6233 (0.2814)
sales1000K -1.6463 (0.5951) -1.6708 (0.5929)
ftypCHRS -6.5169 (0.5220) -6.5204 (0.5225)
ftypVEGM -5.3687 (0.4252) -5.3186 (0.4180)
CCENEQUI 0.6347 (0.1726) 0.5673 (0.1731)

OTHA -5.8550 (0.4445) -5.8480 (0.4420)
AQUA -2.7365 (1.0579) -2.7036 (1.0601)

ftypNURS 1.4875 (0.5817) 1.5029 (0.5799)
ftypFRUT 2.2507 (0.9370) 1.0425 (0.7253)

asian -4.3986 (1.0325) -4.3407 (1.0319)
ocup -0.5567 (0.1747) -0.5150 (0.1735)
age -0.01442 (0.00667) -0.01485 (0.00669)
hisp -1.2444 (0.6475) -1.2319 (0.6486)

CLANDCRP -0.02996 (0.00837) -0.02943 (0.00837)
CROPLAND -0.0007010 (0.0003431) -0.0007161 (0.0003476)

strat33 4.2082 (0.5503)

16



4 The 48-State Model

There are 46,000 farms (exactly!) in the 48-states AFS. The variables as defined in Section
2 were changed somewhat as follows.

strat. The strata definitions are slightly different from state to state. On Bill Wigton’s
advice, variables strat10s, strat20s etc. were created where, for example, strat10s = 1
when the farm is in a stratum numbered between 10 and 19. The group now has five
variables, including strat50s60s which covers strata numbered between 50 and 69.

oper. The gender variable was changed to a variable female that is 1 when the principal
operator is female and 0 otherwise. The age variable was changed to
agec = (age− 45)/10.

land. Two variables were added: CLAND519 (percentage change in total market value of
all land and buildings since June 1, 2001) was added. CLAND518 was recoded to
clandval which takes the values +1, -1, and 0 if the total market value of all land and
buidlings increased, decreased, or was without change.

The groups in order of entry were sales, operator characteristics, land acreage, farm type,
state, type of equine operation, and finally, by fiat, stratum. At each stage of the selection
process, the most significant (except for stratum) of the remaining groups was next selected
for consideration.

Examining Table 6, the fitted coefficients exhibit great stability: their values are in a
believable range (see the discussion on numerical stability in Section 5.2), and they do not
change much even when additional terms are entered into the model. There appears to be
much benefit from increasing the sample size by pooling data across states, even when the
individual states appear to have a great deal of data.

4.1 The main effects model

Table 6 gives the 48-state models for models with main effects only. Because of the much
larger size of the data, more terms are significant. Two models are given: one with stratum
variables and one without. In addition, the coefficients for the main effects in a model with
interaction terms are given in Table 6. The coefficients of the interaction terms are given
in Table 7.

4.2 The model with interactions

Due to time limitations, the only interactions that were fit were between state and the other
variables.

Suppose X1 and X2 are two variables. The “interaction” of X1 and X2 is the product
variable X1 · X2. If X+11, · · · , X+1u

9 code the u levels of a categorical variable A and
X+21, · · · , X+2v code the v levels of a categorical variable B, the uv variables X+1r ·X+2s

code the interaction A ∗ B. For example, in this study, state is coded in 48 variables and
ftype in 16 variables so state ∗ ftype is coded in 768 (= 48 · 16) variables.

9It is convenient here to double subscript all variables. Thus specific observations of these variables
are triple subscripted with the first subscript indicating observation number and the latter two subscripts
indicating variable.
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Table 6: The 48-State Model With and Without Strata
(including the main effects for the model with interactions)

effect without stratum model with stratum model interactions model interactions model
coefficient (stan. err.) coefficient (stan. err.) (main effects) (main effects)

no strata variables
1 0.3087 (0.0655) 0.4484 (0.0739) 0.3688 (0.0565) 0.3016 (0.0534)

sales2.5K -0.4761 (0.2231) -0.4668 (0.0575) -0.4623 (0.0576) -0.4580 (0.0575)
sales5K -0.2069 (0.0722) -0.2033 (0.0720) -0.1679 (0.0724) -0.1842 (0.0724)
sales10K -0.3597 (0.2266) -0.3562 (0.0866) -0.3508 (0.0880) -0.3416 (0.0882)
sales25K -0.2798 (0.0968) -0.2757 (0.0971) -0.2484 (0.0977) -0.2795 (0.0980)
sales50K -0.2600 (0.1121) -0.2566 (0.1124) -0.2904 (0.0992) -0.3072 (0.0992)
sales100K -0.2933 (0.1264) -0.2860 (0.1265)
sales250K -0.7504 (0.1613) -0.7174 (0.1606) -0.7349 (0.1494) -0.7592 (0.1494)

agec -0.02180 (0.00170) -0.02201 (0.00170) -0.02164 (0.00171) -0.02116 (0.00170)
ocup -0.2806 (0.0486) -0.2786 (0.0488) -0.2713 (0.0488) -0.2741 (0.0488)

female 0.2925 (0.0667) 0.2841 (0.0673) 0.2998 (0.0668) 0.2934 (0.0671)
black 1.0373 (0.1560) 1.0198 (0.1558) 1.0255 (0.1553) 1.0429 (0.1560)
hisp 0.3946 (0.0958) 0.4155 (0.0969) 0.4789 (0.0946) 0.4464 (0.0945)
asian 0.6447 (0.2872) 0.7135 (0.2867) 0.6020 (0.2803) 0.6022 (0.2854)

CLANDTOT -.00006657 (.00001479) -.00008954 (.00001571) -.0008502 (.0000744) -.0007905 (.0000722)
CLANDCRP -0.009039 (0.001285) -0.008714 (0.001273) -0.01813 (0.00222) -0.01898 (0.00223)

OTHC -0.4248 (0.0477) -0.4320 (0.0476) -0.3734 (0.0471) -0.3599 (0.0472)
ftypOTHC -0.1755 (0.0731) -0.2007 (0.0730)
ftypEQUI 0.4231 (0.0797) 0.3896 (0.0798) 0.4302 (0.0728) 0.4351 (0.0731)

CCENGRAN -0.3466 (0.0707) -0.3189 (0.0716) -0.3389 (0.0582) -0.3895 (0.0576)
ftypGRAN -0.2102 (0.0943) -0.1969 (0.0946)

CCENNURS 0.6223 (0.1627) 0.5930 (0.1629) 0.5519 (0.1581) 0.5802 (0.1589)
HOGS 0.4768 (0.1101) 0.4742 (0.1096) 0.4155 (0.1101) 0.4503 (0.1103)

CCENCATL -0.3048 (0.0589) -0.3493 (0.0596) -0.2768 (0.0505) -0.2571 (0.0504)
CCENCOTT -0.5097 (0.1618) -0.4271 (0.1623) -0.3855 (0.1605) -0.4332 (0.1613)
ftypTOBA -0.9373 (0.2043) -0.9764 (0.2069) -0.9699 (0.2019) -0.9321 (0.2012)
ftypCHRS 0.4278 (0.2148)

IL -0.4565 (0.1332) -0.3760 (0.1329) -0.4172 (0.1333) -0.4741 (0.1323)
IN -0.3937 (0.1404) -0.3144 (0.1405) -0.3998 (0.1392) -0.4368 (0.1382)
IA -0.4825 (0.1265) -0.3860 (0.1260) -0.3998 (0.1264) -0.4680 (0.1261)
MN -0.2607 (0.1218) -0.3747 (0.1306) -0.2457 (0.1233)
MS 0.3283 (0.1501) 0.3190 (0.1482) 0.7554 (0.2114) 0.7878 (0.2117)
MO 0.3080 (0.0876) 0.2976 (0.0886) 0.3204 (0.0881) 0.3206 (0.0874)
NE -0.6608 (0.1762) -0.5445 (0.1749) -0.7081 (0.1854) -0.8048 (0.1833)
NH 0.5257 (0.2305) 0.5792 (0.2301)
RI 1.9015 (0.6438) 1.9032 (0.6097) 2.4427 (0.5443) 2.4378 (0.5410)
SD -0.5316 (0.2345)
TX 0.2451 (0.0706) 0.2417 (0.0713)
VT 0.8078 (0.2796) 0.7812 (0.2810) 1.0455 (0.3886) 1.0465 (0.3817)

leqoper4 0.4337 (0.0740) 0.4380 (0.0741) 0.4294 (0.0729) 0.4249 (0.0736)
leqoper5 0.8010 (0.2094) 0.8071 (0.2066) 0.7410 (0.2042) 0.7913 (0.2098)
strat10s -0.2982 (0.0587) -0.2298 (0.0486)
strat20s -0.1236 (0.0561)
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The model

ηi = β0 + β11Xi11 + · · ·+ β1uXi1u + β21Xi21 + · · ·+ β2vXi2v

is referred to as a main effects model, and the model

ηi = β0 + β11Xi11 + · · ·+ β1uXi1u + β21Xi21 + · · ·+ β2vXi2v (4.21)
+ γ11Xi11 ·Xi21 + · · ·+ γrsXi1r ·Xi2s + · · ·+ γuvX1u ·X2v

is traditionally called a model with interactions.
Equation (4.21) has too many parameters. As a result, it is conventional to put re-

strictions on parameter values to ensure a unique solution. Our model fitting techniques,
however, were fairly conservative, especially with interaction coefficients γrs. Only the
most significant ones were entered into the model. The rest were implicitly set to 0. As a
consequence, (further) restrictions on parameter values were unnecessary.

Another common practice is to allow γrs 6= 0 only when both β1r 6= 0 and β2s 6= 0.
We have are only fitting interactions between states and the other variables, however.
The main effects represent an overall national model, and the few interactions that we
fit represent significant state-level deviations from the national model. We estimated the
overall coefficient for North Dakota, say, to be 0, signifying that there was no greater
(or lesser) systematic tendency for North Dakota farms to be NML, while the estimated
coefficient of ND.leqoper1 was negative, signifying that farms or ranches with horses in
North Dakota were less likely to be NML than farms or ranches with horses in other states.
states. In our modeling, we allowed γrs 6= 0 even when both β1r and β2s fitted to zero.

Suppose X+11, · · · , X+1u code the u levels of a categorical variable A (for example state)
and X2 represents a continuous variable (such as CLANDTOT - total acreage), the main
effects model looks like

ηi = β0 + β11Xi11 + · · ·+ β1uXi1u + β2Xi2

and the interactive model looks like

ηi = β0 + β11Xi11 + · · ·+ β1uXi1u + β2Xi2 + γ1Xi11 ·Xi2 + · · ·+ γuXi1u ·Xi2.

In this case, β2 represents a slope and, when the categorical variable A is state, the γr

represent the difference of a specific slope for the r-th state from the overall national slope.
As discussed in Section 5.2, the models became numerically unstable as soon as many

interactions were fit. Thus, the approach we used for allowing non-zero interaction param-
eters in the model was extremely conservative.

Examining Table 7, one notices immediately that interactions between the states and
the acreage variables (CLANDTOT, CROPLAND, CLANDCRP) were far more numerous
than interactions between the states and other types of variables. One possible explanation
is the large variation in farm sizes, as measured by acreage, among the various states. A
second, somewhat more mysterious observation, is that although the variables relating to
changes in value of land and buildings (CLAND519, clandval) were not predictive of NML
status nationally, they were predictive in several New England states (and only in New
England states).

Tables 6 and 7 also include a “no stratum variables” model with interactions. The model
fitting procedure was not applied to select variables for this model. Rather the variables
from the “with stratum variables” model with interaction were chosen and the model refit
with all stratum variables removed.
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Table 7: Interaction Terms for the 48-State Models
effect with strata variables without strata variables

coefficient (stan. err.) coefficient (stan. err.)
MI*sales500K -2.1177 (0.7777) -2.1430 (0.7786)

WY*hisp -2.6698 (0.4467) -2.5872 (0.4420)
MS*CCENOTHC -1.0766 (0.2857) -1.0672 (0.2851)
SC*CCENVEGM -3.1860 (0.9773) -3.1314 (0.9802)
TX*CCENMILK -5.8064 (0.6992) -5.7543 (0.6962)
AZ*CLANDTOT -0.004782 (0.0000744) -0.004319 (0.0000722)
AZ*CROPLAND 0.005751 (0.0002220 0.005179 (0.000268)
AR*CLANDCRP 0.01852 (0.00311) 0.01893 (0.00392)
CA*CLANDCRP 0.01840 (0.00224) 0.01927 (0.00225)
CA*CLANDTOT 0.0008535 (0.0000750) 0.0007966 (0.0000726)
CO*CLANDCRP 0.01526 (0.00243) 0.01592 (0.00245)
CO*CLANDTOT 0.0008334 (0.0000834) 0.0007813 (0.0000800)
GA*CLANDCRP -0.2035 (0.0035) -0.2009 (0.0035)
ID*CLANDCRP -0.01798 (0.00316) -0.01863 (0.00318)
MT*CLANDCRP 0.01362 (0.00298) 0.01410 (0.00302)
NE*CLANDTOT 0.0007838 (0.0001163) 0.0007573 (0.0001024)

NH*clandval -1.7723 (0.2693) -1.7996 (0.2719)
NH*CLAND519 -0.1072 (0.0158) -0.1050 (0.0162)

NM*CLANDTOT 0.0008287 (0.0000816) 0.0006988 (0.0000901)
OK*CLANDCRP 0.01928 (0.00247) 0.02002 (0.00253)

RI*clandval -2.3268 (0.5428) -2.4841 (0.5572)
TX*CLANDCRP 0.01457 (0.00246) 0.01516 (0.00248)
TX*CLANDTOT 0.0008511 (0.0000743) 0.0007938 (0.0000721)
UT*CLANDCRP 0.01935 (0.00229) 0.01992 (0.00293)
UT*CLANDTOT 0.0003800 (0.0000987) 0.0003399 (0.0000982)

VT*clandval -2.7349 (0.6306) -2.7019 (0.6073)
VT*CLAND519 -0.3138 (0.0580) -0.3201 (0.0605)

WA*CLANDCRP 0.01872 (0.00245) 0.01938 (0.00249)
WY*CLANDTOT 0.0007227 (0.0001442) 0.0006776 (0.0001369)

GA*leqoper5 4.3925 (0.5976) 4.1552 (0.6114)
ND*leqoper1 -1.8738 (0.6708) -1.9777 (0.6736)
AZ*strat30s 12.4190 (0.6427)
MN*strat40s 1.8066 (0.3887)
NM*strat40s -0.6421 (0.1579)
NC*strat30s -14.0901 (0.9916)
WI*strat30s -11.9179 (0.8102)
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4.3 Interpreting the results

What exactly do Tables 6 and 7 tell us about the nature of 2002 NML farms in the 48 con-
tiguous states? As expected, farms with larger sales were less likely to be NML. Similarly,
farms with any cotton, cattle, grain crops, or other crops and hay were less likely to be on
the NML, all other things being equal, as were farms with grains crops, tobacco, or other
crops and hay as their primary source of sales. By contrast, farms with equine or Christmas
trees as their primary source of sales or any nursery items were more likely to be NML, all
other things being equal. One small surprise: farms with hogs as their primary source of
income were not significantly more likely to be on the Census Mail list, while farms with
hogs that were not primarily hog farms were more likely to be NML than farms that were
otherwise just like them.

Even taking sales size, farm type, and the age of the principal operator into considera-
tion, farms operated by blacks, Asians, Hispanics, and women were more likely to be NML.
The estimated coefficient on blacks is particularly striking.

Surprisingly, point farms were not more likely to be NML than other farms with less than
$2,500 in annual sales. This may be because many point farms were so designated because
they had horses, and an operation (as defined by the Census process) having horses for
either personal use or another unspecified use (not boarding, training, riding, or breeding)
was more likely to be NML than a farm otherwise just like it.

Farms in Mississippi, Missouri, Texas, and some of the New England states were more
likely to be NML than in other states, all other things being equal. Farms in the AFS
Strata 10 to 29 were less likely to be NML, which means that farms in AFS Strata 30
to 69 were more like to be NML. Recall that this is after accounting for size and farm
type. In Arizona, farms in the 30’s were particularly likely to be NML, while farms in the
40’s in neighboring New Mexico were less likely to be NML all other things being equal.
Other notable positive interaction coefficients were for other-use equine-owning operations
in Georgia and for Strata-40-to-49 farms in Minnesota. Farms in the 30’s in both North
Carolina and Wisconsin, Hispanics in Wyoming, and farms with increasing land values in
some New England states, by contrast, were more likely not NML than farms otherwise
just like them.

5 Statistical Methodology

5.1 Calculation of standard errors and significance tests

In the AFS, there are three levels of stratification: state, stratum within state, and sub-
stratum. For the purpose of analysis, it suffices to use a single index h for the combined
stratification, and we will refer to stratum h when we really mean a specific substratum of
a particular stratum in a certain state.

We will use the index r to denote primary sampling units (PSU’s), which are the area-
sample segments for our purposes. We assume that the PSU’s are chosen with replacement
(more on this assumption later). We will refer to the r-th segment in the h-th stratum as
‘the hr-th segment’.

We will use the index k to denote tracts within segments. All the characteristics we
are measuring are farm level characteristics. Thus we will use zhrk to denote a vector of
characteristics of the farm which contains the k-th tract in the hr-th segment10. In what

10In earlier sections, where issues of the sampling design did not arise, we used a single index k to index
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follows all vectors are assumed to be column vectors.
We will continue to use the index i for farms. Thus, for example, Xij represents the

value of the j-th variable on the i-th farm, and Xhrkj represents the value of the same
variable on the farm which contains the hrk-th tract.

Let whr denote the sampling weight (expansion factor) of the hr-th segment and let
fhrk denote the tract-acreage-to-farm-acreage ratio associated with the hrk-th tract. Let
Uh and Sh be the population and sample of segments in stratum h. Then the population
total of z is given by

tz =
∑

i∈F
zi =

∑

h

∑

r∈Uh

∑

k

fhrkzhrk,

where F is the population of farms and for i ∈ F , zi is the vector of characteristics on farm
i. Thus tz can be unbiasedly estimated by

t̂z =
∑

h

∑

r∈Sh

∑

k

whrfhrkzhrk.

Since each segment in Sh is completely subsampled, we suppress the dependence of k on
hr in our formulae.

Letting

zhr = nh

∑

k

whrfhrkzhrk

zh = n−1
h

∑

r∈Sh

zhr,

where nh is the number of segments in Sh, we have

t̂z =
∑

h

zh. (5.22)

Since the sampling of the PSU’s is (treated as if it were) with replacement, for each h, the
zhr are independent and identically distributed random variables. An unbiased estimator
for the variance of t̂z is consequently

V̂ ar(t̂z) =
∑

h

n−1
h

∑
r∈Sh

(zhr − zh)(zhr − zh)T

nh − 1
. (5.23)

.
A design-based approach for generalized linear modeling in the sample survey setting is

described, somewhat abstractly, in [6] Section 13.4. A good reference for generalized linear
modeling in the standard statistical context is [5]. We outline this approach below with
slight modifications that apply to the NASS AFS design.

Consider the superpopulation model

yi is distributed binomial(1, pi), i ∈ F (5.24)
y1, · · · , yN are independent
pi = g(ηi) (5.25)
ηi = β0 + β1Xi1 + ... + βpXiP . (5.26)

tracts. In this sections, tracts are specified by a triple index hrk.
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In the context of this report yi = 1 if the i-th farm has NML status and 0 otherwise. Let
Xi+ be the (P + 1)-length vector

Xi+ = [ 1 Xi1 · · · XiP ]T .

For the superpopulation model in equation (5.24), the maximum likelihood estimate B of
β = [β0 · · · βP ]T satisfies

L(B) = 0,

where L : RP+1 → RP+1 is the map

L(β) =
∑

i∈F

yi − pi

pi(1− pi)
g
′
(ηi)Xi+, (5.27)

and g
′
(ηi) = dg(ηi)/d(ηi). Notice that in equation (5.27), the dependence of L on β is

through equations (5.25) and (5.26).
For logistic regression, that is, when the logistic link in equation (1.3) is used, equation

(5.27) simplifies to

L(β) =
∑

i∈F
(yi − pi)Xi+.

Of course L and a fortiori B are unknown. They are considered finite population
parameters to be estimated from the sample. Using equations (5.22) and (5.23), for any β,
L(β) can be estimated from the sample by

L̂(β) =
∑

h

zh =
∑

h

n−1
h

∑

r∈Sh

zhr

zhr = nh

∑

k

whrfhrk
yhrk − phrk

phrk(1− phrk)
g
′
(ηhrk)Xhrk+

V̂ ar(L̂(β)) =
∑

h

n−1
h

∑
r∈Sh

(zhr − zh)(zhr − zh)T

nh − 1
. (5.28)

The sample estimate β̂ satisfies

L̂(β̂) = 0. (5.29)

Using a Taylor-series linear approximation, L̂(B) ≈ −∂bL
∂β (B) · (β̂ − B) where ∂bL

∂β (B) is a
(P +1)×(P +1) matrix of partial derivatives evaluated at B. This leads to the linearization
estimator:

V̂ ar(β̂) =

[
∂L̂
∂β

(β̂)

]−1

· V̂ ar(L̂(β̂)) ·
[

∂L̂
∂β

(β̂)

]−1T

(5.30)

where V̂ ar(L̂(β̂)) is calculated by substituting β̂ for β in (5.28).
Notice that (5.30) estimates the variability, due to the sampling, of β̂ from the finite

population parameter B. We might be interested in the variability of β̂ as an estimate of
the superpopulation parameter β in (5.26). This variability is due to both the sampling
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of the finite population and the variability of the finite population as a realization of the
superpopulation. Letting d (for design) and m (for model) denote expection under the
sampling and superpopulation respectively,

V arm,d(β̂) = Em(V ard(β̂)) + V arm(Ed(β̂))

≈ Em(V ard(β̂)) + V arm(B) (5.31)

= Em(V ard(β̂)) +
[
Em(−∂L

∂β
(β))

]−1

.

The last equality in equation (5.31) is obtained by recollecting that B is the MLE of β
in the superpopulation model and hence its variance, under the superpopulation model, is
asymptotically given by the inverse of the information matrix (see for example Silvey [7]).
Equation (5.31) leads to the estimate

V̂ arm,d(β̂) = V̂ ar(β̂) +

[
−∂L̂

∂β
(β̂)

]−1

. (5.32)

We shall call this the total-variance estimator and V̂ ar(β) the design-based variance esti-
mator. Notice that the first term of (5.32) is of order n−1 whereas the second term is of
order N−1. Thus we expect the total variance to be only slightly larger than the design
based variance.

Some would argue that V̂ ar(β̂) is already a total-variance estimator because the AFS
sample design is closer to stratified random cluster sampling without replacement (see
Kott [4]). Using the with-replacement variance formula in equation (5.28) when one has a
without-replacement design implicitly assumes a model where the stratum population sizes
are infinitely large. We, however, have found that V̂ arm,d(β̂) in equation (5.32) and the
difference between V̂ arm,d(β̂) and V̂ ar(β̂) have, admittedly ad hoc, uses.

5.2 The modified stepwise regression methodology–main effects

The modified stepwise regression methodology incorporated in this study was designed to
be conservative in the number of terms incorporated into the model. As illustrated by
equation (1.1), when too many terms are incorporated into the model, the model yields
nonsensical results.

In addition, and somewhat more subtly, the model became numerically unstable. This
became especially apparent when models with interactions were fit. As discussed at the
end of Section 1.1, if a fully saturated model were fit, that is, all possible interactions were
potentially included, then the number of available parameters would far exceed the number
of farms in the AFS. Thus all p̂i would be approximately 0 or 1, depending upon whether or
not the i-th farm were on this list or not. What is observed is that when the model becomes
too big, the fitted coefficients become quite large: that is |β̂j | > 10, even for an indicator
variable X+j that only takes on the values 0 or 1. Notice that such a variable can cause a
change in η̂i (see equation (1.16)) exceeding 10. Referring to Figure 1, such a change can
change a fitted probability from essentially 0 to essentially 1. The model is overfitting the
data in a more subtle version of the “solitary nursery in Stratum 32” problem discussed in
Section 2.1.

We do not believe that any of the variables are that controlling, and models containing
such controlling variables are useless for our purposes. This apparent misbehavior in param-
eter estimates was observed when only approximately 20 (out of more than 400 possible)
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Table 8: Start of Modified Stepwise Regression Algorithm
(California data)

reduced model full model df Wald χ2 p-value
model0 model0.ftype 28 183.209279 0.000000e+000
model0 model0.ptfarm 1 2.618003 1.056573e-001
model0 model0.sales 10 118.661758 0.000000e+000
model0 model0.oper 6 71.652343 1.872946e-013
model0 model0.horse 5 43.247320 3.292195e-008
model0 model0.land 3 12.158624 6.859071e-003
model0 model0.strat 8 105.576634 0.000000e+000

state*sales interaction terms were added to the main effects 48-state models of Subsection
4.1. Not only were some of the estimated interaction terms unacceptably large, but the
estimated coefficients for the main effects for the indicator variables of three states (Rhode
Island, Indiana, and Nebraska) were sent out of the range (−10, 10). Thus, caution in
adding terms to the model is amply justified in our view.

Suppose the P + 1 coefficients β are divided into two groups: β = (γ0, γ1), where γ0

has Q + 1 coefficients and includes the intercept and γ1 has P − Q coefficents. To test
H0 : γ1 = 0, we will use a Wald statistic,

χ2 = γ̂T
1 [V̂ ar(γ̂1)]−1γ̂1, (5.33)

where β̂ = (γ̂0, γ̂1) is defined by (5.29) and V̂ ar(γ̂1) is the lower (P−Q)×(P−Q) submatrix
of V̂ ar(β) as defined by (5.30). We shall often refer to this as a test of the “reduced model”,
defined by the terms corresponding to γ0, versus the “full model”, defined by the terms
corresponding to β. The asymptotic critical point for (5.33) is a χ2 distribution with P −Q
degrees of freedom.

Starting with a reduced model of the intercept only (“model 0” in what follows), each
of the groups was tested to see whether it represented a significant improvement over the
reduced model. The most significant group was selected first. For example, Table 8 shows
the results for the California data set. The most significant groups were farm type, sales,
and AFS stratum. For reasons described in Section 2, the stratum group was deferred. The
sales group was chosen first, in preference to the farm-type group, because it had the larger
χ2 to df ratio.

Standard stepwise logistic regression (except that design-based variance estimates were
used) with α = .05 was then performed to determine which variables in the sales group
should be added. This resulted in a model (“model1” in what follows) with

intercept + sales5K + sales50K + sales1000K.

Then starting with model1, each of the remaining groups was tested to see if it repre-
sented a significant improvement. The results are shown in Table 9.

The next group to visit should be the farm-type group. Notice also that the horse and
land groups although highly significant in Table 8 were no longer significant in Table 9
(α = .05). This means that the explanatory value of these two groups in modeling NML
were already accounted for by the sales group. For example, although large-acreage farms
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Table 9: Second Step of Modified Stepwise Regression Algorithm
(California data)

reduced model full model df Wald χ2 p-value
model1 model1.ftype 28 489.8464893 0.000000e+000
model1 model1.ptfarm 1 0.1522516 6.963929e-001
model1 model1.oper 6 48.7612409 8.322987e-009
model1 model1.horse 5 9.7614724 8.228292e-002
model1 model1.land 3 2.4360261 4.869636e-001
model1 model1.strat 8 91.6896310 2.220446e-016

are probably more likely to be on the list, large-acreage farms tend to have larger sales,
and the model already predicts that farms with larger sales are more likely on the list.

Stepwise regression was then performed with the variables in the farm type group. Dur-
ing this process, the variables in model1 (intercept + sales5K + sales50K + sales1000K )
were kept in the model. After the completion of the stepwise regression algorithm on the
farm-type group, however, the three variables in the sales group were checked to see whether
they remained significant. The resulting model, denoted by ‘model2’, is

intercept + sales5K + sales50K + sales1000K + CHRS + CCENFRUT + CCENCOTT +
CCENSHEP + CCENAQUA.

This procedure was iterated until no groups represented statistically significant improve-
ment, arriving at the main effects models given in Tables 4, 5, and 6.

5.3 The modified stepwise regression methodology–interactions

Because the 48-state AFS has 46,000 data points (farms), after fitting the main effects,
it was decided to try to fit models with (two way) interactions. Thus, groups such as
state*sales were considered for addition. Notice that these groups can be quite large; for
example state*sales has 480 variables.

Several problems were noticed in applying the modified stepwise regression procedure
to groups defined by interactions. In addition to the hidden-small-cell problems noted at
the beginning of the previous subsection, the matrices V̂ ar(γ̂1) in the Wald statistics (5.33)
were often numerically ill conditioned11 These problems lead to values of the Wald statistic
that were so huge that their p-values were meaningless. There were often large discrepancies

11Ill conditioned matrices are nonsingular matrices that are close to being singular. This leads to large
round-off errors in the calculation of their inverses. For symmetric positive definite matrices, conditioning is
often measured by ratio of the largest to the smallest eigenvalue; if the ratio is too big (say around 108), the

matrix is ill conditioned. For our purposes, write dV ar(bβ) =
Pm=P+1

m=1 λmemeT
m be the eigendecomposition of

dV ar(bβ), that is the decomposition of dV ar(bβ) into its principal components, where λ1 > λ2 > · · · > λP+1 > 0.
Then the Wald statistic

bβT
h
dV ar(bβ)

i−1 bβ =
X
m

λ−1
m (eT

m
bβ)2.

When λP+1 is very small compared to λ1, small sampling and roundoff variations in eT
P+1

bβ lead to gigantic
changes in the Wald statistic.
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between the design-based-variance estimates (5.30) and their total-variance analogues (5.32)
indicating a probable break down of the asymptotics. Even when extremely conservative
approaches were used, such as Bonferroni corrections to a base signicance level of .01, too
many interaction terms became significant, and the models became numerically unstable.

After much trial and error, the following ad hoc procedure was applied to each group
of interactions. For the purposes of illustration we discuss the state*sales group. Notice
that there are 48 state variables and 10 sales variables, which, in what follows, we denote
by stater, r = 1, · · · , 48 and saless, s = 1, · · · , 10.

Step 1. 48 models, one for each state, were fit to the entire 48-state data set. The variables
in the r-th model consisted of the current model + stater ·saless, s = 1, · · · , 10. Each
of these state models was considered a significant improvement only when the Wald
χ2 statistic (using the total covariance instead of the design based covariance) was
significant at a level of .01/50 = .0002.

Step 2. When the r-th state model was judged significant in Step 1, the variables of the
form stater · saless, s = 1, · · · , 10 were examined to see which satisfy the following
two criteria:

• The corresponding coefficient was significant at a α = .01/10 = .001 level, using
total-variance estimates to calculate standard errors.

• The estimated standard error of the coefficient calculated using the total-variance
formula was no greater than twice the estimated design-based standard error.
This criterion, for reasons which at present are poorly understood, seemed to
prevent numerical instability.

If several variable satisfied these two criteria the most significant among them was
selected.

Step 3. The variables identified in Step 2, at most one for each significant state model,
were simultaneously added to the model and the model refit.

Step 4. Using the model fit of Step 3, a state*sales variable (whether added at this stage
or any previous stage) was marked for deletion when it satisfied the following two
criteria:

• The corresponding coefficient was no longer significant at a α = .01 level, using
the total-variance formula to estimate standard errors.

• The standard error of the coefficient estimated using the total-variance formula
was greater than twice the estimated design-based standard error.

The model was then refit.

Steps 1-4 were iteratively applied until no further states*sales variables entered or left
the model.

This procedure was then applied to the other two-way interactions which include the
state group as one factor. After these two-way interactions were fit, the model was checked
to see whether main effects for any states needed to be added or whether other effects
became superfluous and could be deleted. The significance level used continued to be .05
for main effects and .01 for interactions.
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6 Concluding Remarks

6.1 Summary of results

In our studies, we have seen that the logistic model for predicting whether a farm is NML
appears to work well (at least in California) and that popular alternatives (the probit et al.)
perform in a roughly equivalent manner. If the model is to be used for weight calibration,
then integerization is a larger source of model degradation than truncating the weights at
a fixed upper limit. Moreover, truncating weight from a logistic model appears at least as
effective as using the bounded analogue of the logistic link function in equation (1.19).

For the 2002 Census, NASS effectively calibrated with a truncated variant of the inverse-
linear link function (the inverse-linear link is displayed in equation (1.18)). Although our
investigations did not address the inverse linear link per se or its implicit estimation through
calibration, the results on integerization and truncation are somewhat relevant. Truncation
hardly mattered with a logistic link, although an inverse-linear link might not fare as well.
Integerization, by contrast, weakened the logistic-model fit noticeably.

Logistic regression has potential for predicting where to find NML farms in future area-
frame surveys as described in Subsection 1.2. Since NASS sample designs are independent
across states, it is tempting to fit a separate logistic model for each state. We, however,
prefer that a single 48-state model be used for this purpose because of its larger sample
size.

Based on our 48-state analysis, best predictors of whether a 2002 farm was NML, all
other things being equal, were

low sales (the lower the sales the more likely a farm being NML);
a black, Asian, Hispanic, or woman principal operator (black especially);
primary sales from Christmas trees or equine;
the presence of horses for personal or “other” use;
the the presence of nursery products; and
being in AFS Stratum 30 or higher.

That is to say, a farm with a black principal operator, say, was more likely to be NML
in 2002 than other farms in the same sales class and AFS stratum.

6.2 Caveats and warnings

It is important to realize that a variable’s failing to appear in the model, does not mean
that the variable is not predictive of NML status. The variables exhibit a great many
relationships among themselves and it is possible that a highly predictive variable is related
to a different variable which does appear in the model.

Secondly, the authors believe that the hidden-small-cell problem discussed in Subsec-
tions 2.1 and 5.2 cannot be dismissed. As a result, the 48-state models are preferable to
the individual state models.

Finally, model-fitting procedures are highly subjective. Different procedures often yield
different models. The authors believe that the procedures describe herein are reasonable,
consistent with existing statistical procedures for model fitting in the context of linear
regression, and computationally feasible. This does not mean that there do not exist other
procedures and other models.
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6.3 Suggested methodology questions for future research

The hidden-small-cell problem and the related issue of numerical instability in the param-
eter estimates need further exploration. The problem even arises in large data sets (46,000
observations) with a moderate number of variables (about 50).

Empirically, this study indicates that the problem often manifests itself in a discrepancy
between what we called (somewhat dubiously) the design-based variance estimator and the
sum of that estimator and an estimator for the model variance of the finite-population
logistic-regression coefficient (V arm(B) in equation (5.31)). As a result, this study shows
the need for research into why this appears to be so, as well as the consideration of alter-
native model-based variance estimators.

Another side of the hidden-small-cell problem is that some number of observations can
be highly influential on some linear combination of the parameter estimates. Development
of influence function methodology for the sample survey-context to detect this phenomenom
is a promising line of further inquiry.

Appropriate remedial analyses should be developed for surveys that exhibit hidden-
small-cell problems. In a stratified cluster sample, Zaslavsky [8] used influence-function
technology to detect overly influential PSU’s and then reweighting to lessen the influence
of such PSU’s. For the NASS AFS, however, influential observations are at a sub PSU
(tract) level and hence Zaslavsky’s influence function definition does not directly apply.
Furthermore, influential observations outside the survey-sampling context are often han-
dled by using estimating functions (such as L1 sum of distances) in place of least squares
(which corresponds to simply taking means). This suggests that alternative approaches to
reweighting might be fruitful for handling overly influential observations. More research
can be productively done in this direction.

It should be noted that in the NASS AFS often small farms have large weights relative to
large farms. This is because the total weight in the NASS AFS survey has two components:
a sampling weight and a tract acreage to farm acreage ratio. Often, for small farms, the
tract/farm acreage ratio is close to 1. But for large farms, it is often quite small (less
than .01). Thus it is entirely possible that for some parameters (or some hidden linear
combination of parameters), the small farms are excessively influential relative to the large
farms, and the development of techniques to uncover such situations would seem to be
compelling.

Finally, this information can be used to to design future surveys that avoid the hidden-
small-cell problem where possible.
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8 Appendix: computer code

8.1 SAS code

8.2 Splus code

[Available upon request.]
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