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NASS Applications

The Quarterly Crops/Stocks Survey  is based on an mpps sample.   The sample before

nonresponse adjustment is calibrated to the same frame variables as were used in

drawing the sample.  

The dag jackknife is used assuming (incorrectly) that NASS reweights for nonresponse

treating unit response as an additional phase of sampling. 

The Cost and Returns Report (ARMS III)  is based on a stratified sample which itself may

be a multiphase subsample. The respondent sample is calibrated to targets determined

from other NASS surveys.   The dag jackknife is used.

The Census of Agriculture  uses calibration to adjust for undercoverage.   Targets come

from various sources.  The dag jackknife in not used. 

The Production Practices Report (ARMS II) uses a dag jackknife.



Some Calibration Theory

The target:   

y U kT  = 3 y ,  where U denotes the population of N members. 

The expansion estimator: 

y_E S k k S k k t  = 3 y /B  = 3 a y , 

k   kwhere S is the sample of n members, and  a  = 1/B  is the sampling weight of element k.  

kThis same formula applies for any variable y .

Deville and Särndal (1992) coined the term “calibration estimator” to describe an estimator
of the form 

y_CAL S k k S k k U kt   = 3 w y ,       where      3 w x  = 3 x    7  the calibration equation

k 1k Pkfor some row vector of auxiliary variables, x  = (x , ..., x ), 

x U kabout which T  = 3 x   is known.  

As with the expansion estimator, the same set of calibration weights can be used no

kmatter what the y .   

y_CALUsually, t  is nearly randomization unbiased for sufficiently large sample under mild
conditions.

y_CAL y k kThe estimator t  estimates T  perfectly when y  = x $ exactly for all k.

y_CAL k kThus, it is reasonable to expect t  to be a good estimator when y  and x $ are almost
always close.  

kThis is formalized by assuming the y  are random variables satisfying the linear prediction
model:

k k ky  = x $ + , ,          7        the (prediction) model                                                             

k g g gwhere E(, *x , I ) = 0 for all k 0 U;  I  = 1 when g 0 S, 0 otherwise.  

y_CAL yUnder this model, it is easy to see that t  is an unbiased estimator for T  in the sense

, y_CAL ythat E (t  ! T ).  



Problem  

We are usually interested in estimating totals for a variety of target variables at the same
time.  It is often unreasonable to assume that different variables satisfy the same linear
model.  

A simple example demonstrates the solution

Ck WkSuppose y  is the current planted corn acres for farm k, and y  the farm’s current
planted wheat acres.  

Suppose there is a list frame of all the farms in the population containing control values for
corn and wheat acres. 

Ck WkDenoting the control values for farm k as x  and x ,  the combined linear model inherent
in calibration takes the form: 

kThe x !vector is common to both the model for corn and wheat.  The $!vector is not. 

Calibration has its drawbacks.  

CWIt may be reasonable to assume that $  (the effect of the wheat-control acres on the

WCamount of planted corn acres given the corn-control acres) and  $  (the effect of the
corn-control acres on the amount of planted wheat acres given the wheat-control acres)
are zero and increase the efficiency of both the planted-corn and planted-wheat
indications.    Calibration does not allow us to do that.
     



Pre-calibration Examples

kPoststratification is a form of calibration where each component of x  is a classification

pkvariable:   x  = 1 when k is in Class p and 0 otherwise.   

When each k is in one and only one of the P classes, a poststratified estimator sets 

  p            N
k k       w  =  ))))))  a for sampled k in class p,  

 S j pj         3 ax

pwhere N  is the population size of the class.   

S k pk PThe p’th component of the calibration equation,  3 w x  = N ,  holds for each p.

p S j pjIIn addition,  E (N & 3 ax ) . 1 for a sufficiently large sample under mild conditions.   

Note that a stratified sample is already calibrated:  

S k hk h k h h h3  a x  = N ,    where    a = N &n  for i 0 S .

Raking (Deming and Stephan 1940) extends the notion of poststratification to classes 

that are not mutually exclusive (e.g., size and farm type).  

Also called “iterative proportional fitting.”

Deming and Stephan called their method “a least-squares adjustment,” but it is not.  

pk kRatio Adjustments are like poststratification with x  = x  when k is in Class p and 0

otherwise.   Here

 U pj         3 x
k k       w  =  ))))))  a for sampled k in class p,  

 S j pj         3 ax

The estimator is usually written 

          P

y_r   k   k k   k kt  =  3 {   3   x  (  3 a y & 3 a x ) }.

 p p p      p=1  k0U      k0S      k0S

 



Linear Calibration

Most of the calibration weighting in practice involve a variant of least squares, where the
calibration weights have linear the form: 

k k k k k k kw  = a (1 + c x g)   or     a (1 + c g'x ')  

k kfor some set of constants {c } constants (c  is usually 1, but it can be 0 or something else)

S j j j j x S j jand a vector  g = ( 3 acx 'x ) (T  !3 ax )'.        -1 

Linear Calibration and Linear Regression

y_CAL S k k S k k k kt   =  3 w y  =  3  a (1 + c  g'x ')y   

S k k S k k k k          =   3 a y  + g' 3 a c x 'y  

y_E x S j j S j j j j S k k k k          =   t  +  ( T  !3 ax )( 3 acx 'x ) 3 a c x 'y   -1 

y_E x S j j          =   t  +  ( T  !3 ax )       b

                                             8          

                                         estimator for $

k k(Notice too that the calibration equation holds when y  is replaced by x .)

                                                     Nonlinear Calibration 

k k kRaking weights have the form:    w  = a exp(x g), 

kWhen x g is small, raking weights are asymptotically close to linear calibration weights

kwith all the c  = 1.  

But there is no obvious link to linear regression and least squares.



Variance Estimation

k kIf the ,  in the model are uncorrelated, each with a variance of F , then the model2

_CALvariance of t  is 

, S k k U k , S k k U k E [( 3 w y  !3 y ) ]  =  E [( 3 w ,  !3 , ) ] 2 2

 S k k S k k U k                                     =  3 w F  !2 3 w F  + 3 F2 2 2 2

 S k k S k k                                   .  3 w F  !3 w F  2 2 2

 S k k k                                   .  3 w F   when most w  >> 1.2 2

This suggests the estimators 

S k k k o S k kv = 3 (w  !w )r   and   v  = 3 w r , 2 2 2 2

k k k k kwhere r  = y  !x b    (and E(r ) . F ).    2 2

These are also good estimators for the randomization mean squared error under Poisson

sampling.  In that context, 

k k k k(w  !w ) . (1 ! B )/ B , 2 2

kand r  is a proxy for the model-free population residual: 

k k k  e  = y  !x B. 

                  8

U k j j S k k k ( 3 c x 'x ) 3 c x 'y  . -1 

k kBy not replacing the w  with the 1/B  we retain a stronger model-based property (which is

conditioned on the actual sample drawn) without sacrificing the more asymptotic

randomization-based property.  



The Delete-a-Group Jackknife

Suppose the (respondent) sample was randomly divided into 15 mutually exclusive and

nearly equal groups denoted Sg where  g = 1, ..., 15.    We call the complement of each

group, the jackknife replicate group and denote it by S(g).

Observe that 

 

S k k S(g) k k Sg k k S(g) k k 3  w ,  !3 (15/14)w ,  =  3  w ,  !3 (1/14)w , . 

Consequently, 

M S k k S(g) k k S k k E [3 (14/15)(3  w ,  !3 (15/14)w , ) ] = 3 w F . 15 2 2 2

k kUnfortunately, the ,  are unknown.   We could replace them by the y   if the calibration

equation 

S(g) k k U k 3 (15/14)w x  =  3 x     held for all g.  

It does not.  

k We can, however, replace the (15/14)w  within S(g) by the (nonstandard) g’th replicate

weight: 

k(g) k U i S(g) i i S(g) i i i i k k kw  = (15/14)w  +  ( 3  x  ! 3 [15/14]wx )[ 3 cax 'x ] c a x ' .      -1

k i k i(In the standard formulation, w  and w above are replaced by a  and a .)

kThe replicate weights within S(g) are not only very close to the (15/14)w ,  they also satisfy

the calibration equation since: 

k(g) k U i S(g) i i S(g) i i i i k k kw  = (15/14)w  +  ( 3  x  ! 3 [15/14]wx )[ 3 cax 'x ] c a x ' -1

implies 

S(g) k(g) k S(g) k k U i S(g) i i S(g) i i i i S(g) k k k k3 w x  =  3 (15/14)w x  + ( 3  x  ! 3 [15/14]wx )  3 cax 'x ]  3 c a x 'x  -1



Thus, the delete-a-group jackknife variance estimator, 

               15   

dag S k k S(g) k(g) k     v  =  3  (14/15)(3  w y  !3 w y ) 2

               g=1

S k k S(g) k(g) k           =  3  (14/15)(3  w ,  !3 w , ), 2

y_CAL  is a nearly unbiased estimator for the model variance of t no matter what the sample

kdesign.  The model bias caused by the replication weights not exactly equaling (15/14)w

is usually upward. 

Poisson Sampling 

dagUnder Poisson sampling v  is almost unbiased for the randomization mean squared error

y_CAL U k kof t  when 3 e  = 0 (recall e  is the model-free population residual),

k kwhich happens when all the c  = 1 and x  contains a constant or the equivalent.  

It also happens with standard ratio adjustments.   

S k k S(g) k k U kThe key is that both sides of 3  w e   ! 3 (15/14)w e    estimate   3  e  = 0.   

The Expansion Estimator Under Stratified SRS (before calibration)

Ignoring finite population correction

            H

rand h h k h k kV  =  3 (N /n )  3  e /(N  !1)   .   3 w e ,2 2 2

h                                               h=1           k0U k0U

where 

k k j h k h k he  = y  ! 3  y &N ,   w  = N &n      for k 0 U .

 h             j0U     

A conceptual unbiased estimator,  

S kv =  3 w e , 2 2

k(g) h h(g)   his approximately by the dag jackknife with  w  = N &n when k 0 S .

h h hThis is approximately (15/14)N &n  as long as n  is not too small 

h(say n  is greater than five). 



Multi-phase Samples

When the calibration occurs after the latest phase of a multi-phase sample, one can use

these replicate weights:

k(g) k(g) k k U i S(g) i(g) i i i S(g) i i i i k k kw  = (a /a )w  +   ( 3  x  ! 3 [a &a ]wx )[ 3 cax 'x ] c a x ',-1

where 

ka     is the sampling weight before calibration, and

k(g)a  is the replicate weight before calibration.

k(g) kWhen a &a  .15/14,  the approximate model unbiasedness of the dag jackknife holds, 

but there is an additional tendency for the bias to be upward.  

If the dag jackknife was almost randomization unbiased before calibration, it remains so

after. (Whether the dag jackknife applies under two-phase sampling for an estimator

before calibration is another question.)

Smooth function of linear Estimators

The dag retains its properties for a for smooth function of linear estimators, like  

S k k S k kthe ratio estimator:   r =  3 w y & 3 w z    

Composite 1 2a composite estimator:       t  = 8 t    + (1 !8) t    or

S j j j S k k kan estimated regression coefficient: b = ( 3 az 'z ) 3 a z 'y . -1 



Nonresponse and Coverage Adjustment 

We can use the same prediction model to justify both calibration weight and the dag

jackknife if the sample is subject to nonresponse or the frame to coverage errors (mostly

U kundercoverage).    For the latter,  3 x  is everywhere replaced by a more generic

xpopulation total, T .

The group-mean model (poststratification) is the most common form of calibration for both

nonresponse adjustment and undercoverage (e.g., ratioing to state crop totals in the

ARMS II).

Quasi-random models

An alternative approach is to treat unit response or frame coverage as another phase of

Poisson sampling.  This is called quasi-randomization or quasi-random response

(coverage) modeling.    

k k k kConsider  w  = a (1 + x g)    (note the c  are set to 1)

k k kor more generally,  w  = a f(x g)         (with f(.) = exp(.) for raking).

kJust as    a        = 1/Prob(k 0 S), 

k  assume f(x ()   =     1/Prob(k 0 R | k 0 S) or

                                 1/Prob (k is in the frame) 

The components of ( are unknown and estimated implicitly by finding a g (perhaps

through iteration) such that the calibration equations hold.  

For calibration weighting to lead to systematic bias, both the prediction and quasi-random

models must fail. 

That is to say calibration is effective at handling nonresponse (or undercoverage) unless 

kthe probability of response is systematically higher than (or lower than) 1/ f(x g) for farms

k  kwhere  y  ! x b  is greater than zero. 



When f(z) is nonlinear, the replicate weights become 

k(g) k(g) k k x  S(g) i(g) i i i S(g)  i i i i  k k kw  = (a /a )w  +  ( T  !3 [a  /a ]wx ) [ 3 f ’(xg)ax 'x ] f ’(x g)a x ',-1

 iwhere the f ’(xg) is there for quasi-randomization reasons.

x x(g) xT  can be replaced by T  when T  itself is based on a sample. 

Where Do We Go From Here?

Should we increase the number of replicates from 15?

Can we find a practical way to assess and perhaps remove the upward bias in the dag

jackknife? 

Can we develop a rigorous way of dealing with calibration- weight outliers, such as

calibration weights less than 1 (or 0) or greater than six times the pre-calibration weight. 

k kPresently, we set a  at the allowable boundary for a calibration weight, change c  to 0, and

recompute the calibration weights. 

What, if anything, can we do about replication-weight outliers, such as replicate weights

with negative values or with values more than twice 15/14'th of the associated calibration

weight? 

Is it practical to compute an extended dag jackknife for handling area-frame strata with

five or fewer sampled segments? 



Should we be using nonlinear f(z) when adjusting for nonresponse or coverage errors; 

in particular,

 

f(z) = exp(z)    (generalized raking; note f must be positive), 

f(z)  =  1 +  exp(z)    (the logistic model; note f $1),  

or, more generally, the c-centered, bounded from below by l $ 0 and above by u:  

            (c ! l)exp(z) + l(u ! c)
f(z)  =  ———————————                                            

              (u ! c) + (c ! l)exp(z()

(Singh and Folsom, 2000)?    
  

Should be consider “back-link”  functions of the form 

  k  1 & Prob(k responds if sampled) =  f(h (), 

kwhere some components of h  are not exactly the same as components of the benchmark

kvector x ?

For example, we may want to benchmark a respondent sample to control-variable totals

but allow response to be a function of survey variables.  
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