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ABSTRACT 

Estimating average environmental pollution concentrations from fertilization components and their variance is a 
fairly straight forward task in stratified random sampling. A more challenging concept is the introduction of the 
cost factor into this environmental model. Traditional statistical techniques have incorporated costs from 
sampling within a stratum as well as stratum weights to determine the stratum size and overall required sample 
size. Information in the form of informative prior distributions to determine a more coherent  variance in the 
system yield a more precise Bayesian approach to the sample size and cost calculations. This approach results in 
a more efficient sampling strategy in terms of cost when considering a pre specified margin of error for the 
sampling mean as well as the more complicated situation of correlation among the strata samples. 
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1.0  INTRODUCTION 
 
The traditional statistical approaches to calculating overall and stratum sample sizes in a stratified random 
sample are fairly straight forward. The procedure is somewhat complicated with the incorporation of cost as 
well as the possibility of correlation among the stratum samples. Applications of such approaches employing 
several monitoring strategies are well known as in Thornton et. al (1982), Nelson and Ward (1981), Reckhow 
and Chapra ( 1983), and Gilbert ( 1987).  Our focus here is to consider a pond water environment in which the 
strata are basically depth levels. Weighting of the strata as well as the overall variance of the sample mean are 
the main components in our derived statistics to determine sample size within the stratum. The three situations 
considered are that of pre specified margin of error, pre specified fixed cost and correlation among the strata 
samples. Cost efficiency is seen for most ations with the introduction of Bayesian methodology  developed by 
Dayal and Dickey ( 1976), Bartolucci and Dickey (1977), Birch and Bartolucci (1983), Baldi and Long (2001)  
and Bartolucci et. al. (1998).  The thrust of the Bayesian approach is through the derivation of the posterior 
estimate of the variance derived from coherent inference on a normal variance in the Behren=s Fisher context  



 
  

of Dayal and Dickey (1976), Bartolucci et. al. (1998). Comparisons of the traditional or classical and Bayesian 
methodologies are presented using summary data from determining the phosphorous concentration in a pond 
water sampling environment. 
The motivation is to assure that we have a design that conforms to cost effectiveness guidelines 
recommended  by the National Academy of  Sciences (1977,2004) and  Bartram and Balance (2001). These 
chosen designs incorporating a cost analysis will either achieve a specified level of effectiveness at minimal 
cost or a specified effectiveness at a specified cost. The incorporation of the Bayesian analysis as modeling 
the strata variance allows a further cost savings in the overall approach. The approach can be applied to 
sampling  contaminants from well water or pond water with special attention to agricultural runoff as seen in 
Atzeni. Casey and Skerman (2001). Also Gilbert et. al. (1975)  weighed in on the importance of this approach 
when cost considerations demanded attention when sampling radioactive pollutants from desert sites in 
Nevada.  Our proposed technique can be applied to the sampling plans of Ward, R.C., Loftis, J.C. and 
McBride, B.G. (1990) as well as others. Thus historically  there are many applications requiring the cost 
considerations  as well as can be refined by cost considerations when sampling from the environment. 
In section 2.0 below we derive the traditional set up of the sampling providing the basic statistics such as  the 
sampling mean, variance,  depth stratum size and weights  as well as the overall population size. In section 
3.0 we incorporate into our formulation the methodology for computing the optimum sample size under the 
assumptions of the pre specified margin of  sampling error  (PMOE). We then introduce cost consideration into 
the approach at a pre specified fixed cost per stratum for independent stratum as well as correlated stratum.  
In section 4.0 we introduce the Bayesian considerations in our methodology, especially as applied to the 
stratum variance which impacts on the overall final cost. In section 5.0 we apply the method to an example 
when sampling phosphorous concentration in pond water at 5 depth strata and demonstrate the conditions of 
cost reduction with the Bayesian methodology.  
 
2.0  TRADITIONAL SETUP 

 
Let N=total number of population units in the target population. Nh   is the number of population units within 
each of the h stratum, h=1,......L. Clearly N=
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. We define the weight of the 

stratum, h, as Wh=Nh/N. The mean, µ, of the population of N units is:  
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where µh is the mean of the h stratum and is estimated by 
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where xhi= ith observation in stratum, h. An unbiased estimate of u is  
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Let Nh/N = nh/n in all strata, then  
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It will be important to note the robustness of this sample mean variance in the Bayesian context. 
 



 
  

 
3.0 COMPUTING THE OPTIMUM n 

An important aspect of stratified random sampling is to determine how many samples are to be collected 
within a stratum. Gilbert (1987) has proposed a method for doing so that will minimize the variance  s2(mst) in 
equation (5) above for a pre specified fixed cost per stratum or that will minimize the  value of s2(mst) under the 
condition of a pre specified margin of error (PMOE). The PMOE  is the value d such that d=|mst-µ| or the 
minimal absolute distance we wish to tolerate between the sample mean and population mean with some 
acceptable error which we define below. We also relate these two conditions in our development of computing 
the optimum n. 
We give a brief overview of three methods to compute the optimum n. 
 
i) Pre Specified Margin of Error (PMOE) 
 
Letting d=|mst-µ|, we denote d as the pre specified margin of error as in Gilbert (1987). The value d is such that  
 
                                 P(|mst-µ|$d)=α                                          (6) 
 
for small α.  The optimum n (Cochran, 1977) is thus  
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where for N64, 
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and z1-α/2 is the usual100(1-α/2) critical value of the standard normal distribution.  Thus the optimum nh for the 
hth stratum is 
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ii)  Pre Specified Fixed Cost 
 
We define the overall cost of the sampling as 
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where ch is the cost per population unit in the hth stratum and co is the fixed overhead cost.  This is a standard 
cost representation.  Thus the optimum n can be derived as  in Aczel (1999), 
 
                        

n

C Co
h h

h

L

h

h h h
h

L

W s c

W s c
=

−
=

=

∑

∑

( ) /
1

1

                               (10) 

As above the optimum nh per stratum is 
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One can examine equation (10) in terms of its sensitivity to changes in the PMOE. Let Wh=nh/n. 
 
Then (10) can be rewritten as  
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If we assume unequal PMOE, dh , for sampling within stratum then we can write nh=(Z1-α/2sh/dh).  See Cochran, 
(1977) and  Aczel, (1999).  Thus equation (12) can now be examined with respect to sensitivity to changes in 



 
  

dh.  
 
iii)  Correlation among Depth Stratum 
 
Let ρc = average correlation among all possible lags in the depth sampling environment.  For example if L is 
the number of strata or depths and ρl=the correlation of the lth lag, then  
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If nh is the number to be sampled in each of the L strata or  nh = stratum size, then  
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4.0 BAYESIAN CONSIDERATIONS 
 
Examining equations (7), (10), (12) and (14) we see that they all involve the expression for the stratum 
variance, s2

h. We reevaluated these expressions adding a prior structure to the variance of  Dayal and Dickey 
(1977), Bartolucci et. al. (1998) and then estimating the posterior expression for the variance, normal σ2.  We 
assumed an underlying normal distribution with both mean, µ, and variance, σ2 unknown.  In this context we 
define the likelihood function for n observations: 
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for v=n-1, nm=x1+x2+........+xn,   vs2=(x1-m)2 + (x2-m)2 +............(xn-m)2 and  ∝  denotes a proportional 
relationship. Consider the t-density,   
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and  υ, s>0. 
 
The prior for µ is 
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for υo64. 
 
The prior for σ2 is  

               p(σ2) ∝ τg2/
τ

χ 2  ,   τ>0, g>0                          (18) 

Where
τ

χ 2  is chi square on τ degrees of freedom.  Thus considering expressions (15), (17), and (18) the 

posterior variance for each stratum  is 

                             ε2=(υsh 2 +τg2)/B                                              (19) 
where B=υ+τ. 
 



 
  

Thus substituting
h

2ε  for
hs2  in (7), (10), (12), and (14) yields the Bayesian estimates of n and nh.   Thus in the 

following section we apply the Bayesian analysis to these expressions to demonstrate and determine the 
efficiency of these expressions in terms of the sample size requirements and cost of sampling. 
 
 
5.0  EXAMPLE 
 
We wish to estimate the average phosphorous concentration (µg/100 ml) in pond water.  The concentration of 
100 ml aliquot from each 1 liter sample will be measured.  The statistics for a classical representation of the 
data using the pre specified margin of error (PMOE)  d=0.2are given in Table 1. The PMOE=0.2 is a fairly 
reasonable choice in environmental sampling (see Gilbert, 1987).  There are 5 depth strata to the pond  in 
which N=total number of 100 ml water samples in the pond.  Nh is the number of aliqots in stratum h. Note that 
we have left Nh as a non integer just for the sake of generalization as this could be a depth measurement or 
volume or any convenient measure the sampler wishes to use or is convenient or has some environmental 
application.  The weights are Wh= Nh//N  for each strata. The number samples from each strata, mean and 
variance of each strata are given as well all derived from our previous formulations above in section 3.0.  We 
have assigned  costs to each strata.  For the sake of simplicity and without loss of generality we have reduced 
the costs to integer units.  The cost for sampling stratum 1 and 2 are each 1.  The costs assigned to strata 3, 
4, and 5 are 2, 2, and 3 respectively - the assumption being that costs increase as the depth increases.   Thus 
the overall cost of sampling is 74 units.  For example for the first strata we have n1 =10 or 10x1=10 as a cost 
for the first strata and we have for the last strata n5=7 at a cost of 3 per sample in that stratum or 7x3=21 for 
the cost of sampling that stratum. Thus doing likewise for the rest of the strata,  we have  a total cost of  74.  
Using the PMOE approach in Table 2, setting d=0.2 demonstrates the Bayesian results using empirical prior 
sampling information and incorporating that into the variance calculation overall. See equation (19).  One sees 
that for realistic prior assignments of  υ, τ and  g  in (19) and incorporating that variance into the calculation for 
nh  in section 3.0 one realizes a reduction in assigned number per strata overall as well as a cost reduction in 
Table 2.  In Table 3 using  pre specified overall cost (i.e. holding C constant in (9) ) did not yield any savings 
using the classical (top row) vs. the Bayesian approach (bottom row) this makes sense somewhat in that the 
cost is already fixed.  However, we did examine these results using (12) in which we varied the PMOE , dh

 , to 
determine the effect  on cost using sensitivity changes and the classical and Bayesian results remained fairly 
equal (results not shown here).   Table 4 summarizes the data results introducing correlation among the strata 
as per (14).  The average correlation is in the first column.  One can see that as you increase the average 
correlation , (13), then the required number sampled within each strata will increase, but at a slower rate in the 
Bayesian context. 
 
6.0  Discussion 
 
Overall it appears that: Compared to the classical sampling analysis for the pre specified margin of error 
approach as well as the correlational approach, the Bayesian analysis resulted in a reduction in required 
samples thus lowering the cost, especially when realistic (empirical) prior hyperparameters are utilized. Also 
there was no serious impact on the posterior standard error of the estimates of the mean concentration. 
However, there were no real differences between the classical and Bayesian approaches in the pre specified 
fixed cost analysis. Given the current computational tools the Bayesian calculations proved to be fairly straight 
forward. Also given the current availability of databases, future Bayesian approaches to environmental 
sampling should be given serious consideration especially where costs are concerned. 
The importance of incorporating the correct elements into an environmental  study design has been 
emphasixed by many authors. For example Smith (1984) discusses the efficiency of the design. In our case  
efficiency not only means precision in terms of  the pre specified margin of error, but also on the cost 
considerations. Provost (1984) has also touched upon several of the elements discussed in this paper. These 
papers plus others examine the consequences of parameter estimation  in terms of efficiency as one varies 
both the type of design and the size of the sampling effort. The stratified random sampling scheme discussed 
above is a useful and flexible design for estimating environmental concentrations, inventories and cost. They 
make use of  prior information  in the classical statistical sense of dividing  the population into subgroups or 



 
  

strata that are basically internally homogeneous. We have extended that prior knowledge to the Bayesian 
application of making use of the distribution of the prior variation within the strata to establish a more efficient 
design in terms of number sampled within the strata as well as cost efficiency. See Reckhow and  Chapra 
(1983) for a further discussion of empirical modeling and data analysis in a stratified setting. Thus, have 
extended the work of several authors by using the Bayesian methodology to ensure not only an efficient 
design in the sampling sense, but in the cost arena as well.  A possible opportunity for extension of this 
methodology is to consider multi stage sampling designs and the consequences of incorporating prior 
information into the variation components of primary as well as secondary units in the two stage setting. For 
designs with more complicated staging an extended  multivariate model of the variation within the population 
can be considered. 
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Table 1.   Data for stratified random sampling to estimate samples per strata (PMOE) 

Classical Approach (υ =1, τ =0, g =1)  s2(mst) = 0.0140, Cost=74 
 

 
 
Table 2.  Bayesian Results (PMOE) 
 
 
 (υ,τ,g) 

 
 n1 

 
 n2 

 
 n3 

 
 n4 

 
 n5 

 
 Total 

 
 s2(mst) 

 
 Cost 

 
35,1,0.5 

 
 9 

 
 9 

 
 8 

 
 8 

 
 7 

 
 41 

 
0.0140 

 
 71 

 
35,2,0.5 

 
 9 

 
 8 

 
 8 

 
 8 

 
 7 

 
 40 

 
0.0141 

 
 70 

 
20,1,1.0 

 
 9 

 
 8 

 
 8 

 
 8 

 
 6 

 
 39 

 
0.0138 

 
 67 

 
40,35,0.2 

 
 5 

 
 5 

 
 4 

 
 4 

 
 4 

 
 22 

 
0.0143 

 
 38 

 
40,35,0.5 

 
 7 

 
 7 

 
 6 

 
 6 

 
 4 

 
 30 

 
0.0195 

 
 42 

 
 
Table 3.  Pre specified fixed cost (Bayesian results in bottom row) 
 

 
C-c0 

 
 υ 

 
 τ 

 
 g 

 
 n 

 
 n1 

 
 n2 

 
 n3 

 
 n4 

 
 n5 

 
 50 

 
 - 

 
 - 

 
 - 

 
 31 

 
 7 

 
 7 

 
 6 

 
 6 

 
 5+ 

 
 50 

 
 40 

 
 35 

 
 0.12 

 
 31 

 
 7 

 
 7 

 
 6 

 
 6 

 
 5 

 
 

 
 Strata 

 
 Nh 

 
 Wh  nh  mh 

 
 s2

h 
 
     1    

 
 4.25 

 
 0.266 

 
 10 

 
 1.67 

 
 0.4376 

 
 2 

 
 3.96 

 
 0.248 

 
 9 

 
 2.83 

 
 0.4228 

 
 3 

 
 3.23 

 
 0.202 

 
 8 

 
 3.59 

 
 0.5339 

 
 4 

 
 2.85 

 
 0.178 

 
 9 

 
 4.23 

 
      0.7222 

 
 5 

 
 1.70 

 
 0.106 

 
 7 

 
 5.31 

 
      1.3920 

 
 Total 

 
       15.99 

 
 1.000 

 
 43 

 
 - 

 
 - 



 
  

Table 4.  Example Using the Correlation Structure,  ρc. 
 

 
prior (υ,τ,g) 

 
 Classical  

 
 (35,1,0.5) 

 
 (20,1,0.1) 

 
  (40,35,.2)   

 
 ρc 

 
 nh      Cost 

 
nh      Cost 

 
nh      Cost 

 
nh      Cost 

 
 0.05 

 
10      90 

 
10      90 

 
10     90 

 
05     45     

 
 0.10 

 
12     108  

 
12     108 

 
11     108 

 
06     48 

 
 0.15 

 
14     126 

 
13     117 

 
13     117 

 
07     63 

 
 0.25 

 
17     153 

 
16     144 

 
16     144 

 
09     81 

 
 0.35 

 
21     189 

 
20     180 

 
19     171  

 
11     99 

 
 0.45 

 
24     216 

 
23     207 

 
22     176 

 
12    108  

 
 0.55 

 
28     252 

 
26     234  

 
25     225 

 
14    126   

 


