Research and Science
CroplandCROS, CropScape, and Cropland Data Layer
CroplandCROS | FAQ’s | Metadata | National Download | Other CDL Citations
Announcements
Announcement: 2023 Cropland Data Layer released January 31, 2024
Announcement: The new CroplandCROS web app
WASHINGTON, Oct. 28, 2021 – USDA’s National Agricultural Statistics Service and Agricultural Research Service announces the new CroplandCROS web app (https://croplandcros.scinet.usda.gov/). CroplandCROS hosts the Cropland Data Layer (CDL) and allows users to easily conduct area and statistical analysis of planted U.S. commodities, geolocate farms, and map areas of interest. User guides and instructional videos are available at the CroplandCROS website.
2024
- Hui Li, M.D.; Liping Di; Chen Zhang; Li Lin; Liying Guo; Eugene G. Yu; Zhengwei Yang, “Automated in-season crop-type data layer mapping without ground truth for the Conterminous United States based on multisource satellite imagery”, IEEE Transactions on Geoscience and Remote Sensing. Volume: 62, Page(s): 1-14, February 2024. https://doi.org/10.1109/TGRS.2024.3361895.
- Yuliang Peng, Zhengwei Yang, Jingyi Huang, Zhou Zhang, A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy 2024, 14(3), 421; https://doi.org/10.3390/agronomy14030421.
2023
- Volker C. Radeloff, David P. Roy, Michael A. Wulder, Martha Anderson, Bruce Cook, Christopher J. Crawford, Mark Friedl, Feng Gao, Noel Gorelick, Matthew Hansen, Sean Healey, Patrick Hostert, Glynn Hulley, Justin L. Huntington, David M. Johnson, Chris Neigh, Alexei Lyapustin, Leo Lymburner, Nima Pahlevan, Jean-Francois Pekel, Theodore A. Scambos, Crystal Schaaf, Peter Strobl, Curtis E. Woodcock, Hankui K. Zhang, Zhe Zhu, Need and vision for global medium-resolution Landsat and Sentinel-2 data products, Remote Sensing of Environment, Volume 300, 2024, 113918, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2023.113918.
- Chen Zhang, Liping Di, Li Lin, Haoteng Zhao, Hui Li, Anna Yang, Liying Guo, Zhengwei Yang. 2023. Cyberinformatics tool for in-season crop-specific land cover monitoring: Design, implementation, and applications of iCrop, Computers and Electronics in Agriculture, Volume 213, 2023, 108199, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2023.108199.
- Yuchi Ma, Zhengwei Yang, Zhou Zhang, “Improving the Transferability of Deep Learning Models for Crop Yield Prediction: A Partial Domain Adaptation Approach”, Remote Sens. 2023, 15(18), 4562; https://doi.org/10.3390/rs15184562.
- Chen Zhang, Liping Di, Li Lin, Hui Li, Anna Yang, Liying Guo, Eugene G. Yu, Zhengwei Yang, “Cyberinformatics tool for in-season crop-specific land cover monitoring: design, implementation, and applications of iCrop,” Computers and Electronics in Agriculture. Volume 213, October 2023, 108199. https://doi.org/10.1016/j.compag.2023.108199.
- Shen, Yu, Xiaoyang Zhang, Zhengwei Yang, Yongchang Ye, Jianmin Wang, Shuai Gao, Yuxia Liu, Weile Wang, Khuong H. Tran, Junchang Ju. 2023. "Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations," Remote Sensing of Environment, Volume 296, 2023, 113729, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2023.113729.
- Abernethy, Jonathon, Peter Beeson, Claire Boryan, Kevin Hunt, Luca Sartore. 2023. "Preseason crop type prediction using crop sequence boundaries," Computers and Electronics in Agriculture, Volume 208, May 2023, 107768, ISSN 0168-1699. https://doi.org/10.1016/j.compag.2023.107768.
- Ma, Yuchi, Zhengwei Yang, Zhou Zhang. 2023. "Multisource Maximum Predictor Discrepancy for Unsupervised Domain Adaptation on Corn Yield Prediction," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023, Art no. 4401315, doi: 10.1109/TGRS.2023.3247343. https://ieeexplore.ieee.org/document/10049448.
2022
- Loveland, T.R., M.C. Anderson, J.L. Huntington, J.R. Irons, D.M. Johnson, L.E.P. Rocchio, C.E. Woodcock, and M.A. Wulder. 2022. Seeing Our Planet Anew: Fifty Years of Landsat. Photogrammetric Engineering and Remote Sensing. Vol. 88, No. 7, July 2022, pp. 429-436 https://doi.org/10.14358/PERS.88.7.429.
- Liu, Pang-Wei, Rajat Bindlish, Peggy O'Neill, Bin Fang, Venkat Lakshmi, Zhengwei Yang, Michael H. Cosh, Tara Bongiovanni, Chandra Holifield Collins, Patrick Starks, John Prueger, David D. Bosch, Mark Seyfried, and Mark Williams. 2022. "Thermal Hydraulic Disaggregation of SMAP Soil Moisture over Continental United States," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 07 April 2022, https://doi.org/10.1109/JSTARS.2022.3165644.
- Shen, Yu, Xiaoyang Zhang, Zhengwei Yang. 2022. Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing time series of Landsat 8 and Sentinel-2 data with VIIRS data, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 186, 2022, Pages 55-69, ISSN 0924-2716. https://doi.org/10.1016/j.isprsjprs.2022.01.023.
- Zhang, Chen, Liping Di, Li Lin, Hui Li, Liying Guo, Zhengwei Yang, Eugene G. Yu, Yahui Di, Anna Yang. 2022. Towards automation of in-season crop type mapping using spatiotemporal crop information and remote sensing data. Agricultural Systems, Volume 201, August 2022, 103462. https://doi.org/10.1016/j.agsy.2022.103462.
- Zhang, Chen; Yang, Zhengwei, Di, Liping, Yu, Eugene Genong, Lin, Li, Bei Zhang, Weiguo Han, Guo, Liying. 2022. Near-real-time MODIS-derived vegetation index data products and online services for CONUS based on LANCE. Scientific Data, (2022) 9:477, https://doi.org/10.1038/s41597-022-01565-2. Dataset. https://doi.org/10.6084/m9.figshare.15130857.v2.
- Zhang, Chen, Zhengwei Yang, Haoteng Zhao, Ziheng Sun, Liping Di, Rajat Bindlish, Pang-Wei Liu, Andreas Colliander, Rick Mueller, Wade Crow, Rolf H. Reichle, John Bolten, Simon H. Yueh. 2022. Crop-CASMA: A web geoprocessing and map service based architecture and implementation for serving soil moisture and crop vegetation condition data over U.S. Cropland, International Journal of Applied Earth Observation and Geoinformation, Volume 112, 2022, 102902, ISSN 1569-8432. https://doi.org/10.1016/j.jag.2022.102902.
2021
- Gao, Feng, Martha C. Anderson, David M. Johnson, Robert Seffrin, Brian Wardlow, Andy Suyker, Chunyuan Diao, and Dawn M. Browning. 2021. "Towards Routine Mapping of Crop Emergence within the Season Using the Harmonized Landsat and Sentinel-2 Dataset" Remote Sensing 13, no. 24: 5074. https://doi.org/10.3390/rs13245074
- Johnson, David M., Arthur Rosales, Richard Mueller, Curt Reynolds, Ronald Frantz, Assaf Anyamba, Ed Pak, and Compton Tucker. 2021. "USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses?" Remote Sensing 13, no. 21: 4227. https://doi.org/10.3390/rs13214227
- Diao, Chunyuan; Zijun Yang; Feng Gao; Xiaoyang Zhang; Zhengwei Yang. (2021). "Hybrid phenology matching model for robust crop phenological retrieval," ISPRS Journal of Photogrammetry and Remote Sensing. Volume 181, November 2021, Pages 308-326. https://doi.org/10.1016/j.isprsjprs.2021.09.011.
- Ma, Yuchi; Zhou Zhang; Hsiuhan Lexie Yang; Zhengwei Yang. (2021). "An adaptive adversarial domain adaptation approach for corn yield prediction," Computers and Electronics in Agriculture, 187 (2021) 106314. https://doi.org/10.1016/j.compag.2021.106314.
- Johnson, David M., Richard Mueller, (2021). Pre- and within-season crop type classification trained with archival land cover information, Remote Sensing of Environment, Volume 264, 2021, 112576, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2021.112576.
- Ma, Yuchi; Zhou Zhang, Hsiuhan Lexie Yang, Zhengwei Yang, (2021). An adaptive adversarial domain adaptation approach for corn yield prediction, Computers and Electronics in Agriculture, 187 (2021) 106314. https://doi.org/10.1016/j.compag.2021.106314.
- Wu, X., Xiao, X.; Steiner, J.; Yang, Z.; Qin, Y.; Wang, J (2021). Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas, Photosynthesis and Grain Production in the Contiguous United States from 2008-2018. Remote Sens. 2021, 13, 1735. https://doi.org/10.3390/rs13091735.
- Yu, Eugene G. and Zhengwei Yang (2021). Chapter 10. "Crop Pattern and Status Monitoring," In: Di L., Üstünda B. (eds) Agro-geoinformatics. pp 175-203, Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-66387-2_10. 13 April 2021.
- Zhang, C.; L. Di; P. Hao; Z. Yang; L. Lin; H. Zhao; L. Guo, (2021). "Rapid In-season Mapping of Corn and Soybeans Using Machine-learned Trusted Pixels from Cropland Data Layer," International Journal of Applied Earth Observation and Geoinformation, Volume 102, October 2021, 102374. https://doi.org/10.1016/j.jag.2021.102374.
- Boryan C.G., Yang Z. (2021) Geospatial Land Use and Land Cover Data for Improving Agricultural Area Sampling Frames. In: Di L., Üstünda B. (eds) Agro-geoinformatics. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-66387-2_14. Posted 13 April 2021.
- Wu, X., X. Xiao, Z. Yang, J. Wang, J. Steiner, R. Bajgain, (2021). Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008-2018. Agricultural and Forest Meteorology, Volume 297, 2021, 108240, ISSN 0168-1923. https://doi.org/10.1016/j.agrformet.2020.108240. Posted 11/13/2020.
2020
- Liu, P.W., R. Bindlish, B. Fang, V. Lakshmi, P. O'Neill, Z. Yang, M. Cosh, T. Bongiovanni, D. Bosch, C. Holifield Collins, P. Starks, J. Prueger, M. Seyfried, and S. Livingston, (2020). "Assessing Disaggregated SMAP Soil Moisture Product in the United States." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp: 2577-2592, https://doi.org/10.1109/JSTARS.2021.3056001.
- Zhang, C., Z. Yang, L. Di, and L. Lin, (2020). Refinement of Historical Cropland Data Layer Based on Deep Learning Approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W11, 161-164, Pecora 21/ISRSE 38. Baltimore, MD, October 6-11, 2019. https://doi.org/10.5194/isprs-archives-XLII-3-W11-161-2020. Posted 2/14/2020.
- Zhang, C., L. Di, Z. Yang, L. Lin, P. Hao, (2020). AgKit4EE: A toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine. Environmental Modelling and Software, Volume 129, July 2020, 104694. https://doi.org/10.1016/j.envsoft.2020.104694. Posted 3/13/2020.
2019
- Gran, R., (2019). Satellites Track Status of Nation's Food Supply courtesy NASA Goddard Media Studios. Posted 12/19.2019.
- Johnson, D., (2019). Using the Landsat archive to map crop cover history across the United States. Remote Sensing of Environment 232, 10, https://doi.org/10.1016/j.rse.2019.111286. Posted 9/12/2019.
- Colliander, A., Z. Yang, R. Mueller, A. Sandborn, R. Reichle, W. Crow, D. Entekhabi, and S. Yueh, (2019). Consistency between NASS Surveyed Soil Moisture Conditions and SMAP Soil Moisture Observations. American Geophysical Union, Water Resources Research. https://doi.org/10.1029/2018WR024475. Posted 8/22/2019.
- Sandborn, A., R. Mueller, C. Boryan, D. Johnson, Z. Yang, L. Ebinger, A. Rosales, P. Willis, R. Seffrin, R. Jennings, M. Deaton, and H. Hamer, (2019). NASS Geospatial Applications from the Cropland Data Layer. ISI World Statistics Conference, Malaysia, Aug 18-23, 2019. Posted 8/21/2019.
- Boryan, C., Z. Yang, P. Willis, and A. Sandborn, (2019) Early Season Winter Wheat Identification Using Sentinel -1
Synthetic Aperture Radar (SAR) and Optical Data, IGARSS 2019, Yokohama Japan, July 28 - August 2, 2019. Posted 8/21/2019.
- Yang, Z. and C. Boryan, (2019) Impact of Non-Proportional Training Sampling of Imbalanced Classes on Land Cover Classification Accuracy With See5 Decision Tree, IGARSS 2019, Yokohama Japan, July 28 - August 2, 2019. Posted 8/21/2019.
- Wulder, M., T Loveland, D. Roy, C. Crawford, J. Masek, C.Woodcock, R. Allen, M. Anderson, A. Belward, W. Cohen, J. Dwyer, A. Erb, F. Gao, P. Griffiths, D. Helder, T. Hermosilla, J. Hipple, P, Hostert, M. Hughes, J. Huntington, D. Johnson, R. Kennedy, A. Kilic, Z. Li, L. Lymburner, J. McCorkel, N. Pahlevan, T.Scambos, C. Schaaf, J.Schott, Y. Sheng, J. Storey, E. Vermote, J. Vogelmann, J. White, R.Wynne, and Z. Zhu, (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment 225, (5), Pages 127-147. https://doi.org/10.1016/j.rse.2019.02.015. Posted 5/24/2019.
2018
- Torbick, N.; X. Huang, B. Ziniti, D. Johnson, J. Masek, and M. Reba, (2018). Fusion of Moderate Resolution Earth Observations for Operational Crop Type Mapping. Remote Sensing, 10, 7, doi 10.3390/rs10071058 Posted 11/5/2018.
- Gao, F., M. Anderson, C.Daughtry, and D. Johnson, (2018). Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sensing, 10, 9, doi:10.3390/rs10091489. Posted 11/5/2018.
- Liu, L., X. Zhang, Y. Yu, F. Gao, and Z. Yang, (2018), Real-time Monitoring of Crop Phenology in the Midwestern United States using VIIRS Observations. Remote Sensing, 2018, 10, (10) 1540. doi:10.3390/rs10101540 Posted 11/5/2018.
- Boryan, C., Z. Yang, A. Sandborn, P. Willis, and B. Haack (2018). Operational Agricultural Flood Monitoring With Sentinel-1 Synthetic Aperture Radar. IGARSS 2018, Valenca Spain, July 22-27, 2018. doi: 10.1109/IGARSS.2018.8519458 Posted 08/09/2018.
- Boryan, C., Z. Yang, and B. Haack (2018). Evaluation of Sentinel-1A C-Band Synthetic Aperature Radar for Citrus Crop Classification in Florida, United States. 7369 - 7372, IGARSS 2018, Valenca Spain, July 22-27, 2018. doi: 10.1109/IGARSS.2018.8519223 Posted 08/09/2018.
- Boryan, C., (2018). The USDA NASS Cropland Data Layer Program Transition from Research to Operations (2006-2009). White Paper. Posted 06/04/2018.
2017
- Boryan, C., and Z. Yang, (2017). Integration of the Cropland Data Layer Based Automatic Stratification Method into the Traditional Area Frame Construction Process. Survey Research Methods, 11(3), 289-306. doi: dx.doi.org/10.18148/srm/2017.v11i3.6725. Posted 10/26/2017.
- Lark, T., Mueller, R., Johnson, D., and H. Gibbs, (2017). Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. International Journal of Applied Earth Observation and Geoinformation 62, October, pp. 224-235. https://doi.org/10.1016/j.jag.2017.06.007, Posted 5/23/2019.
- Boryan, C., Z. Yang, P. Willis, and L. Di, (2017). Developing Crop Specific Area Frame Stratifications based on Geospatial Crop Frequency and Cultivation Data Layers, Journal of Integrative Agriculture 16(2): pp 312-323, doi.org/10.1016/S2095-3119(16)61396-5 posted 4/26/17.
- Mladenova, I., J. Bolten, W. Crow, M. Anderson, C. Hain, D. Johnson, and R. Mueller, (2017). Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S., IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (4), pp. 1328 - 1343, doi 10.1109/JSTARS.2016.2639338. Posted 5/24/2019.
- King, L.A., B. Adusei, S. Stehman, P. Potapov, X. Song, A. Krylov, C. Di Bella, T. Loveland, D.Johnson, and M. Hansen, (2017). A multi-resolution approach to national-scale cultivated area estimation of soybean, Remote Sensing of Environment 195 (15) June pp. 13-29, https://doi.org/10.1016/j.rse.2017.03.047. Posted 5/24/2019.
- Yang, Z, W. Crow, L. Hu, L. Di, and R. Mueller (2017). SMAP Data for cropland soil moisture assessment — A case study. IGARSS 2017, Fort Worth, Texas, July 23-28, doi: 10.1109/IGARSS.2017.8127373 Posted 5/13/19.
- Gao, F., M. Anderson, X. Zhang, Z. Yang, J. Alfieri, W.Kustas, R. Mueller, D. Johnson, and J. Prueger, (2017), Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment 188, January 2017, pp. 9-25 https://doi.org/10.1016/j.rse.2016.11.004
- Xiarchos, I., and A. Sandborn, (2017) Wind Energy Land Distribution in the United States of America Office of Chief Economist, USDA, July.
2016
- Boryan, C. G. Yang, Z., B. Seffrin, (2016). Post Stratification Assessment of the NASS Automated Stratification Method based on the Cropland Data Layer, IGARSS 2016, Beijing China, July 10-15, doi: 10.1109/IGARSS.2016.7730550 posted 5/17/17.
- Yang, Z., L. Hu, G. Yu, R. Shrestha, L. Di, C. Boryan, and R. Mueller, Web Service-Based SMAP Soil Moisture Data Visualization, Dissemination and Analytics Based on VegScape Framework, IGARSS 2016, Beijing China, July 10-15, doi: 10.1109/IGARSS.2016.7729939 posted 8/10/16.
- Yang, Z., R. Shrestha, W. Crow, and L. Di, Evaluation of assimilated SMOS Soil Moisture data for US cropland Soil Moisture monitoring IGARSS 2016, Beijing China, July 10-15, doi: 10.1109/IGARSS.2016.7730366 posted 5/18/17.
- Shrestha, R., L. Di, E. Yu, L. Kang, Lin Li, S. Rahman, M. Deng, and Z. Yang, “Regression based Corn Yield Assessment using MODIS Based Daily NDVI in Iowa State,” The Fifth International Conference on Agro-Geoinformatics, July 2016, Tianjin,China, doi: 10.1109/Agro-Geoinformatics.2016.7577657 posted 5/18/17.
- Yu, E., L. Di, L. Kang, R. Shrestha, S. Rahman, L. Lin, M. Deng, and Z. Yang, “Online parameterization for WOFOST for United States using open geospatial standards,” The Fifth International Conference on Agro-geoinformatics, July 2016, Tianjin,China, doi: 10.1109/Agro-Geoinformatics.2016.7577658 posted 5/18/17.
- Otkin, J., M. Anderson, C. Hain, M. Svobodad, D. Johnson, R. Mueller, T. Tadesse, B. Wardlow, J. Brown, (2016). Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought, Agricultural and Forest Meteorology, V 218–219 (15) March, pp. 230-242, https://doi.org/10.1016/j.agrformet.2015.12.065. Posted 5/24/2019.
- Johnson, D., (2016) A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products,, International Journal of Applied Earth Observation and Geoinformation, 52, October, pp. 65–81, doi.org/10.1016/j.jag.2016.05.010 posted 8/10/16.
2015
- Boryan, C., Z. Yang, and P. Willis, “A Novel Method for Area Frame Stratification based on Geospatial Crop Planting Frequency Data Layers” Proc. of the International Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, Milan, Italy, July 26 – 31, 2015. doi: 10.1109/IGARSS.2015.7326706 Posted 6/13/16.
- Johnson, D., (2015). The role of remote sensing for regional monitoring of U.S. crop condition and yield, Evaluation of drought and drought impacts through interdisciplinary methods. Global Change Research Centre AS CR, ISBN: 978-80-87902-12-7, pp. 47-53. DOI: https://doi.org/10.3354/cr01509. Posted 11/19/15.
- Johnson, D., R. Mueller, and P. Willis, (2015) The utility of the Cropland Data Layer for monitoring US grassland extent Proceedings of the 3rd Biennial Conference on the Conservation of America's Grasslands. September 29-October 1, Fort Collins, CO. Washington, DC: National Wildlife Federation. Pages 15-19. Posted 07/08/2016.
- Seffrin, R., (2015). From SAS® Data to Interactive Web Graphics Built Through PROC JSON, Southeast SAS Users Conference, Sept 27 - 29. Posted 11/18/15.
2014
- Boryan, C., Z. Yang, L. Di, and K. Hunt (2014). A New Automatic Stratification Method for U.S. Agricultural Area Sampling Frame Construction Based on the Cropland Data Layer, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (11) pp. 4317 - 4327, Nov 2014. doi: 10.1109/JSTARS.2014.2322584 Posted 7/22/14.
- Han, W.,Z. Yang, L. Di, and B. Zhang, (2014). Enhancing agricultural geospatial data dissemination and applications using geospatial Web services, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), pp. 4539 - 4547, doi: 10.1109/JSTARS.2014.2315593 Posted 11/18/15.
- Boryan, C. and Z. Yang, (2014). Operational implementation of a new automatic stratification method using geospatial cropland data layers in the NASS area frame section, Proceedings of IGARSS 2014 & 35th Canadian Symposium on Remote Sensing, Quebec City, Canada, July 13-18, doi: 10.1109/IGARSS.2014.6946882
- Boryan, C. and Z. Yang. (2014). Implementation of a new automatic stratification method using geospatial cropland data layers in NASS area frame construction". Proceedings of IGARSS 2014 & 35th Canadian Symposium on Remote Sensing, Quebec City, Canada, July 13-18, doi: 10.1109/IGARSS.2014.6946882 Posted 6/4/15.
- Wang, C., C. Zhong, and Z. Yang, (2014). Assessing bioenergy-driven agricultural land use change and biomass quantities with MODIS time series in the U.S. Midwest, J. Appl. Remote Sens. 8(1), 085198 Nov 03, doi: 10.1117/1.JRS.8.085198 Posted 11/18/15.
- Johnson, D., (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment 141 (5) pp 116 - 128. doi.org/10.1016/j.rse.2013.10.027 Posted 1/31/14.
- Boryan, C., Z. Yang, and P. Willis, (2014). US geospatial crop frequency data layers, August 11-14, Third International Conference on Agro-geoinformatics, Beijing, China, doi:10.1109/Agro-Geoinformatics.2014.6910657 Posted 6/4/15.
- USDA Blog by R. Mueller. Need for Geospatial Data Grows Across the Country April 2014. Posted 7/22/14.
- Han, W., Z. Yang, L. Di, A. Yagci, and S. Han, (2014). Making Cropland Data Layer Data Accessible and Actionable in GIS Education Journal of Geography,) 113(3), doi: 10.1080/00221341.2013.838286 Posted 1/31/14.
- Han, W., Z. Yang, L. Di, and P. Yue (2014). A Geospatial Web Service Approach For Creating On-Demand Cropland Data Layer Thematic Maps Transactions of the ASABE, 57(1), 239-247 doi: 10.13031/trans.57.10020 Posted 6/4/15.
2013
- Craig, Michael and Dale Atkinson. (2013). "A Literature Review of Crop Area Estimation" Food and Agriculture Organization. (2012b) “Advanced Training on Monitoring of Crops through Satellite. Technology”, UN FAO and SUPARCO Publication. July 2013.
- Han, W., Z. Yang, L. Di, and P. Yue (2013). A Geospatial Web Service Approach for Creating On-Demand Cropland Data Layer Thematic Maps. Transactions of the ASABE, 57(1) pp 239-247. doi: 10.13031/trans.57.10020 Posted 7/21/14.
- Mueller R., and J. Harris (2103). Reported Uses of CropScape and the National Cropland Data Layer Program International Conference on Agricultural Statistics VI, Oct 23-25, Rio de Janerio, Brazil Posted 1/31/14.
- Seffrin, R., (2013). Evaluating the Accuracy Assessment Methods of a Thematic Raster through SAS Resampling Techniques and GTL Visualizations SAS Southeastern Users Group Meeting, Oct. 21-23, Tampa FL. Posted 1/31/14.
- Yang, Z. (2013). Exploring Continuous Corn Cropping Patterns and Their Relationship with Geographic Factors Proc. of the Second International Conference on Agro-Geoinformatics, pp 490- 494, Fairfax, Virginia, Aug. 12-16, 2013, DOI: 10.1109/Argo-Geoinformatics.2013.6621969 Posted 1/31/14.
- Han, W., L. Di, and Z. Yang, (2013). Developing geoprocessing service for Cropland Data Layer thematic map creation Proc. of the Second International Conference on Agro-Geoinformatics, Fairfax, Virginia, Aug. 12-16, 2013, pp 572-576. DOI: 10.1109/Argo-Geoinformatics.2013.6621941 Posted 7/22/14.
- Yang, Z., G. Yu, L. Di, B. Zhang, W. Han, and R. Mueller, (2013). Web Service-Based Vegetation Condition Monitoring System - VegScape Proc. of 2013 IEEE International Geoscience & Remote Sensing Symposium, Melbourne, Australia, July 21-26, pp 3638 - 3641 DOI: 10.1109/IGARSS.2013.6723618 Posted 1/31/14.
- Boryan C., and Z. Yang (2013). Deriving Crop Specific Covariate Data Sets From Multi-Year NASS Geospatial Cropland Data Layers, Proc. of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013, Melbourne, Australia, July 21-26, pp 4225 - 4228, DOI: 10.1109/IGARSS.2013.6723766. Posted 1/31/14.
- Yang, Z., R. Mueller, and W. Crowe, (2013). US National Cropland Soil Moisture Monitoring Using SMAP Proc. of IEEE International Geoscience & Remote Sensing Symposium, Melbourne, Australia, July 21-26, pp. 3746 - 3749, DOI: 10.1109/IGARSS.2013.6723645 Posted 1/31/14.
- USDA Blog by R. Mueller (2013). Bringing Ag Data to Life through Satellite Imagery Posted 5/1/13.
- Zakzeski, A., and R. Seffrin (2013). An Innovative Approach to Integrating SAS Macros with GIS Software Products to Produce County-Level Accuracy Assessments SAS Global Forum. Posted 1/31/14.
2012
- Boryan, C., Z. Yang, and L. Di, (2012). Deriving 2011 Cultivated Land Cover Data Sets Using USDA National Agricultural Statistics Service Historic Cropland Data Layers. Proc. of IEEE International Geoscience and Remote Sensing Symposium, July 22-27, Munich, Germany, pp. 6297 - 6300, DOI 10.1109/IGARSS.2012.6352699. Posted 10/24/12.
- Johnson, D., (2012). A 2010 map estimate of annually tilled cropland within the conterminous United States. Agricultural Systems 114 (1), pp 95-105 doi.org/10.1016/j.agsy.2012.08.004,Posted 10/24/12.
- Boryan, C., and Z. Yang, (2012). A new land cover classification based stratification method for area sampling frame construction. Proc. of the First International Conference on Agro-Geoinformatics, Fairfax, Virginia, pp. 1-6 doi 10.1109/Agro-Geoinformatics.2012.6311727. Posted 7/22/14.
- Yu, G., L. Di, Z. Yang, Y. Shen, Z. Chen, and B. Zhang (2012). Corn growth stage estimation using time series vegetation index. Proc. of the First International Conference on Agro-Geoinformatics, Fairfax, Virginia pp. 1 -6, doi 10.1109/Agro-Geoinformatics.2012.6311631. Posted 7/22/14.
- Veregin H., and Ebinger, L., 133 map categories! How the US Department of Agriculture solved a complex cartographic design problem. Wisconsin State Cartographers Office, April 25, 2012, Posted 4/25/12.
- Han, W., Z. Yang, L. Di, and R. Mueller, (2012). CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Computers and Electronics in Agriculture, 84 (6), pp. 111-123, https://doi.org/10.1016/j.compag.2012.03.005 Posted 4/9/12.
- Office of Management and Budget. March 7, 2012. Report to Congress on the Implementation of the E-Government Act of 2002 and CropScape citation excerpt. Posted 4/5/17.
2011
- Boryan, C., Z. Yang, R. Mueller, and M. Craig, (2011). Monitoring US Agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. GeoCarto Intl, 2011, 26 (5): 341-358, https://doi.org/10.1080/10106049.2011.562309. Posted 1/30/2012.
- USDA Blog USDA Celebrates the United States’ Entry into the Open Government Partnership. Posted 9/20/2011.
- USDA Blog Farm Internet Access on the Rise, Now Let’s Connect. Posted 8/16/2011.
- September 14, 2011 the CropScape-Cropland Data Layer Project Team received a group achievement award at the 63rd Annual USDA Secretary's Honor Awards. Posted 9/15/11.
- Wang, C., F. Fritschib, G. Staceyc and Z. Yang (2011). Phenology-Based Assessment of Perennial Energy Crops in North American Tallgrass Prairie. Annals of the Association of American Geographers, 101 (4) pp. 742-751, https://doi.org/10.1080/00045608.2011.567934 Posted 7/22/2014.
- NASA press release Landsat Part of USDA’s CropScape Geospatial Data Service. Posted 5/24/2019.
- USDA Blog New Geospatial Data Service Now Available. Posted 1/11/2011.
- NASS press release for the new CDL visualization portal CropScape NASS Releases New Geospatial Data in CropScape.
- NASS press release Feb. 3, 2012 NASS Launches New CropScape Geospatial Data Service. Posted 1/10/2011.
2010
For questions and/or comments please contact the Geospatial Information Branch.
An independent CDL
accuracy assessment performed by the University of
Illinois at Urbana-Champaign Institute of Natural Resources
Sustainability titled: Assessment and
Potential of the 2007 USDA-NASS Cropland Data Layer for Statewide
Annual Land Cover Applications
A CDL History White Paper: A brief
history from 1971 to present