USDA National Agricultural Statistics Service, 2022 South Carolina Cropland Data Layer CLASSIFICATION INPUTS: LANDSAT 8/9 DATE 20211119 PATH/ORBIT 017 LANDSAT 8/9 DATE 20220420 PATH/ORBIT 017 LANDSAT 8/9 DATE 20220422 PATH/ORBIT 015 LANDSAT 8/9 DATE 20220427 PATH/ORBIT 018 LANDSAT 8/9 DATE 20220428 PATH/ORBIT 017 LANDSAT 8/9 DATE 20220429 PATH/ORBIT 016 LANDSAT 8/9 DATE 20220505 PATH/ORBIT 018 LANDSAT 8/9 DATE 20220616 PATH/ORBIT 016 LANDSAT 8/9 DATE 20220617 PATH/ORBIT 015 LANDSAT 8/9 DATE 20220622 PATH/ORBIT 018 LANDSAT 8/9 DATE 20220724 PATH/ORBIT 018 LANDSAT 8/9 DATE 20220725 PATH/ORBIT 017 LANDSAT 8/9 DATE 20220726 PATH/ORBIT 016 LANDSAT 8/9 DATE 20220727 PATH/ORBIT 015 LANDSAT 8/9 DATE 20220802 PATH/ORBIT 017 USGS, NATIONAL ELEVATION DATASET USGS, NATIONAL LAND COVER DATABASE 2016 TREE CANOPY USGS, NATIONAL LAND COVER DATABASE 2019 IMPERVIOUSNESS USDA, NASS CROPLAND DATA LAYERS 2016-2021 SENTINEL 2A/2B DATE 20211109 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20211112 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20211124 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20211127 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220428 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220503 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220511 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220518 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220528 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220605 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220617 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220620 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220622 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220707 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220801 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220809 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220813 PATH/ORBIT 054 SENTINEL 2A/2B DATE 20220814 PATH/ORBIT 140 SENTINEL 2A/2B DATE 20220831 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220915 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220920 PATH/ORBIT 097 SENTINEL 2A/2B DATE 20220922 PATH/ORBIT 054 SENTINEL 2A/2B DATE 20220923 PATH/ORBIT 140 TRAINING AND VALIDATION: USDA, FARM SERVICE AGENCY 2022 COMMON LAND UNIT DATA USGS, NATIONAL LAND COVER DATABASE 2019NOTE: The final extent of the CDL is clipped to the state boundary even though the raw input data may encompass a larger area.
USDA National Agricultural Statistics Service, 2022 South Carolina Cropland Data Layer STATEWIDE AGRICULTURAL ACCURACY REPORT Crop-specific covers only *Correct Accuracy Error Kappa ------------------------- ------- -------- ------ ----- OVERALL ACCURACY** 352,190 76.9% 23.1% 0.719 Cover Attribute *Correct Producer's Omission User's Commission Cond'l Type Code Pixels Accuracy Error Kappa Accuracy Error Kappa ---- ---- ------ -------- ----- ----- -------- ----- ----- Corn 1 105,478 89.2% 10.8% 0.878 92.1% 7.9% 0.910 Cotton 2 78,156 81.4% 18.6% 0.794 84.2% 15.8% 0.825 Sorghum 4 796 31.6% 68.4% 0.315 77.1% 22.9% 0.770 Soybeans 5 88,784 78.6% 21.4% 0.759 80.2% 19.8% 0.776 Sunflower 6 9 13.0% 87.0% 0.130 90.0% 10.0% 0.900 Peanuts 10 17,676 71.5% 28.5% 0.710 89.6% 10.4% 0.894 Tobacco 11 22 14.6% 85.4% 0.146 88.0% 12.0% 0.880 Sweet Corn 12 38 62.3% 37.7% 0.623 82.6% 17.4% 0.826 Barley 21 0 0.0% 100.0% 0.000 0.0% 100.0% 0.000 Winter Wheat 24 427 17.2% 82.8% 0.171 37.1% 62.9% 0.370 Dbl Crop WinWht/Soybeans 26 24,007 78.9% 21.1% 0.783 81.3% 18.7% 0.807 Rye 27 220 16.4% 83.6% 0.164 57.1% 42.9% 0.571 Oats 28 200 17.9% 82.1% 0.179 49.6% 50.4% 0.496 Millet 29 106 19.9% 80.1% 0.199 31.5% 68.5% 0.314 Alfalfa 36 0 0.0% 100.0% 0.000 n/a n/a n/a Other Hay/Non Alfalfa 37 22,918 62.9% 37.1% 0.616 74.6% 25.4% 0.736 Dry Beans 42 6 12.5% 87.5% 0.125 85.7% 14.3% 0.857 Potatoes 43 1,131 93.2% 6.8% 0.932 100.0% 0.0% 1.000 Other Crops 44 2 9.5% 90.5% 0.095 50.0% 50.0% 0.500 Sweet Potatoes 46 257 29.3% 70.7% 0.293 86.8% 13.2% 0.868 Watermelons 48 199 57.2% 42.8% 0.572 94.3% 5.7% 0.943 Cucumbers 50 56 21.1% 78.9% 0.211 98.2% 1.8% 0.982 Peas 53 485 40.1% 59.9% 0.401 90.3% 9.7% 0.903 Tomatoes 54 1 50.0% 50.0% 0.500 100.0% 0.0% 1.000 Clover/Wildflowers 58 12 70.6% 29.4% 0.706 100.0% 0.0% 1.000 Sod/Grass Seed 59 6,018 79.0% 21.0% 0.788 84.6% 15.4% 0.845 Fallow/Idle Cropland 61 828 30.8% 69.2% 0.307 56.2% 43.8% 0.561 Peaches 67 1,902 77.7% 22.3% 0.776 84.8% 15.2% 0.847 Apples 68 0 0.0% 100.0% 0.000 0.0% 100.0% 0.000 Grapes 69 3 7.3% 92.7% 0.073 27.3% 72.7% 0.273 Christmas Trees 70 0 0.0% 100.0% 0.000 n/a n/a n/a Other Tree Crops 71 0 0.0% 100.0% 0.000 n/a n/a n/a Pecans 74 83 43.7% 56.3% 0.437 63.8% 36.2% 0.638 Triticale 205 135 52.1% 47.9% 0.521 80.8% 19.2% 0.808 Cantaloupes 209 0 0.0% 100.0% 0.000 0.0% 100.0% 0.000 Peppers 216 37 47.4% 52.6% 0.474 90.2% 9.8% 0.902 Greens 219 218 82.6% 17.4% 0.826 90.1% 9.9% 0.901 Plums 220 0 0.0% 100.0% 0.000 n/a n/a n/a Strawberries 221 54 65.9% 34.1% 0.659 94.7% 5.3% 0.947 Squash 222 0 0.0% 100.0% 0.000 0.0% 100.0% 0.000 Dbl Crop WinWht/Corn 225 112 28.9% 71.1% 0.289 80.6% 19.4% 0.806 Dbl Crop Oats/Corn 226 6 6.5% 93.5% 0.065 40.0% 60.0% 0.400 Dbl Crop WinWht/Sorghum 236 351 46.8% 53.2% 0.468 75.3% 24.7% 0.753 Dbl Crop WinWht/Cotton 238 67 12.9% 87.1% 0.129 40.4% 59.6% 0.403 Dbl Crop Soybeans/Oats 240 938 36.1% 63.9% 0.360 67.9% 32.1% 0.678 Dbl Crop Corn/Soybeans 241 379 71.5% 28.5% 0.715 90.9% 9.1% 0.909 Blueberries 242 46 88.5% 11.5% 0.885 90.2% 9.8% 0.902 Cabbage 243 0 n/a n/a n/a 0.0% 100.0% 0.000 Dbl Crop Barley/Soybeans 254 27 12.8% 87.2% 0.128 93.1% 6.9% 0.931 *Correct Pixels represents the total number of independent validation pixels correctly identified in the error matrix. **The Overall Accuracy represents only the FSA row crops and annual fruit and vegetables (codes 1-61, 66-80, 92 and 200-255). FSA-sampled grass and pasture. Non-agricultural and NLCD-sampled categories (codes 62-65, 81-91 and 93-199) are not included in the Overall Accuracy.The accuracy of the non-agricultural land cover classes within the Cropland Data Layer is entirely dependent upon the USGS, National Land Cover Database. Thus, the USDA NASS recommends that users consider the NLCD for studies involving non-agricultural land cover. For more information on the accuracy of the NLCD please reference <https://www.mrlc.gov/>.
Data Dictionary: USDA National Agricultural Statistics Service, 2022 Cropland Data Layer
Source: USDA National Agricultural Statistics Service
The following is a cross reference list of the categorization codes and land covers.
Note that not all land cover categories listed below will appear in an individual state.
Raster
Attribute Domain Values and Definitions: NO DATA, BACKGROUND 0
Categorization Code Land Cover
"0" Background
Raster
Attribute Domain Values and Definitions: CROPS 1-60
Categorization Code Land Cover
"1" Corn
"2" Cotton
"3" Rice
"4" Sorghum
"5" Soybeans
"6" Sunflower
"10" Peanuts
"11" Tobacco
"12" Sweet Corn
"13" Pop or Orn Corn
"14" Mint
"21" Barley
"22" Durum Wheat
"23" Spring Wheat
"24" Winter Wheat
"25" Other Small Grains
"26" Dbl Crop WinWht/Soybeans
"27" Rye
"28" Oats
"29" Millet
"30" Speltz
"31" Canola
"32" Flaxseed
"33" Safflower
"34" Rape Seed
"35" Mustard
"36" Alfalfa
"37" Other Hay/Non Alfalfa
"38" Camelina
"39" Buckwheat
"41" Sugarbeets
"42" Dry Beans
"43" Potatoes
"44" Other Crops
"45" Sugarcane
"46" Sweet Potatoes
"47" Misc Vegs & Fruits
"48" Watermelons
"49" Onions
"50" Cucumbers
"51" Chick Peas
"52" Lentils
"53" Peas
"54" Tomatoes
"55" Caneberries
"56" Hops
"57" Herbs
"58" Clover/Wildflowers
"59" Sod/Grass Seed
"60" Switchgrass
Raster
Attribute Domain Values and Definitions: NON-CROP 61-65
Categorization Code Land Cover
"61" Fallow/Idle Cropland
"63" Forest
"64" Shrubland
"65" Barren
Raster
Attribute Domain Values and Definitions: CROPS 66-80
Categorization Code Land Cover
"66" Cherries
"67" Peaches
"68" Apples
"69" Grapes
"70" Christmas Trees
"71" Other Tree Crops
"72" Citrus
"74" Pecans
"75" Almonds
"76" Walnuts
"77" Pears
Raster
Attribute Domain Values and Definitions: OTHER 81-109
Categorization Code Land Cover
"81" Clouds/No Data
"82" Developed
"83" Water
"87" Wetlands
"88" Nonag/Undefined
"92" Aquaculture
Raster
Attribute Domain Values and Definitions: NLCD-DERIVED CLASSES 110-195
Categorization Code Land Cover
"111" Open Water
"112" Perennial Ice/Snow
"121" Developed/Open Space
"122" Developed/Low Intensity
"123" Developed/Med Intensity
"124" Developed/High Intensity
"131" Barren
"141" Deciduous Forest
"142" Evergreen Forest
"143" Mixed Forest
"152" Shrubland
"176" Grassland/Pasture
"190" Woody Wetlands
"195" Herbaceous Wetlands
Raster
Attribute Domain Values and Definitions: CROPS 195-255
Categorization Code Land Cover
"204" Pistachios
"205" Triticale
"206" Carrots
"207" Asparagus
"208" Garlic
"209" Cantaloupes
"210" Prunes
"211" Olives
"212" Oranges
"213" Honeydew Melons
"214" Broccoli
"215" Avocados
"216" Peppers
"217" Pomegranates
"218" Nectarines
"219" Greens
"220" Plums
"221" Strawberries
"222" Squash
"223" Apricots
"224" Vetch
"225" Dbl Crop WinWht/Corn
"226" Dbl Crop Oats/Corn
"227" Lettuce
"228" Dbl Crop Triticale/Corn
"229" Pumpkins
"230" Dbl Crop Lettuce/Durum Wht
"231" Dbl Crop Lettuce/Cantaloupe
"232" Dbl Crop Lettuce/Cotton
"233" Dbl Crop Lettuce/Barley
"234" Dbl Crop Durum Wht/Sorghum
"235" Dbl Crop Barley/Sorghum
"236" Dbl Crop WinWht/Sorghum
"237" Dbl Crop Barley/Corn
"238" Dbl Crop WinWht/Cotton
"239" Dbl Crop Soybeans/Cotton
"240" Dbl Crop Soybeans/Oats
"241" Dbl Crop Corn/Soybeans
"242" Blueberries
"243" Cabbage
"244" Cauliflower
"245" Celery
"246" Radishes
"247" Turnips
"248" Eggplants
"249" Gourds
"250" Cranberries
"254" Dbl Crop Barley/Soybeans